mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
857bede416
This is an improvement over Zen 2, where only branch fusion is supported, as per Agner, 21.4 Instruction fusion. AMD SOG 17h has no mention of fusion. AMD SOG 19h, 2.9.3 Branch Fusion The following flag writing instructions support branch fusion with their reg/reg, reg/imm and reg/mem forms * CMP * TEST * SUB * ADD * INC (no fusion with branches dependent on CF) * DEC (no fusion with branches dependent on CF) * OR * AND * XOR Agner, 22.4 Instruction fusion <...> This applies to CMP, TEST, ADD, SUB, AND, OR, XOR, INC, DEC and all conditional jumps, except if the arithmetic or logic instruction has a rip-relative address or both an address displacement and an immediate operand.
1229 lines
42 KiB
C++
1229 lines
42 KiB
C++
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains small standalone helper functions and enum definitions for
|
|
// the X86 target useful for the compiler back-end and the MC libraries.
|
|
// As such, it deliberately does not include references to LLVM core
|
|
// code gen types, passes, etc..
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
|
|
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
|
|
|
|
#include "X86MCTargetDesc.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
namespace llvm {
|
|
|
|
namespace X86 {
|
|
// Enums for memory operand decoding. Each memory operand is represented with
|
|
// a 5 operand sequence in the form:
|
|
// [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
|
|
// These enums help decode this.
|
|
enum {
|
|
AddrBaseReg = 0,
|
|
AddrScaleAmt = 1,
|
|
AddrIndexReg = 2,
|
|
AddrDisp = 3,
|
|
|
|
/// AddrSegmentReg - The operand # of the segment in the memory operand.
|
|
AddrSegmentReg = 4,
|
|
|
|
/// AddrNumOperands - Total number of operands in a memory reference.
|
|
AddrNumOperands = 5
|
|
};
|
|
|
|
/// AVX512 static rounding constants. These need to match the values in
|
|
/// avx512fintrin.h.
|
|
enum STATIC_ROUNDING {
|
|
TO_NEAREST_INT = 0,
|
|
TO_NEG_INF = 1,
|
|
TO_POS_INF = 2,
|
|
TO_ZERO = 3,
|
|
CUR_DIRECTION = 4,
|
|
NO_EXC = 8
|
|
};
|
|
|
|
/// The constants to describe instr prefixes if there are
|
|
enum IPREFIXES {
|
|
IP_NO_PREFIX = 0,
|
|
IP_HAS_OP_SIZE = 1U << 0,
|
|
IP_HAS_AD_SIZE = 1U << 1,
|
|
IP_HAS_REPEAT_NE = 1U << 2,
|
|
IP_HAS_REPEAT = 1U << 3,
|
|
IP_HAS_LOCK = 1U << 4,
|
|
IP_HAS_NOTRACK = 1U << 5,
|
|
IP_USE_VEX = 1U << 6,
|
|
IP_USE_VEX2 = 1U << 7,
|
|
IP_USE_VEX3 = 1U << 8,
|
|
IP_USE_EVEX = 1U << 9,
|
|
IP_USE_DISP8 = 1U << 10,
|
|
IP_USE_DISP32 = 1U << 11,
|
|
};
|
|
|
|
enum OperandType : unsigned {
|
|
/// AVX512 embedded rounding control. This should only have values 0-3.
|
|
OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
|
|
OPERAND_COND_CODE,
|
|
};
|
|
|
|
// X86 specific condition code. These correspond to X86_*_COND in
|
|
// X86InstrInfo.td. They must be kept in synch.
|
|
enum CondCode {
|
|
COND_O = 0,
|
|
COND_NO = 1,
|
|
COND_B = 2,
|
|
COND_AE = 3,
|
|
COND_E = 4,
|
|
COND_NE = 5,
|
|
COND_BE = 6,
|
|
COND_A = 7,
|
|
COND_S = 8,
|
|
COND_NS = 9,
|
|
COND_P = 10,
|
|
COND_NP = 11,
|
|
COND_L = 12,
|
|
COND_GE = 13,
|
|
COND_LE = 14,
|
|
COND_G = 15,
|
|
LAST_VALID_COND = COND_G,
|
|
|
|
// Artificial condition codes. These are used by analyzeBranch
|
|
// to indicate a block terminated with two conditional branches that together
|
|
// form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
|
|
// which can't be represented on x86 with a single condition. These
|
|
// are never used in MachineInstrs and are inverses of one another.
|
|
COND_NE_OR_P,
|
|
COND_E_AND_NP,
|
|
|
|
COND_INVALID
|
|
};
|
|
|
|
// The classification for the first instruction in macro fusion.
|
|
enum class FirstMacroFusionInstKind {
|
|
// TEST
|
|
Test,
|
|
// CMP
|
|
Cmp,
|
|
// AND
|
|
And,
|
|
// FIXME: Zen 3 support branch fusion for OR/XOR.
|
|
// ADD, SUB
|
|
AddSub,
|
|
// INC, DEC
|
|
IncDec,
|
|
// Not valid as a first macro fusion instruction
|
|
Invalid
|
|
};
|
|
|
|
enum class SecondMacroFusionInstKind {
|
|
// JA, JB and variants.
|
|
AB,
|
|
// JE, JL, JG and variants.
|
|
ELG,
|
|
// JS, JP, JO and variants
|
|
SPO,
|
|
// Not a fusible jump.
|
|
Invalid,
|
|
};
|
|
|
|
/// \returns the type of the first instruction in macro-fusion.
