1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/CodeGen/CalcSpillWeights.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

237 lines
7.8 KiB
C++

//===------------------------ CalcSpillWeights.cpp ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
void llvm::calculateSpillWeightsAndHints(LiveIntervals &LIS,
MachineFunction &MF,
VirtRegMap *VRM,
const MachineLoopInfo &MLI,
const MachineBlockFrequencyInfo &MBFI,
VirtRegAuxInfo::NormalizingFn norm) {
DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
MachineRegisterInfo &MRI = MF.getRegInfo();
VirtRegAuxInfo VRAI(MF, LIS, VRM, MLI, MBFI, norm);
for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI.reg_nodbg_empty(Reg))
continue;
VRAI.calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
}
// Return the preferred allocation register for reg, given a COPY instruction.
static unsigned copyHint(const MachineInstr *mi, unsigned reg,
const TargetRegisterInfo &tri,
const MachineRegisterInfo &mri) {
unsigned sub, hreg, hsub;
if (mi->getOperand(0).getReg() == reg) {
sub = mi->getOperand(0).getSubReg();
hreg = mi->getOperand(1).getReg();
hsub = mi->getOperand(1).getSubReg();
} else {
sub = mi->getOperand(1).getSubReg();
hreg = mi->getOperand(0).getReg();
hsub = mi->getOperand(0).getSubReg();
}
if (!hreg)
return 0;
if (TargetRegisterInfo::isVirtualRegister(hreg))
return sub == hsub ? hreg : 0;
const TargetRegisterClass *rc = mri.getRegClass(reg);
// Only allow physreg hints in rc.
if (sub == 0)
return rc->contains(hreg) ? hreg : 0;
// reg:sub should match the physreg hreg.
return tri.getMatchingSuperReg(hreg, sub, rc);
}
// Check if all values in LI are rematerializable
static bool isRematerializable(const LiveInterval &LI,
const LiveIntervals &LIS,
VirtRegMap *VRM,
const TargetInstrInfo &TII) {
unsigned Reg = LI.reg;
unsigned Original = VRM ? VRM->getOriginal(Reg) : 0;
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
if (VNI->isPHIDef())
return false;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
// Trace copies introduced by live range splitting. The inline
// spiller can rematerialize through these copies, so the spill
// weight must reflect this.
if (VRM) {
while (MI->isFullCopy()) {
// The copy destination must match the interval register.
if (MI->getOperand(0).getReg() != Reg)
return false;
// Get the source register.
Reg = MI->getOperand(1).getReg();
// If the original (pre-splitting) registers match this
// copy came from a split.
if (!TargetRegisterInfo::isVirtualRegister(Reg) ||
VRM->getOriginal(Reg) != Original)
return false;
// Follow the copy live-in value.
const LiveInterval &SrcLI = LIS.getInterval(Reg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
VNI = SrcQ.valueIn();
assert(VNI && "Copy from non-existing value");
if (VNI->isPHIDef())
return false;
MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
}
}
if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis()))
return false;
}
return true;
}
void
VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &li) {
MachineRegisterInfo &mri = MF.getRegInfo();
const TargetRegisterInfo &tri = *MF.getSubtarget().getRegisterInfo();
MachineBasicBlock *mbb = nullptr;
MachineLoop *loop = nullptr;
bool isExiting = false;
float totalWeight = 0;
unsigned numInstr = 0; // Number of instructions using li
SmallPtrSet<MachineInstr*, 8> visited;
// Find the best physreg hint and the best virtreg hint.
float bestPhys = 0, bestVirt = 0;
unsigned hintPhys = 0, hintVirt = 0;
// Don't recompute a target specific hint.
bool noHint = mri.getRegAllocationHint(li.reg).first != 0;
// Don't recompute spill weight for an unspillable register.
bool Spillable = li.isSpillable();
for (MachineRegisterInfo::reg_instr_iterator
I = mri.reg_instr_begin(li.reg), E = mri.reg_instr_end();
I != E; ) {
MachineInstr *mi = &*(I++);
numInstr++;
if (mi->isIdentityCopy() || mi->isImplicitDef() || mi->isDebugValue())
continue;
if (!visited.insert(mi).second)
continue;
float weight = 1.0f;
if (Spillable) {
// Get loop info for mi.
if (mi->getParent() != mbb) {
mbb = mi->getParent();
loop = Loops.getLoopFor(mbb);
isExiting = loop ? loop->isLoopExiting(mbb) : false;
}
// Calculate instr weight.
bool reads, writes;
std::tie(reads, writes) = mi->readsWritesVirtualRegister(li.reg);
weight = LiveIntervals::getSpillWeight(writes, reads, &MBFI, *mi);
// Give extra weight to what looks like a loop induction variable update.
if (writes && isExiting && LIS.isLiveOutOfMBB(li, mbb))
weight *= 3;
totalWeight += weight;
}
// Get allocation hints from copies.
if (noHint || !mi->isCopy())
continue;
unsigned hint = copyHint(mi, li.reg, tri, mri);
if (!hint)
continue;
// Force hweight onto the stack so that x86 doesn't add hidden precision,
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
//
// FIXME: we probably shouldn't use floats at all.
volatile float hweight = Hint[hint] += weight;
if (TargetRegisterInfo::isPhysicalRegister(hint)) {
if (hweight > bestPhys && mri.isAllocatable(hint)) {
bestPhys = hweight;
hintPhys = hint;
}
} else {
if (hweight > bestVirt) {
bestVirt = hweight;
hintVirt = hint;
}
}
}
Hint.clear();
// Always prefer the physreg hint.
if (unsigned hint = hintPhys ? hintPhys : hintVirt) {
mri.setRegAllocationHint(li.reg, 0, hint);
// Weakly boost the spill weight of hinted registers.
totalWeight *= 1.01F;
}
// If the live interval was already unspillable, leave it that way.
if (!Spillable)
return;
// Mark li as unspillable if all live ranges are tiny and the interval
// is not live at any reg mask. If the interval is live at a reg mask
// spilling may be required.
if (li.isZeroLength(LIS.getSlotIndexes()) &&
!li.isLiveAtIndexes(LIS.getRegMaskSlots())) {
li.markNotSpillable();
return;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
if (isRematerializable(li, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
totalWeight *= 0.5F;
li.weight = normalize(totalWeight, li.getSize(), numInstr);
}