1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/Analysis/BlockFrequencyInfo.cpp
Xinliang David Li b3f9d82232 Revert r320104: infinite loop profiling bug fix
Causes unexpected memory issue with New PM this time.
The new PM invalidates BPI but not BFI, leaving the
reference to BPI from BFI invalid.

Abandon this patch.  There is a more general solution
which also handles runtime infinite loop (but not statically).

llvm-svn: 320180
2017-12-08 19:38:07 +00:00

343 lines
12 KiB
C++

//===- BlockFrequencyInfo.cpp - Block Frequency Analysis ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "block-freq"
static cl::opt<GVDAGType> ViewBlockFreqPropagationDAG(
"view-block-freq-propagation-dags", cl::Hidden,
cl::desc("Pop up a window to show a dag displaying how block "
"frequencies propagation through the CFG."),
cl::values(clEnumValN(GVDT_None, "none", "do not display graphs."),
clEnumValN(GVDT_Fraction, "fraction",
"display a graph using the "
"fractional block frequency representation."),
clEnumValN(GVDT_Integer, "integer",
"display a graph using the raw "
"integer fractional block frequency representation."),
clEnumValN(GVDT_Count, "count", "display a graph using the real "
"profile count if available.")));
cl::opt<std::string>
ViewBlockFreqFuncName("view-bfi-func-name", cl::Hidden,
cl::desc("The option to specify "
"the name of the function "
"whose CFG will be displayed."));
cl::opt<unsigned>
ViewHotFreqPercent("view-hot-freq-percent", cl::init(10), cl::Hidden,
cl::desc("An integer in percent used to specify "
"the hot blocks/edges to be displayed "
"in red: a block or edge whose frequency "
"is no less than the max frequency of the "
"function multiplied by this percent."));
// Command line option to turn on CFG dot or text dump after profile annotation.
cl::opt<PGOViewCountsType> PGOViewCounts(
"pgo-view-counts", cl::Hidden,
cl::desc("A boolean option to show CFG dag or text with "
"block profile counts and branch probabilities "
"right after PGO profile annotation step. The "
"profile counts are computed using branch "
"probabilities from the runtime profile data and "
"block frequency propagation algorithm. To view "
"the raw counts from the profile, use option "
"-pgo-view-raw-counts instead. To limit graph "
"display to only one function, use filtering option "
"-view-bfi-func-name."),
cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
clEnumValN(PGOVCT_Text, "text", "show in text.")));
static cl::opt<bool> PrintBlockFreq(
"print-bfi", cl::init(false), cl::Hidden,
cl::desc("Print the block frequency info."));
cl::opt<std::string> PrintBlockFreqFuncName(
"print-bfi-func-name", cl::Hidden,
cl::desc("The option to specify the name of the function "
"whose block frequency info is printed."));
namespace llvm {
static GVDAGType getGVDT() {
if (PGOViewCounts == PGOVCT_Graph)
return GVDT_Count;
return ViewBlockFreqPropagationDAG;
}
template <>
struct GraphTraits<BlockFrequencyInfo *> {
using NodeRef = const BasicBlock *;
using ChildIteratorType = succ_const_iterator;
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static NodeRef getEntryNode(const BlockFrequencyInfo *G) {
return &G->getFunction()->front();
}
static ChildIteratorType child_begin(const NodeRef N) {
return succ_begin(N);
}
static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
static nodes_iterator nodes_begin(const BlockFrequencyInfo *G) {
return nodes_iterator(G->getFunction()->begin());
}
static nodes_iterator nodes_end(const BlockFrequencyInfo *G) {
return nodes_iterator(G->getFunction()->end());
}
};
using BFIDOTGTraitsBase =
BFIDOTGraphTraitsBase<BlockFrequencyInfo, BranchProbabilityInfo>;
template <>
struct DOTGraphTraits<BlockFrequencyInfo *> : public BFIDOTGTraitsBase {
explicit DOTGraphTraits(bool isSimple = false)
: BFIDOTGTraitsBase(isSimple) {}
std::string getNodeLabel(const BasicBlock *Node,
const BlockFrequencyInfo *Graph) {
return BFIDOTGTraitsBase::getNodeLabel(Node, Graph, getGVDT());
}
std::string getNodeAttributes(const BasicBlock *Node,
const BlockFrequencyInfo *Graph) {
return BFIDOTGTraitsBase::getNodeAttributes(Node, Graph,
ViewHotFreqPercent);
}
std::string getEdgeAttributes(const BasicBlock *Node, EdgeIter EI,
const BlockFrequencyInfo *BFI) {
return BFIDOTGTraitsBase::getEdgeAttributes(Node, EI, BFI, BFI->getBPI(),
ViewHotFreqPercent);
}
};
} // end namespace llvm
BlockFrequencyInfo::BlockFrequencyInfo() = default;
BlockFrequencyInfo::BlockFrequencyInfo(const Function &F,
const BranchProbabilityInfo &BPI,
const LoopInfo &LI) {
calculate(F, BPI, LI);
}
BlockFrequencyInfo::BlockFrequencyInfo(BlockFrequencyInfo &&Arg)
: BFI(std::move(Arg.BFI)) {}
BlockFrequencyInfo &BlockFrequencyInfo::operator=(BlockFrequencyInfo &&RHS) {
releaseMemory();
BFI = std::move(RHS.BFI);
return *this;
}
// Explicitly define the default constructor otherwise it would be implicitly
// defined at the first ODR-use which is the BFI member in the