|
|
inline FirstMacroFusionInstKind
|
|
classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
return FirstMacroFusionInstKind::Invalid;
|
|
// TEST
|
|
case X86::TEST16i16:
|
|
case X86::TEST16mr:
|
|
case X86::TEST16ri:
|
|
case X86::TEST16rr:
|
|
case X86::TEST32i32:
|
|
case X86::TEST32mr:
|
|
case X86::TEST32ri:
|
|
case X86::TEST32rr:
|
|
case X86::TEST64i32:
|
|
case X86::TEST64mr:
|
|
case X86::TEST64ri32:
|
|
case X86::TEST64rr:
|
|
case X86::TEST8i8:
|
|
case X86::TEST8mr:
|
|
case X86::TEST8ri:
|
|
case X86::TEST8rr:
|
|
return FirstMacroFusionInstKind::Test;
|
|
case X86::AND16i16:
|
|
case X86::AND16ri:
|
|
case X86::AND16ri8:
|
|
case X86::AND16rm:
|
|
case X86::AND16rr:
|
|
case X86::AND16rr_REV:
|
|
case X86::AND32i32:
|
|
case X86::AND32ri:
|
|
case X86::AND32ri8:
|
|
case X86::AND32rm:
|
|
case X86::AND32rr:
|
|
case X86::AND32rr_REV:
|
|
case X86::AND64i32:
|
|
case X86::AND64ri32:
|
|
case X86::AND64ri8:
|
|
case X86::AND64rm:
|
|
case X86::AND64rr:
|
|
case X86::AND64rr_REV:
|
|
case X86::AND8i8:
|
|
case X86::AND8ri:
|
|
case X86::AND8ri8:
|
|
case X86::AND8rm:
|
|
case X86::AND8rr:
|
|
case X86::AND8rr_REV:
|
|
return FirstMacroFusionInstKind::And;
|
|
// FIXME: Zen 3 support branch fusion for OR/XOR.
|
|
// CMP
|
|
case X86::CMP16i16:
|
|
case X86::CMP16mr:
|
|
case X86::CMP16ri:
|
|
case X86::CMP16ri8:
|
|
case X86::CMP16rm:
|
|
case X86::CMP16rr:
|
|
case X86::CMP16rr_REV:
|
|
case X86::CMP32i32:
|
|
case X86::CMP32mr:
|
|
case X86::CMP32ri:
|
|
case X86::CMP32ri8:
|
|
case X86::CMP32rm:
|
|
case X86::CMP32rr:
|
|
case X86::CMP32rr_REV:
|
|
case X86::CMP64i32:
|
|
case X86::CMP64mr:
|
|
case X86::CMP64ri32:
|
|
case X86::CMP64ri8:
|
|
case X86::CMP64rm:
|
|
case X86::CMP64rr:
|
|
case X86::CMP64rr_REV:
|
|
case X86::CMP8i8:
|
|
case X86::CMP8mr:
|
|
case X86::CMP8ri:
|
|
case X86::CMP8ri8:
|
|
case X86::CMP8rm:
|
|
case X86::CMP8rr:
|
|
case X86::CMP8rr_REV:
|
|
return FirstMacroFusionInstKind::Cmp;
|
|
// ADD
|
|
case X86::ADD16i16:
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16rm:
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_REV:
|
|
case X86::ADD32i32:
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD32rm:
|
|
case X86::ADD32rr:
|
|
case X86::ADD32rr_REV:
|
|
case X86::ADD64i32:
|
|
case X86::ADD64ri32:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64rm:
|
|
case X86::ADD64rr:
|
|
case X86::ADD64rr_REV:
|
|
case X86::ADD8i8:
|
|
case X86::ADD8ri:
|
|
case X86::ADD8ri8:
|
|
case X86::ADD8rm:
|
|
case X86::ADD8rr:
|
|
case X86::ADD8rr_REV:
|
|
// SUB
|
|
case X86::SUB16i16:
|
|
case X86::SUB16ri:
|
|
case X86::SUB16ri8:
|
|
case X86::SUB16rm:
|
|
case X86::SUB16rr:
|
|
case X86::SUB16rr_REV:
|
|
case X86::SUB32i32:
|
|
case X86::SUB32ri:
|
|
case X86::SUB32ri8:
|
|
case X86::SUB32rm:
|
|
case X86::SUB32rr:
|
|
case X86::SUB32rr_REV:
|
|
case X86::SUB64i32:
|
|
case X86::SUB64ri32:
|
|
case X86::SUB64ri8:
|
|
case X86::SUB64rm:
|
|
case X86::SUB64rr:
|
|
case X86::SUB64rr_REV:
|
|
case X86::SUB8i8:
|
|
case X86::SUB8ri:
|
|
case X86::SUB8ri8:
|
|
case X86::SUB8rm:
|
|
case X86::SUB8rr:
|
|
case X86::SUB8rr_REV:
|
|
return FirstMacroFusionInstKind::AddSub;
|
|
// INC
|
|
case X86::INC16r:
|
|
case X86::INC16r_alt:
|
|
case X86::INC32r:
|
|
case X86::INC32r_alt:
|
|
case X86::INC64r:
|
|
case X86::INC8r:
|
|
// DEC
|
|
case X86::DEC16r:
|
|
case X86::DEC16r_alt:
|
|
case X86::DEC32r:
|
|
case X86::DEC32r_alt:
|
|
case X86::DEC64r:
|
|
case X86::DEC8r:
|
|
return FirstMacroFusionInstKind::IncDec;
|
|
}
|
|
}
|
|
|
|
/// \returns the type of the second instruction in macro-fusion.
