1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/include/llvm/IR/PassManager.h
Chandler Carruth 4cad16d76c [PM] Remove support for omitting the AnalysisManager argument to new
pass manager passes' `run` methods.

This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.

This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.

While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.

Thanks to Sean and Hal for bouncing ideas for this with me in IRC.

llvm-svn: 272978
2016-06-17 00:11:01 +00:00

993 lines
38 KiB
C++

//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This header defines various interfaces for pass management in LLVM. There
/// is no "pass" interface in LLVM per se. Instead, an instance of any class
/// which supports a method to 'run' it over a unit of IR can be used as
/// a pass. A pass manager is generally a tool to collect a sequence of passes
/// which run over a particular IR construct, and run each of them in sequence
/// over each such construct in the containing IR construct. As there is no
/// containing IR construct for a Module, a manager for passes over modules
/// forms the base case which runs its managed passes in sequence over the
/// single module provided.
///
/// The core IR library provides managers for running passes over
/// modules and functions.
///
/// * FunctionPassManager can run over a Module, runs each pass over
/// a Function.
/// * ModulePassManager must be directly run, runs each pass over the Module.
///
/// Note that the implementations of the pass managers use concept-based
/// polymorphism as outlined in the "Value Semantics and Concept-based
/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
/// Class of Evil") by Sean Parent:
/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
/// * http://www.youtube.com/watch?v=_BpMYeUFXv8
/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_PASSMANAGER_H
#define LLVM_IR_PASSMANAGER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManagerInternal.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeName.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/type_traits.h"
#include <list>
#include <memory>
#include <vector>
namespace llvm {
/// \brief An abstract set of preserved analyses following a transformation pass
/// run.
///
/// When a transformation pass is run, it can return a set of analyses whose
/// results were preserved by that transformation. The default set is "none",
/// and preserving analyses must be done explicitly.
///
/// There is also an explicit all state which can be used (for example) when
/// the IR is not mutated at all.
class PreservedAnalyses {
public:
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PreservedAnalyses() {}
PreservedAnalyses(const PreservedAnalyses &Arg)
: PreservedPassIDs(Arg.PreservedPassIDs) {}
PreservedAnalyses(PreservedAnalyses &&Arg)
: PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
using std::swap;
swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
}
PreservedAnalyses &operator=(PreservedAnalyses RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Convenience factory function for the empty preserved set.
static PreservedAnalyses none() { return PreservedAnalyses(); }
/// \brief Construct a special preserved set that preserves all passes.
static PreservedAnalyses all() {
PreservedAnalyses PA;
PA.PreservedPassIDs.insert((void *)AllPassesID);
return PA;
}
/// \brief Mark a particular pass as preserved, adding it to the set.
template <typename PassT> void preserve() { preserve(PassT::ID()); }
/// \brief Mark an abstract PassID as preserved, adding it to the set.
void preserve(void *PassID) {
if (!areAllPreserved())
PreservedPassIDs.insert(PassID);
}
/// \brief Intersect this set with another in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(const PreservedAnalyses &Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = Arg.PreservedPassIDs;
return;
}
for (void *P : PreservedPassIDs)
if (!Arg.PreservedPassIDs.count(P))
PreservedPassIDs.erase(P);
}
/// \brief Intersect this set with a temporary other set in place.
///
/// This is a mutating operation on this preserved set, removing all
/// preserved passes which are not also preserved in the argument.
void intersect(PreservedAnalyses &&Arg) {
if (Arg.areAllPreserved())
return;
if (areAllPreserved()) {
PreservedPassIDs = std::move(Arg.PreservedPassIDs);
return;
}
for (void *P : PreservedPassIDs)
if (!Arg.PreservedPassIDs.count(P))
PreservedPassIDs.erase(P);
}
/// \brief Query whether a pass is marked as preserved by this set.
template <typename PassT> bool preserved() const {
return preserved(PassT::ID());
}
/// \brief Query whether an abstract pass ID is marked as preserved by this
/// set.
bool preserved(void *PassID) const {
return PreservedPassIDs.count((void *)AllPassesID) ||
PreservedPassIDs.count(PassID);
}
/// \brief Query whether all of the analyses in the set are preserved.
bool preserved(PreservedAnalyses Arg) {
if (Arg.areAllPreserved())
return areAllPreserved();
for (void *P : Arg.PreservedPassIDs)
if (!preserved(P))
return false;
return true;
}
/// \brief Test whether all passes are preserved.