// LazyBlockFrequencyInfo header. The dtor needs the BlockFrequencyInfoImpl
// template instantiated which is not available in the header.
BlockFrequencyInfo::~BlockFrequencyInfo() = default;
bool BlockFrequencyInfo::invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &) {
// Check whether the analysis, all analyses on functions, or the function's
// CFG have been preserved.
auto PAC = PA.getChecker<BlockFrequencyAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
PAC.preservedSet<CFGAnalyses>());
}
void BlockFrequencyInfo::calculate(const Function &F,
const BranchProbabilityInfo &BPI,
const LoopInfo &LI) {
if (!BFI)
BFI.reset(new ImplType);
BFI->calculate(F, BPI, LI);
if (ViewBlockFreqPropagationDAG != GVDT_None &&
(ViewBlockFreqFuncName.empty() ||
F.getName().equals(ViewBlockFreqFuncName))) {
view();
}
if (PrintBlockFreq &&
(PrintBlockFreqFuncName.empty() ||
F.getName().equals(PrintBlockFreqFuncName))) {
print(dbgs());
}
}
BlockFrequency BlockFrequencyInfo::getBlockFreq(const BasicBlock *BB) const {
return BFI ? BFI->getBlockFreq(BB) : 0;
}
Optional<uint64_t>
BlockFrequencyInfo::getBlockProfileCount(const BasicBlock *BB) const {
if (!BFI)
return None;
return BFI->getBlockProfileCount(*getFunction(), BB);
}
Optional<uint64_t>
BlockFrequencyInfo::getProfileCountFromFreq(uint64_t Freq) const {
if (!BFI)
return None;
return BFI->getProfileCountFromFreq(*getFunction(), Freq);
}
bool BlockFrequencyInfo::isIrrLoopHeader(const BasicBlock *BB) {
assert(BFI && "Expected analysis to be available");
return BFI->isIrrLoopHeader(BB);
}
void BlockFrequencyInfo::setBlockFreq(const BasicBlock *BB, uint64_t Freq) {
assert(BFI && "Expected analysis to be available");
BFI->setBlockFreq(BB, Freq);
}
void BlockFrequencyInfo::setBlockFreqAndScale(
const BasicBlock *ReferenceBB, uint64_t Freq,
SmallPtrSetImpl<BasicBlock *> &BlocksToScale) {
assert(BFI && "Expected analysis to be available");
// Use 128 bits APInt to avoid overflow.
APInt NewFreq(128, Freq);
APInt OldFreq(128, BFI->getBlockFreq(ReferenceBB).getFrequency());
APInt BBFreq(128, 0);
for (auto *BB : BlocksToScale) {
BBFreq = BFI->getBlockFreq(BB).getFrequency();
// Multiply first by NewFreq and then divide by OldFreq
// to minimize loss of precision.
BBFreq *= NewFreq;
// udiv is an expensive operation in the general case. If this ends up being
// a hot spot, one of the options proposed in
// https://reviews.llvm.org/D28535#650071 could be used to avoid this.
BBFreq = BBFreq.udiv(OldFreq);
BFI->setBlockFreq(BB, BBFreq.getLimitedValue());
}
BFI->setBlockFreq(ReferenceBB, Freq);
}
/// Pop up a ghostview window with the current block frequency propagation
/// rendered using dot.
void BlockFrequencyInfo::view() const {
ViewGraph(const_cast<BlockFrequencyInfo *>(this), "BlockFrequencyDAGs");
}
const Function *BlockFrequencyInfo::getFunction() const {
return BFI ? BFI->getFunction() : nullptr;
}
const BranchProbabilityInfo *BlockFrequencyInfo::getBPI() const {
return BFI ? &BFI->getBPI() : nullptr;
}
raw_ostream &BlockFrequencyInfo::
printBlockFreq(raw_ostream &OS, const BlockFrequency Freq) const {
return BFI ? BFI->printBlockFreq(OS, Freq) : OS;
}
raw_ostream &
BlockFrequencyInfo::printBlockFreq(raw_ostream &OS,
const BasicBlock *BB) const {
return BFI ? BFI->printBlockFreq(OS, BB) : OS;
}
uint64_t BlockFrequencyInfo::getEntryFreq() const {
return BFI ? BFI->getEntryFreq() : 0;
}
void BlockFrequencyInfo::releaseMemory() { BFI.reset(); }
void BlockFrequencyInfo::print(raw_ostream &OS) const {
if (BFI)
BFI->print(OS);
}
INITIALIZE_PASS_BEGIN(BlockFrequencyInfoWrapperPass, "block-freq",
"Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(BlockFrequencyInfoWrapperPass, "block-freq",
"Block Frequency Analysis", true, true)
char BlockFrequencyInfoWrapperPass::ID = 0;
BlockFrequencyInfoWrapperPass::BlockFrequencyInfoWrapperPass()
: FunctionPass(ID) {
initializeBlockFrequencyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
BlockFrequencyInfoWrapperPass::~BlockFrequencyInfoWrapperPass() = default;
void BlockFrequencyInfoWrapperPass::print(raw_ostream &OS,
const Module *) const {
BFI.print(OS);
}
void BlockFrequencyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesAll();
}
void BlockFrequencyInfoWrapperPass::releaseMemory() { BFI.releaseMemory(); }
bool BlockFrequencyInfoWrapperPass::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI =
getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BFI.calculate(F, BPI, LI);
return false;
}
AnalysisKey BlockFrequencyAnalysis::Key;
BlockFrequencyInfo BlockFrequencyAnalysis::run(Function &F,
FunctionAnalysisManager &AM) {
BlockFrequencyInfo BFI;
BFI.calculate(F, AM.getResult<BranchProbabilityAnalysis>(F),
AM.getResult<LoopAnalysis>(F));
return BFI;
}
PreservedAnalyses
BlockFrequencyPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
OS << "Printing analysis results of BFI for function "
<< "'" << F.getName() << "':"
<< "\n";
AM.getResult<BlockFrequencyAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}