|
|
inline SecondMacroFusionInstKind
|
|
classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
|
|
if (CC == X86::COND_INVALID)
|
|
return SecondMacroFusionInstKind::Invalid;
|
|
|
|
switch (CC) {
|
|
default:
|
|
return SecondMacroFusionInstKind::Invalid;
|
|
// JE,JZ
|
|
case X86::COND_E:
|
|
// JNE,JNZ
|
|
case X86::COND_NE:
|
|
// JL,JNGE
|
|
case X86::COND_L:
|
|
// JLE,JNG
|
|
case X86::COND_LE:
|
|
// JG,JNLE
|
|
case X86::COND_G:
|
|
// JGE,JNL
|
|
case X86::COND_GE:
|
|
return SecondMacroFusionInstKind::ELG;
|
|
// JB,JC
|
|
case X86::COND_B:
|
|
// JNA,JBE
|
|
case X86::COND_BE:
|
|
// JA,JNBE
|
|
case X86::COND_A:
|
|
// JAE,JNC,JNB
|
|
case X86::COND_AE:
|
|
return SecondMacroFusionInstKind::AB;
|
|
// JS
|
|
case X86::COND_S:
|
|
// JNS
|
|
case X86::COND_NS:
|
|
// JP,JPE
|
|
case X86::COND_P:
|
|
// JNP,JPO
|
|
case X86::COND_NP:
|
|
// JO
|
|
case X86::COND_O:
|
|
// JNO
|
|
case X86::COND_NO:
|
|
return SecondMacroFusionInstKind::SPO;
|
|
}
|
|
}
|
|
|
|
/// \param FirstKind kind of the first instruction in macro fusion.
|
|
/// \param SecondKind kind of the second instruction in macro fusion.
|
|
///
|
|
/// \returns true if the two instruction can be macro fused.
|
|
inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
|
|
SecondMacroFusionInstKind SecondKind) {
|
|
switch (FirstKind) {
|
|
case X86::FirstMacroFusionInstKind::Test:
|
|
case X86::FirstMacroFusionInstKind::And:
|
|
return true;
|
|
case X86::FirstMacroFusionInstKind::Cmp:
|
|
case X86::FirstMacroFusionInstKind::AddSub:
|
|
return SecondKind == X86::SecondMacroFusionInstKind::AB ||
|
|
SecondKind == X86::SecondMacroFusionInstKind::ELG;
|
|
case X86::FirstMacroFusionInstKind::IncDec:
|
|
return SecondKind == X86::SecondMacroFusionInstKind::ELG;
|
|
case X86::FirstMacroFusionInstKind::Invalid:
|
|
return false;
|
|
}
|
|
llvm_unreachable("unknown fusion type");
|
|
}
|
|
|
|
/// Defines the possible values of the branch boundary alignment mask.
|
|
enum AlignBranchBoundaryKind : uint8_t {
|
|
AlignBranchNone = 0,
|
|
AlignBranchFused = 1U << 0,
|
|
AlignBranchJcc = 1U << 1,
|
|
AlignBranchJmp = 1U << 2,
|
|
AlignBranchCall = 1U << 3,
|
|
AlignBranchRet = 1U << 4,
|
|
AlignBranchIndirect = 1U << 5
|
|
};
|
|
|
|
/// Defines the encoding values for segment override prefix.
|
|
enum EncodingOfSegmentOverridePrefix : uint8_t {
|
|
CS_Encoding = 0x2E,
|
|
DS_Encoding = 0x3E,
|
|
ES_Encoding = 0x26,
|
|
FS_Encoding = 0x64,
|
|
GS_Encoding = 0x65,
|
|
SS_Encoding = 0x36
|
|
};
|
|
|
|
/// Given a segment register, return the encoding of the segment override
|
|
/// prefix for it.
|
|
inline EncodingOfSegmentOverridePrefix
|
|
getSegmentOverridePrefixForReg(unsigned Reg) {
|
|
switch (Reg) {
|
|
default:
|
|
llvm_unreachable("Unknown segment register!");
|
|
case X86::CS:
|
|
return CS_Encoding;
|
|
case X86::DS:
|
|
return DS_Encoding;
|
|
case X86::ES:
|
|
return ES_Encoding;
|
|
case X86::FS:
|
|
return FS_Encoding;
|
|
case X86::GS:
|
|
return GS_Encoding;
|
|
case X86::SS:
|
|
return SS_Encoding;
|
|
}
|
|
}
|
|
|
|
} // end namespace X86;
|
|
|
|
/// X86II - This namespace holds all of the target specific flags that
|
|
/// instruction info tracks.
|
|
///
|
|
namespace X86II {
|
|
/// Target Operand Flag enum.
|
|
enum TOF {
|
|
//===------------------------------------------------------------------===//
|
|
// X86 Specific MachineOperand flags.
|
|
|
|
MO_NO_FLAG,
|
|
|
|
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
|
|
/// relocation of:
|
|
/// SYMBOL_LABEL + [. - PICBASELABEL]
|
|
MO_GOT_ABSOLUTE_ADDRESS,
|
|
|
|
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
|
|
/// immediate should get the value of the symbol minus the PIC base label:
|
|
/// SYMBOL_LABEL - PICBASELABEL
|
|
MO_PIC_BASE_OFFSET,
|
|
|
|
/// MO_GOT - On a symbol operand this indicates that the immediate is the
|
|
/// offset to the GOT entry for the symbol name from the base of the GOT.
|
|
///
|
|
/// See the X86-64 ELF ABI supplement for more details.
|
|
/// SYMBOL_LABEL @GOT
|
|
MO_GOT,
|
|
|
|
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
|
|
/// the offset to the location of the symbol name from the base of the GOT.
|
|
///
|
|
/// See the X86-64 ELF ABI supplement for more details.
|
|
/// SYMBOL_LABEL @GOTOFF
|
|
MO_GOTOFF,
|
|
|
|
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
|
|
/// offset to the GOT entry for the symbol name from the current code
|
|
/// location.
|
|
///
|
|
/// See the X86-64 ELF ABI supplement for more details.
|
|
/// SYMBOL_LABEL @GOTPCREL
|
|
MO_GOTPCREL,
|
|
|
|
/// MO_PLT - On a symbol operand this indicates that the immediate is
|
|
/// offset to the PLT entry of symbol name from the current code location.
|
|
///
|
|
/// See the X86-64 ELF ABI supplement for more details.