///
/// This is used primarily to optimize for the case of no changes which will
/// common in many scenarios.
bool areAllPreserved() const {
return PreservedPassIDs.count((void *)AllPassesID);
}
private:
// Note that this must not be -1 or -2 as those are already used by the
// SmallPtrSet.
static const uintptr_t AllPassesID = (intptr_t)(-3);
SmallPtrSet<void *, 2> PreservedPassIDs;
};
// Forward declare the analysis manager template.
template <typename IRUnitT> class AnalysisManager;
/// A CRTP mix-in to automatically provide informational APIs needed for
/// passes.
///
/// This provides some boiler plate for types that are passes.
template <typename DerivedT> struct PassInfoMixin {
/// Returns the name of the derived pass type.
static StringRef name() {
StringRef Name = getTypeName<DerivedT>();
if (Name.startswith("llvm::"))
Name = Name.drop_front(strlen("llvm::"));
return Name;
}
};
/// A CRTP mix-in to automatically provide informational APIs needed for
/// analysis passes.
///
/// This provides some boiler plate for types that are analysis passes. It
/// automatically mixes in \c PassInfoMixin and adds informational APIs
/// specifically used for analyses.
template <typename DerivedT>
struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
/// Returns an opaque, unique ID for this pass type.
///
/// Note that this requires the derived type provide a static member whose
/// address can be converted to a void pointer.
///
/// FIXME: The only reason the derived type needs to provide this rather than
/// this mixin providing it is due to broken implementations which cannot
/// correctly unique a templated static so that they have the same addresses
/// for each instantiation and are definitively emitted once for each
/// instantiation. The only currently known platform with this limitation are
/// Windows DLL builds, specifically building each part of LLVM as a DLL. If
/// we ever remove that build configuration, this mixin can provide the
/// static PassID as well.
static void *ID() { return (void *)&DerivedT::PassID; }
};
/// \brief Manages a sequence of passes over units of IR.
///
/// A pass manager contains a sequence of passes to run over units of IR. It is
/// itself a valid pass over that unit of IR, and when over some given IR will
/// run each pass in sequence. This is the primary and most basic building
/// block of a pass pipeline.
///
/// If it is run with an \c AnalysisManager<IRUnitT> argument, it will propagate
/// that analysis manager to each pass it runs, as well as calling the analysis
/// manager's invalidation routine with the PreservedAnalyses of each pass it
/// runs.
template <typename IRUnitT>
class PassManager : public PassInfoMixin<PassManager<IRUnitT>> {
public:
/// \brief Construct a pass manager.
///
/// It can be passed a flag to get debug logging as the passes are run.
PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
PassManager(PassManager &&Arg)
: Passes(std::move(Arg.Passes)),
DebugLogging(std::move(Arg.DebugLogging)) {}
PassManager &operator=(PassManager &&RHS) {
Passes = std::move(RHS.Passes);
DebugLogging = std::move(RHS.DebugLogging);
return *this;
}
/// \brief Run all of the passes in this manager over the IR.
PreservedAnalyses run(IRUnitT &IR, AnalysisManager<IRUnitT> &AM) {
PreservedAnalyses PA = PreservedAnalyses::all();
if (DebugLogging)
dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
if (DebugLogging)
dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
<< IR.getName() << "\n";
PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM);
// Update the analysis manager as each pass runs and potentially
// invalidates analyses. We also update the preserved set of analyses
// based on what analyses we have already handled the invalidation for
// here and don't need to invalidate when finished.
PassPA = AM.invalidate(IR, std::move(PassPA));
// Finally, we intersect the final preserved analyses to compute the
// aggregate preserved set for this pass manager.
PA.intersect(std::move(PassPA));
// FIXME: Historically, the pass managers all called the LLVM context's
// yield function here. We don't have a generic way to acquire the
// context and it isn't yet clear what the right pattern is for yielding
// in the new pass manager so it is currently omitted.
//IR.getContext().yield();
}
if (DebugLogging)
dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
return PA;
}
template <typename PassT> void addPass(PassT Pass) {
typedef detail::PassModel<IRUnitT, PassT> PassModelT;
Passes.emplace_back(new PassModelT(std::move(Pass)));
}
private:
typedef detail::PassConcept<IRUnitT> PassConceptT;
PassManager(const PassManager &) = delete;
PassManager &operator=(const PassManager &) = delete;
std::vector<std::unique_ptr<PassConceptT>> Passes;
/// \brief Flag indicating whether we should do debug logging.
bool DebugLogging;
};
extern template class PassManager<Module>;
/// \brief Convenience typedef for a pass manager over modules.
typedef PassManager<Module> ModulePassManager;
extern template class PassManager<Function>;
/// \brief Convenience typedef for a pass manager over functions.
typedef PassManager<Function> FunctionPassManager;
namespace detail {
/// \brief A CRTP base used to implement analysis managers.
///
/// This class template serves as the boiler plate of an analysis manager. Any
/// analysis manager can be implemented on top of this base class. Any
/// implementation will be required to provide specific hooks:
///
/// - getResultImpl
/// - getCachedResultImpl
/// - invalidateImpl
///
/// The details of the call pattern are within.
///
/// Note that there is also a generic analysis manager template which implements
/// the above required functions along with common datastructures used for
/// managing analyses. This base class is factored so that if you need to
/// customize the handling of a specific IR unit, you can do so without
/// replicating *all* of the boilerplate.
template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
const DerivedT *derived_this() const {
return static_cast<const DerivedT *>(this);
}
AnalysisManagerBase(const AnalysisManagerBase &) = delete;
AnalysisManagerBase &operator=(const AnalysisManagerBase &) = delete;
protected:
typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
typedef detail::AnalysisPassConcept<IRUnitT> PassConceptT;
// FIXME: Provide template aliases for the models when we're using C++11 in
// a mode supporting them.
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisManagerBase() {}
AnalysisManagerBase(AnalysisManagerBase &&Arg)
: AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
AnalysisPasses = std::move(RHS.AnalysisPasses);
return *this;
}
public:
/// \brief Get the result of an analysis pass for this module.
///
/// If there is not a valid cached result in the manager already, this will
/// re-run the analysis to produce a valid result.
template <typename PassT> typename PassT::Result &getResult(IRUnitT &IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT &ResultConcept =
derived_this()->getResultImpl(PassT::ID(), IR);
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return static_cast<ResultModelT &>(ResultConcept).Result;
}
/// \brief Get the cached result of an analysis pass for this module.
///
/// This method never runs the analysis.
///
/// \returns null if there is no cached result.
template <typename PassT>
typename PassT::Result *getCachedResult(IRUnitT &IR) const {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being queried");
ResultConceptT *ResultConcept =
derived_this()->getCachedResultImpl(PassT::ID(), IR);
if (!ResultConcept)
return nullptr;
typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
ResultModelT;
return &static_cast<ResultModelT *>(ResultConcept)->Result;
}
/// \brief Register an analysis pass with the manager.
///
/// The argument is a callable whose result is a pass. This allows passing in
/// a lambda to construct the pass.
///
/// The pass type registered is the result type of calling the argument. If
/// that pass has already been registered, then the argument will not be
/// called and this function will return false. Otherwise, the pass type
/// becomes registered, with the instance provided by calling the argument
/// once, and this function returns true.
///
/// While this returns whether or not the pass type was already registered,
/// there in't an independent way to query that as that would be prone to
/// risky use when *querying* the analysis manager. Instead, the only
/// supported use case is avoiding duplicate registry of an analysis. This
/// interface also lends itself to minimizing the number of times we have to
/// do lookups for analyses or construct complex passes only to throw them
/// away.
template <typename PassBuilderT> bool registerPass(PassBuilderT PassBuilder) {
typedef decltype(PassBuilder()) PassT;
typedef detail::AnalysisPassModel<IRUnitT, PassT> PassModelT;
auto &PassPtr = AnalysisPasses[PassT::ID()];
if (PassPtr)
// Already registered this pass type!
return false;
// Construct a new model around the instance returned by the builder.
PassPtr.reset(new PassModelT(PassBuilder()));
return true;
}
/// \brief Invalidate a specific analysis pass for an IR module.