|
|
/// SYMBOL_LABEL @PLT
|
|
MO_PLT,
|
|
|
|
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the TLS index structure that contains
|
|
/// the module number and variable offset for the symbol. Used in the
|
|
/// general dynamic TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @TLSGD
|
|
MO_TLSGD,
|
|
|
|
/// MO_TLSLD - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the TLS index for the module that
|
|
/// contains the symbol. When this index is passed to a call to
|
|
/// __tls_get_addr, the function will return the base address of the TLS
|
|
/// block for the symbol. Used in the x86-64 local dynamic TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @TLSLD
|
|
MO_TLSLD,
|
|
|
|
/// MO_TLSLDM - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the TLS index for the module that
|
|
/// contains the symbol. When this index is passed to a call to
|
|
/// ___tls_get_addr, the function will return the base address of the TLS
|
|
/// block for the symbol. Used in the IA32 local dynamic TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @TLSLDM
|
|
MO_TLSLDM,
|
|
|
|
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the thread-pointer offset for the
|
|
/// symbol. Used in the x86-64 initial exec TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @GOTTPOFF
|
|
MO_GOTTPOFF,
|
|
|
|
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the absolute address of the GOT entry with the negative thread-pointer
|
|
/// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
|
|
/// model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @INDNTPOFF
|
|
MO_INDNTPOFF,
|
|
|
|
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the thread-pointer offset for the symbol. Used in the x86-64 local
|
|
/// exec TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @TPOFF
|
|
MO_TPOFF,
|
|
|
|
/// MO_DTPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the TLS offset of the symbol. Used
|
|
/// in the local dynamic TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @DTPOFF
|
|
MO_DTPOFF,
|
|
|
|
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the negative thread-pointer offset for the symbol. Used in the IA32
|
|
/// local exec TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @NTPOFF
|
|
MO_NTPOFF,
|
|
|
|
/// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
|
|
/// the offset of the GOT entry with the negative thread-pointer offset for
|
|
/// the symbol. Used in the PIC IA32 initial exec TLS access model.
|
|
///
|
|
/// See 'ELF Handling for Thread-Local Storage' for more details.
|
|
/// SYMBOL_LABEL @GOTNTPOFF
|
|
MO_GOTNTPOFF,
|
|
|
|
/// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
|
|
/// reference is actually to the "__imp_FOO" symbol. This is used for
|
|
/// dllimport linkage on windows.
|
|
MO_DLLIMPORT,
|
|
|
|
/// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
|
|
/// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
|
|
/// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
|
|
MO_DARWIN_NONLAZY,
|
|
|
|
/// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
|
|
/// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
|
|
/// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
|
|
MO_DARWIN_NONLAZY_PIC_BASE,
|
|
|
|
/// MO_TLVP - On a symbol operand this indicates that the immediate is
|
|
/// some TLS offset.
|
|
///
|
|
/// This is the TLS offset for the Darwin TLS mechanism.
|
|
MO_TLVP,
|
|
|
|
/// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
|
|
/// is some TLS offset from the picbase.
|
|
///
|
|
/// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
|
|
MO_TLVP_PIC_BASE,
|
|
|
|
/// MO_SECREL - On a symbol operand this indicates that the immediate is
|
|
/// the offset from beginning of section.
|
|
///
|
|
/// This is the TLS offset for the COFF/Windows TLS mechanism.
|
|
MO_SECREL,
|
|
|
|
/// MO_ABS8 - On a symbol operand this indicates that the symbol is known
|
|
/// to be an absolute symbol in range [0,128), so we can use the @ABS8
|
|
/// symbol modifier.
|
|
MO_ABS8,
|
|
|
|
/// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
|
|
/// reference is actually to the ".refptr.FOO" symbol. This is used for
|
|
/// stub symbols on windows.
|
|
MO_COFFSTUB,
|
|
};
|
|
|
|
enum : uint64_t {
|
|
//===------------------------------------------------------------------===//
|
|
// Instruction encodings. These are the standard/most common forms for X86
|
|
// instructions.
|
|
//
|
|
|
|
// PseudoFrm - This represents an instruction that is a pseudo instruction
|
|
// or one that has not been implemented yet. It is illegal to code generate
|
|
// it, but tolerated for intermediate implementation stages.
|
|
Pseudo = 0,
|
|
|
|
/// Raw - This form is for instructions that don't have any operands, so
|
|
/// they are just a fixed opcode value, like 'leave'.
|
|
RawFrm = 1,
|
|
|
|
/// AddRegFrm - This form is used for instructions like 'push r32' that have
|
|
/// their one register operand added to their opcode.
|
|
AddRegFrm = 2,
|
|
|
|
/// RawFrmMemOffs - This form is for instructions that store an absolute
|
|
/// memory offset as an immediate with a possible segment override.
|
|
RawFrmMemOffs = 3,
|
|
|
|
/// RawFrmSrc - This form is for instructions that use the source index
|
|
/// register SI/ESI/RSI with a possible segment override.
|
|
RawFrmSrc = 4,
|
|
|
|
/// RawFrmDst - This form is for instructions that use the destination index
|
|
/// register DI/EDI/RDI.
|
|
RawFrmDst = 5,
|
|
|
|
/// RawFrmDstSrc - This form is for instructions that use the source index
|
|
/// register SI/ESI/RSI with a possible segment override, and also the
|
|
/// destination index register DI/EDI/RDI.
|
|
RawFrmDstSrc = 6,
|
|
|
|
/// RawFrmImm8 - This is used for the ENTER instruction, which has two
|
|
/// immediates, the first of which is a 16-bit immediate (specified by
|
|
/// the imm encoding) and the second is a 8-bit fixed value.
|
|
RawFrmImm8 = 7,
|
|
|
|
/// RawFrmImm16 - This is used for CALL FAR instructions, which have two
|
|
/// immediates, the first of which is a 16 or 32-bit immediate (specified by
|
|
/// the imm encoding) and the second is a 16-bit fixed value. In the AMD
|
|
/// manual, this operand is described as pntr16:32 and pntr16:16
|
|
RawFrmImm16 = 8,
|
|
|
|
/// AddCCFrm - This form is used for Jcc that encode the condition code
|
|
/// in the lower 4 bits of the opcode.
|
|
AddCCFrm = 9,
|
|
|
|
/// PrefixByte - This form is used for instructions that represent a prefix
|
|
/// byte like data16 or rep.
|
|
PrefixByte = 10,
|
|
|
|
/// MRM[0-7][rm] - These forms are used to represent instructions that use
|
|
/// a Mod/RM byte, and use the middle field to hold extended opcode
|
|
/// information. In the intel manual these are represented as /0, /1, ...
|
|
///
|
|
|
|
// Instructions operate on a register Reg/Opcode operand not the r/m field.
|
|
MRMr0 = 21,
|
|
|
|
/// MRMSrcMem - But force to use the SIB field.
|
|
MRMSrcMemFSIB = 22,
|
|
|
|
/// MRMDestMem - But force to use the SIB field.
|
|
MRMDestMemFSIB = 23,
|
|
|
|
/// MRMDestMem - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a destination, which in this case is memory.
|
|
///
|
|
MRMDestMem = 24,
|
|
|
|
/// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a source, which in this case is memory.
|
|
///
|
|
MRMSrcMem = 25,
|
|
|
|
/// MRMSrcMem4VOp3 - This form is used for instructions that encode
|
|
/// operand 3 with VEX.VVVV and load from memory.
|
|
///
|
|
MRMSrcMem4VOp3 = 26,
|
|
|
|
/// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
|
|
/// byte to specify the fourth source, which in this case is memory.
|
|
///
|
|
MRMSrcMemOp4 = 27,
|
|
|
|
/// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
|
|
/// byte to specify the operands and also encodes a condition code.
|
|
///
|
|
MRMSrcMemCC = 28,
|
|
|
|
/// MRMXm - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a memory source, but doesn't use the middle field. And has
|
|
/// a condition code.
|
|
///
|
|
MRMXmCC = 30,
|
|
|
|
/// MRMXm - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a memory source, but doesn't use the middle field.
|
|
///
|
|
MRMXm = 31,
|
|
|
|
// Next, instructions that operate on a memory r/m operand...
|
|
MRM0m = 32, MRM1m = 33, MRM2m = 34, MRM3m = 35, // Format /0 /1 /2 /3
|
|
MRM4m = 36, MRM5m = 37, MRM6m = 38, MRM7m = 39, // Format /4 /5 /6 /7
|
|
|
|
/// MRMDestReg - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a destination, which in this case is a register.
|
|
///
|
|
MRMDestReg = 40,
|
|
|
|
/// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a source, which in this case is a register.
|
|
///
|
|
MRMSrcReg = 41,
|
|
|
|
/// MRMSrcReg4VOp3 - This form is used for instructions that encode
|
|
/// operand 3 with VEX.VVVV and do not load from memory.
|
|
///
|
|
MRMSrcReg4VOp3 = 42,
|
|
|
|
/// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
|
|
/// byte to specify the fourth source, which in this case is a register.
|
|
///
|
|
MRMSrcRegOp4 = 43,
|
|
|
|
/// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
|
|
/// byte to specify the operands and also encodes a condition code
|
|
///
|
|
MRMSrcRegCC = 44,
|
|
|
|
/// MRMXCCr - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a register source, but doesn't use the middle field. And has
|
|
/// a condition code.
|
|
///
|
|
MRMXrCC = 46,
|
|
|
|
/// MRMXr - This form is used for instructions that use the Mod/RM byte
|
|
/// to specify a register source, but doesn't use the middle field.
|
|
///
|
|
MRMXr = 47,
|
|
|
|
// Instructions that operate on a register r/m operand...
|
|
MRM0r = 48, MRM1r = 49, MRM2r = 50, MRM3r = 51, // Format /0 /1 /2 /3
|
|
MRM4r = 52, MRM5r = 53, MRM6r = 54, MRM7r = 55, // Format /4 /5 /6 /7
|
|
|
|
// Instructions that operate that have mod=11 and an opcode but ignore r/m.
|
|
MRM0X = 56, MRM1X = 57, MRM2X = 58, MRM3X = 59, // Format /0 /1 /2 /3
|
|
MRM4X = 60, MRM5X = 61, MRM6X = 62, MRM7X = 63, // Format /4 /5 /6 /7
|
|
|
|
/// MRM_XX - A mod/rm byte of exactly 0xXX.
|
|
MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
|
|
MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
|
|
MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
|
|
MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
|
|
MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
|
|
MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
|
|
MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
|
|
MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
|
|
MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
|
|
MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
|
|
MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
|
|
MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
|
|
MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
|
|
MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
|
|
MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
|
|
MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
|
|
|
|
FormMask = 127,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Actual flags...
|
|
|
|
// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
|
|
// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
|
|
// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
|
|
// prefix in 16-bit mode.
|
|
OpSizeShift = 7,
|
|
OpSizeMask = 0x3 << OpSizeShift,
|
|
|
|
OpSizeFixed = 0 << OpSizeShift,
|
|
OpSize16 = 1 << OpSizeShift,
|
|
OpSize32 = 2 << OpSizeShift,
|
|
|
|
// AsSize - AdSizeX implies this instruction determines its need of 0x67
|
|
// prefix from a normal ModRM memory operand. The other types indicate that
|
|
// an operand is encoded with a specific width and a prefix is needed if
|
|
// it differs from the current mode.
|
|
AdSizeShift = OpSizeShift + 2,
|
|
AdSizeMask = 0x3 << AdSizeShift,
|
|
|
|
AdSizeX = 0 << AdSizeShift,
|
|
AdSize16 = 1 << AdSizeShift,
|
|
AdSize32 = 2 << AdSizeShift,
|
|
AdSize64 = 3 << AdSizeShift,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// OpPrefix - There are several prefix bytes that are used as opcode
|
|
// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
|
|
// no prefix.