///
/// Note that the analysis result can disregard invalidation.
template <typename PassT> void invalidate(IRUnitT &IR) {
assert(AnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being invalidated");
derived_this()->invalidateImpl(PassT::ID(), IR);
}
/// \brief Invalidate analyses cached for an IR unit.
///
/// Walk through all of the analyses pertaining to this unit of IR and
/// invalidate them unless they are preserved by the PreservedAnalyses set.
/// We accept the PreservedAnalyses set by value and update it with each
/// analyis pass which has been successfully invalidated and thus can be
/// preserved going forward. The updated set is returned.
PreservedAnalyses invalidate(IRUnitT &IR, PreservedAnalyses PA) {
return derived_this()->invalidateImpl(IR, std::move(PA));
}
protected:
/// \brief Lookup a registered analysis pass.
PassConceptT &lookupPass(void *PassID) {
typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
/// \brief Lookup a registered analysis pass.
const PassConceptT &lookupPass(void *PassID) const {
typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
assert(PI != AnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
return *PI->second;
}
private:
/// \brief Map type from module analysis pass ID to pass concept pointer.
typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
/// \brief Collection of module analysis passes, indexed by ID.
AnalysisPassMapT AnalysisPasses;
};
} // End namespace detail
/// \brief A generic analysis pass manager with lazy running and caching of
/// results.
///
/// This analysis manager can be used for any IR unit where the address of the
/// IR unit sufficies as its identity. It manages the cache for a unit of IR via
/// the address of each unit of IR cached.
template <typename IRUnitT>
class AnalysisManager
: public detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> {
friend class detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT>;
typedef detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> BaseT;
typedef typename BaseT::ResultConceptT ResultConceptT;
typedef typename BaseT::PassConceptT PassConceptT;
public:
// Most public APIs are inherited from the CRTP base class.
/// \brief Construct an empty analysis manager.
///
/// A flag can be passed to indicate that the manager should perform debug
/// logging.
AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
AnalysisManager(AnalysisManager &&Arg)
: BaseT(std::move(static_cast<BaseT &>(Arg))),
AnalysisResults(std::move(Arg.AnalysisResults)),
DebugLogging(std::move(Arg.DebugLogging)) {}
AnalysisManager &operator=(AnalysisManager &&RHS) {
BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
AnalysisResults = std::move(RHS.AnalysisResults);
DebugLogging = std::move(RHS.DebugLogging);
return *this;
}
/// \brief Returns true if the analysis manager has an empty results cache.
bool empty() const {
assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
"The storage and index of analysis results disagree on how many "
"there are!");
return AnalysisResults.empty();
}
/// \brief Clear the analysis result cache.
///
/// This routine allows cleaning up when the set of IR units itself has
/// potentially changed, and thus we can't even look up a a result and
/// invalidate it directly. Notably, this does *not* call invalidate functions
/// as there is nothing to be done for them.
void clear() {
AnalysisResults.clear();
AnalysisResultLists.clear();
}
private:
AnalysisManager(const AnalysisManager &) = delete;
AnalysisManager &operator=(const AnalysisManager &) = delete;
/// \brief Get an analysis result, running the pass if necessary.
ResultConceptT &getResultImpl(void *PassID, IRUnitT &IR) {
typename AnalysisResultMapT::iterator RI;
bool Inserted;
std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
std::make_pair(PassID, &IR), typename AnalysisResultListT::iterator()));
// If we don't have a cached result for this function, look up the pass and
// run it to produce a result, which we then add to the cache.
if (Inserted) {
auto &P = this->lookupPass(PassID);
if (DebugLogging)
dbgs() << "Running analysis: " << P.name() << "\n";
AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
ResultList.emplace_back(PassID, P.run(IR, *this));
// P.run may have inserted elements into AnalysisResults and invalidated
// RI.
RI = AnalysisResults.find(std::make_pair(PassID, &IR));
assert(RI != AnalysisResults.end() && "we just inserted it!");
RI->second = std::prev(ResultList.end());
}
return *RI->second->second;
}
/// \brief Get a cached analysis result or return null.