|
|
//
|
|
OpPrefixShift = AdSizeShift + 2,
|
|
OpPrefixMask = 0x3 << OpPrefixShift,
|
|
|
|
// PD - Prefix code for packed double precision vector floating point
|
|
// operations performed in the SSE registers.
|
|
PD = 1 << OpPrefixShift,
|
|
|
|
// XS, XD - These prefix codes are for single and double precision scalar
|
|
// floating point operations performed in the SSE registers.
|
|
XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// OpMap - This field determines which opcode map this instruction
|
|
// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
|
|
//
|
|
OpMapShift = OpPrefixShift + 2,
|
|
OpMapMask = 0x7 << OpMapShift,
|
|
|
|
// OB - OneByte - Set if this instruction has a one byte opcode.
|
|
OB = 0 << OpMapShift,
|
|
|
|
// TB - TwoByte - Set if this instruction has a two byte opcode, which
|
|
// starts with a 0x0F byte before the real opcode.
|
|
TB = 1 << OpMapShift,
|
|
|
|
// T8, TA - Prefix after the 0x0F prefix.
|
|
T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
|
|
|
|
// XOP8 - Prefix to include use of imm byte.
|
|
XOP8 = 4 << OpMapShift,
|
|
|
|
// XOP9 - Prefix to exclude use of imm byte.
|
|
XOP9 = 5 << OpMapShift,
|
|
|
|
// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
|
|
XOPA = 6 << OpMapShift,
|
|
|
|
/// ThreeDNow - This indicates that the instruction uses the
|
|
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
|
|
/// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
|
|
/// storing a classifier in the imm8 field. To simplify our implementation,
|
|
/// we handle this by storeing the classifier in the opcode field and using
|
|
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
|
|
ThreeDNow = 7 << OpMapShift,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
|
|
// They are used to specify GPRs and SSE registers, 64-bit operand size,
|
|
// etc. We only cares about REX.W and REX.R bits and only the former is
|
|
// statically determined.
|
|
//
|
|
REXShift = OpMapShift + 3,
|
|
REX_W = 1 << REXShift,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// This three-bit field describes the size of an immediate operand. Zero is
|
|
// unused so that we can tell if we forgot to set a value.
|
|
ImmShift = REXShift + 1,
|
|
ImmMask = 15 << ImmShift,
|
|
Imm8 = 1 << ImmShift,
|
|
Imm8PCRel = 2 << ImmShift,
|
|
Imm8Reg = 3 << ImmShift,
|
|
Imm16 = 4 << ImmShift,
|
|
Imm16PCRel = 5 << ImmShift,
|
|
Imm32 = 6 << ImmShift,
|
|
Imm32PCRel = 7 << ImmShift,
|
|
Imm32S = 8 << ImmShift,
|
|
Imm64 = 9 << ImmShift,
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// FP Instruction Classification... Zero is non-fp instruction.
|
|
|
|
// FPTypeMask - Mask for all of the FP types...
|
|
FPTypeShift = ImmShift + 4,
|
|
FPTypeMask = 7 << FPTypeShift,
|
|
|
|
// NotFP - The default, set for instructions that do not use FP registers.
|
|
NotFP = 0 << FPTypeShift,
|
|
|
|
// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
|
|
ZeroArgFP = 1 << FPTypeShift,
|
|
|
|
// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
|
|
OneArgFP = 2 << FPTypeShift,
|
|
|
|
// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
|
|
// result back to ST(0). For example, fcos, fsqrt, etc.
|
|
//
|
|
OneArgFPRW = 3 << FPTypeShift,
|
|
|
|
// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
|
|
// explicit argument, storing the result to either ST(0) or the implicit
|
|
// argument. For example: fadd, fsub, fmul, etc...
|
|
TwoArgFP = 4 << FPTypeShift,
|
|
|
|
// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
|
|
// explicit argument, but have no destination. Example: fucom, fucomi, ...
|
|
CompareFP = 5 << FPTypeShift,
|
|
|
|
// CondMovFP - "2 operand" floating point conditional move instructions.
|
|
CondMovFP = 6 << FPTypeShift,
|
|
|
|
// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
|
|
SpecialFP = 7 << FPTypeShift,
|
|
|
|
// Lock prefix
|
|
LOCKShift = FPTypeShift + 3,
|
|
LOCK = 1 << LOCKShift,
|
|
|
|
// REP prefix
|
|
REPShift = LOCKShift + 1,
|
|
REP = 1 << REPShift,
|
|
|
|
// Execution domain for SSE instructions.
|
|
// 0 means normal, non-SSE instruction.
|
|
SSEDomainShift = REPShift + 1,
|
|
|
|
// Encoding
|
|
EncodingShift = SSEDomainShift + 2,
|
|
EncodingMask = 0x3 << EncodingShift,
|
|
|
|
// VEX - encoding using 0xC4/0xC5
|
|
VEX = 1 << EncodingShift,
|
|
|
|
/// XOP - Opcode prefix used by XOP instructions.
|
|
XOP = 2 << EncodingShift,
|
|
|
|
// VEX_EVEX - Specifies that this instruction use EVEX form which provides
|
|
// syntax support up to 32 512-bit register operands and up to 7 16-bit
|
|
// mask operands as well as source operand data swizzling/memory operand
|
|
// conversion, eviction hint, and rounding mode.
|
|
EVEX = 3 << EncodingShift,
|
|
|
|
// Opcode
|
|
OpcodeShift = EncodingShift + 2,
|
|
|
|
/// VEX_W - Has a opcode specific functionality, but is used in the same
|
|
/// way as REX_W is for regular SSE instructions.
|
|
VEX_WShift = OpcodeShift + 8,
|
|
VEX_W = 1ULL << VEX_WShift,
|
|
|
|
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
|
|
/// address instructions in SSE are represented as 3 address ones in AVX
|
|
/// and the additional register is encoded in VEX_VVVV prefix.
|
|
VEX_4VShift = VEX_WShift + 1,
|
|
VEX_4V = 1ULL << VEX_4VShift,
|
|
|
|
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
|
|
/// instruction uses 256-bit wide registers. This is usually auto detected
|
|
/// if a VR256 register is used, but some AVX instructions also have this
|
|
/// field marked when using a f256 memory references.
|
|
VEX_LShift = VEX_4VShift + 1,
|
|
VEX_L = 1ULL << VEX_LShift,
|
|
|
|
// EVEX_K - Set if this instruction requires masking
|
|
EVEX_KShift = VEX_LShift + 1,
|
|
EVEX_K = 1ULL << EVEX_KShift,
|
|
|
|
// EVEX_Z - Set if this instruction has EVEX.Z field set.
|
|
EVEX_ZShift = EVEX_KShift + 1,
|
|
EVEX_Z = 1ULL << EVEX_ZShift,
|
|
|
|
// EVEX_L2 - Set if this instruction has EVEX.L' field set.
|
|
EVEX_L2Shift = EVEX_ZShift + 1,
|
|
EVEX_L2 = 1ULL << EVEX_L2Shift,
|
|
|
|
// EVEX_B - Set if this instruction has EVEX.B field set.
|
|
EVEX_BShift = EVEX_L2Shift + 1,
|
|
EVEX_B = 1ULL << EVEX_BShift,
|
|
|
|
// The scaling factor for the AVX512's 8-bit compressed displacement.
|
|
CD8_Scale_Shift = EVEX_BShift + 1,
|
|
CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
|
|
|
|
/// Explicitly specified rounding control
|
|
EVEX_RCShift = CD8_Scale_Shift + 7,
|
|
EVEX_RC = 1ULL << EVEX_RCShift,
|
|
|
|
// NOTRACK prefix
|
|
NoTrackShift = EVEX_RCShift + 1,
|
|
NOTRACK = 1ULL << NoTrackShift,
|
|
|
|
// Force VEX encoding
|
|
ExplicitVEXShift = NoTrackShift + 1,
|
|
ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
|
|
};
|
|
|
|
/// \returns true if the instruction with given opcode is a prefix.
|
|
inline bool isPrefix(uint64_t TSFlags) {
|
|
return (TSFlags & X86II::FormMask) == PrefixByte;
|
|
}
|
|
|
|
/// \returns true if the instruction with given opcode is a pseudo.
|
|
inline bool isPseudo(uint64_t TSFlags) {
|
|
return (TSFlags & X86II::FormMask) == Pseudo;
|
|
}
|
|
|
|
/// \returns the "base" X86 opcode for the specified machine
|
|
/// instruction.
|
|
inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
|
|
return TSFlags >> X86II::OpcodeShift;
|
|
}
|
|
|
|
inline bool hasImm(uint64_t TSFlags) {
|
|
return (TSFlags & X86II::ImmMask) != 0;
|
|
}
|
|
|
|
/// Decode the "size of immediate" field from the TSFlags field of the
|
|
/// specified instruction.
|
|
inline unsigned getSizeOfImm(uint64_t TSFlags) {
|
|
switch (TSFlags & X86II::ImmMask) {
|
|
default: llvm_unreachable("Unknown immediate size");
|
|
case X86II::Imm8:
|
|
case X86II::Imm8PCRel:
|
|
case X86II::Imm8Reg: return 1;
|
|
case X86II::Imm16:
|
|
case X86II::Imm16PCRel: return 2;
|
|
case X86II::Imm32:
|
|
case X86II::Imm32S:
|
|
case X86II::Imm32PCRel: return 4;
|
|
case X86II::Imm64: return 8;
|
|
}
|
|
}
|
|
|
|
/// \returns true if the immediate of the specified instruction's TSFlags
|
|
/// indicates that it is pc relative.
|
|
inline bool isImmPCRel(uint64_t TSFlags) {
|
|
switch (TSFlags & X86II::ImmMask) {
|
|
default: llvm_unreachable("Unknown immediate size");
|
|
case X86II::Imm8PCRel:
|
|
case X86II::Imm16PCRel:
|
|
case X86II::Imm32PCRel:
|
|
return true;
|
|
case X86II::Imm8:
|
|
case X86II::Imm8Reg:
|
|
case X86II::Imm16:
|
|
case X86II::Imm32:
|
|
case X86II::Imm32S:
|
|
case X86II::Imm64:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \returns true if the immediate of the specified instruction's
|
|
/// TSFlags indicates that it is signed.
|
|
inline bool isImmSigned(uint64_t TSFlags) {
|
|
switch (TSFlags & X86II::ImmMask) {
|
|
default: llvm_unreachable("Unknown immediate signedness");
|
|
case X86II::Imm32S:
|
|
return true;
|
|
case X86II::Imm8:
|
|
case X86II::Imm8PCRel:
|
|
case X86II::Imm8Reg:
|
|
case X86II::Imm16:
|
|
case X86II::Imm16PCRel:
|
|
case X86II::Imm32:
|
|
case X86II::Imm32PCRel:
|
|
case X86II::Imm64:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Compute whether all of the def operands are repeated in the uses and
|
|
/// therefore should be skipped.
|
|
/// This determines the start of the unique operand list. We need to determine
|
|
/// if all of the defs have a corresponding tied operand in the uses.
|
|
/// Unfortunately, the tied operand information is encoded in the uses not
|
|
/// the defs so we have to use some heuristics to find which operands to
|
|
/// query.
|
|
inline unsigned getOperandBias(const MCInstrDesc& Desc) {
|
|
unsigned NumDefs = Desc.getNumDefs();
|
|
unsigned NumOps = Desc.getNumOperands();
|
|
switch (NumDefs) {
|
|
default: llvm_unreachable("Unexpected number of defs");
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
// Common two addr case.
|
|
if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
|
|
return 1;
|
|
// Check for AVX-512 scatter which has a TIED_TO in the second to last
|
|
// operand.
|
|
if (NumOps == 8 &&
|
|
Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
|
|
return 1;
|
|
return 0;
|
|
case 2:
|
|
// XCHG/XADD have two destinations and two sources.
|
|
if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
|
|
Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
|
|
return 2;
|
|
// Check for gather. AVX-512 has the second tied operand early. AVX2
|
|
// has it as the last op.
|
|
if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
|
|
(Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
|
|
Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
|
|
return 2;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// The function returns the MCInst operand # for the first field of the
|
|
/// memory operand. If the instruction doesn't have a
|
|
/// memory operand, this returns -1.
|
|
///
|
|
/// Note that this ignores tied operands. If there is a tied register which
|
|
/// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
|
|
/// counted as one operand.
|
|
///
|
|
inline int getMemoryOperandNo(uint64_t TSFlags) {
|
|
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
|
|
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
|
|
|
|
switch (TSFlags & X86II::FormMask) {
|
|
default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
|
|
case X86II::Pseudo:
|
|
case X86II::RawFrm:
|
|
case X86II::AddRegFrm:
|
|
case X86II::RawFrmImm8:
|
|
case X86II::RawFrmImm16:
|
|
case X86II::RawFrmMemOffs:
|
|
case X86II::RawFrmSrc:
|
|
case X86II::RawFrmDst:
|
|
case X86II::RawFrmDstSrc:
|
|
case X86II::AddCCFrm:
|
|
case X86II::PrefixByte:
|
|
return -1;
|
|
case X86II::MRMDestMem:
|
|
case X86II::MRMDestMemFSIB:
|
|
return 0;
|
|
case X86II::MRMSrcMem:
|
|
case X86II::MRMSrcMemFSIB:
|
|
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
|
|
// mask register.
|
|
return 1 + HasVEX_4V + HasEVEX_K;
|
|
case X86II::MRMSrcMem4VOp3:
|
|
// Skip registers encoded in reg.
|
|
return 1 + HasEVEX_K;
|
|
case X86II::MRMSrcMemOp4:
|
|
// Skip registers encoded in reg, VEX_VVVV, and I8IMM.
|
|
return 3;
|
|
case X86II::MRMSrcMemCC:
|
|
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
|
|
// mask register.
|
|
return 1;
|
|
case X86II::MRMDestReg:
|
|
case X86II::MRMSrcReg:
|
|
case X86II::MRMSrcReg4VOp3:
|
|
case X86II::MRMSrcRegOp4:
|
|
case X86II::MRMSrcRegCC:
|
|
case X86II::MRMXrCC:
|
|
case X86II::MRMr0:
|
|
case X86II::MRMXr:
|
|
case X86II::MRM0r: case X86II::MRM1r:
|
|
case X86II::MRM2r: case X86II::MRM3r:
|
|
case X86II::MRM4r: case X86II::MRM5r:
|
|
case X86II::MRM6r: case X86II::MRM7r:
|
|
return -1;
|
|
case X86II::MRM0X: case X86II::MRM1X:
|
|
case X86II::MRM2X: case X86II::MRM3X:
|
|
case X86II::MRM4X: case X86II::MRM5X:
|
|
case X86II::MRM6X: case X86II::MRM7X:
|
|
return -1;
|
|
case X86II::MRMXmCC:
|
|
case X86II::MRMXm:
|
|
case X86II::MRM0m: case X86II::MRM1m:
|
|
case X86II::MRM2m: case X86II::MRM3m:
|
|
case X86II::MRM4m: case X86II::MRM5m:
|
|
case X86II::MRM6m: case X86II::MRM7m:
|
|
// Start from 0, skip registers encoded in VEX_VVVV or a mask register.
|
|
return 0 + HasVEX_4V + HasEVEX_K;
|
|
case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
|
|
case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
|
|
case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
|
|
case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
|
|
case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
|
|
case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
|
|
case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
|
|
case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
|
|
case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
|
|
case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
|
|
case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
|
|
case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
|
|
case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
|
|
case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
|
|
case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
|
|
case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
|
|
case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
|
|
case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
|
|
case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
|
|
case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
|
|
case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
|
|
case X86II::MRM_FF:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/// \returns true if the MachineOperand is a x86-64 extended (r8 or
|
|
/// higher) register, e.g. r8, xmm8, xmm13, etc.
|
|
inline bool isX86_64ExtendedReg(unsigned RegNo) {
|
|
if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
|
|
(RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
|
|
(RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
|
|
return true;
|
|
|
|
switch (RegNo) {
|
|
default: break;
|
|
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
|
|
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
|
|
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
|
|
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
|
|
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
|
|
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
|
|
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
|
|
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
|
|
case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
|
|
case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
|
|
case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
|
|
case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
|
|
/// registers, e.g. zmm21, etc.
|
|
static inline bool is32ExtendedReg(unsigned RegNo) {
|
|
return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
|
|
(RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
|
|
(RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
|
|
}
|
|
|
|
|
|
inline bool isX86_64NonExtLowByteReg(unsigned reg) {
|
|
return (reg == X86::SPL || reg == X86::BPL ||
|
|
reg == X86::SIL || reg == X86::DIL);
|
|
}
|
|
|
|
/// \returns true if this is a masked instruction.
|
|
inline bool isKMasked(uint64_t TSFlags) {
|
|
return (TSFlags & X86II::EVEX_K) != 0;
|
|
}
|
|
|
|
/// \returns true if this is a merge masked instruction.
|
|
inline bool isKMergeMasked(uint64_t TSFlags) {
|
|
return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
|
|
}
|
|
}
|
|
|
|
} // end namespace llvm;
|
|
|
|
#endif
|