ResultConceptT *getCachedResultImpl(void *PassID, IRUnitT &IR) const {
typename AnalysisResultMapT::const_iterator RI =
AnalysisResults.find(std::make_pair(PassID, &IR));
return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
}
/// \brief Invalidate a function pass result.
void invalidateImpl(void *PassID, IRUnitT &IR) {
typename AnalysisResultMapT::iterator RI =
AnalysisResults.find(std::make_pair(PassID, &IR));
if (RI == AnalysisResults.end())
return;
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
<< "\n";
AnalysisResultLists[&IR].erase(RI->second);
AnalysisResults.erase(RI);
}
/// \brief Invalidate the results for a function..
PreservedAnalyses invalidateImpl(IRUnitT &IR, PreservedAnalyses PA) {
// Short circuit for a common case of all analyses being preserved.
if (PA.areAllPreserved())
return PA;
if (DebugLogging)
dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
<< "\n";
// Clear all the invalidated results associated specifically with this
// function.
SmallVector<void *, 8> InvalidatedPassIDs;
AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
for (typename AnalysisResultListT::iterator I = ResultsList.begin(),
E = ResultsList.end();
I != E;) {
void *PassID = I->first;
// Pass the invalidation down to the pass itself to see if it thinks it is
// necessary. The analysis pass can return false if no action on the part
// of the analysis manager is required for this invalidation event.
if (I->second->invalidate(IR, PA)) {
if (DebugLogging)
dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
<< "\n";
InvalidatedPassIDs.push_back(I->first);
I = ResultsList.erase(I);
} else {
++I;
}
// After handling each pass, we mark it as preserved. Once we've
// invalidated any stale results, the rest of the system is allowed to
// start preserving this analysis again.
PA.preserve(PassID);
}
while (!InvalidatedPassIDs.empty())
AnalysisResults.erase(
std::make_pair(InvalidatedPassIDs.pop_back_val(), &IR));
if (ResultsList.empty())
AnalysisResultLists.erase(&IR);
return PA;
}
/// \brief List of function analysis pass IDs and associated concept pointers.
///
/// Requires iterators to be valid across appending new entries and arbitrary
/// erases. Provides both the pass ID and concept pointer such that it is
/// half of a bijection and provides storage for the actual result concept.
typedef std::list<std::pair<
void *, std::unique_ptr<detail::AnalysisResultConcept<IRUnitT>>>>
AnalysisResultListT;
/// \brief Map type from function pointer to our custom list type.
typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
/// \brief Map from function to a list of function analysis results.
///
/// Provides linear time removal of all analysis results for a function and
/// the ultimate storage for a particular cached analysis result.
AnalysisResultListMapT AnalysisResultLists;
/// \brief Map type from a pair of analysis ID and function pointer to an
/// iterator into a particular result list.
typedef DenseMap<std::pair<void *, IRUnitT *>,
typename AnalysisResultListT::iterator>
AnalysisResultMapT;
/// \brief Map from an analysis ID and function to a particular cached
/// analysis result.
AnalysisResultMapT AnalysisResults;
/// \brief A flag indicating whether debug logging is enabled.
bool DebugLogging;
};
extern template class AnalysisManager<Module>;
/// \brief Convenience typedef for the Module analysis manager.
typedef AnalysisManager<Module> ModuleAnalysisManager;
extern template class AnalysisManager<Function>;
/// \brief Convenience typedef for the Function analysis manager.
typedef AnalysisManager<Function> FunctionAnalysisManager;
/// \brief A module analysis which acts as a proxy for a function analysis
/// manager.
///
/// This primarily proxies invalidation information from the module analysis
/// manager and module pass manager to a function analysis manager. You should
/// never use a function analysis manager from within (transitively) a module
/// pass manager unless your parent module pass has received a proxy result
/// object for it.
///
/// Note that the proxy's result is a move-only object and represents ownership
/// of the validity of the analyses in the \c FunctionAnalysisManager it
/// provides.
template <typename AnalysisManagerT, typename IRUnitT>
class InnerAnalysisManagerProxy
: public AnalysisInfoMixin<
InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
public:
class Result {
public:
explicit Result(AnalysisManagerT &AM) : AM(&AM) {}
Result(Result &&Arg) : AM(std::move(Arg.AM)) {
// We have to null out the analysis manager in the moved-from state
// because we are taking ownership of the responsibilty to clear the
// analysis state.
Arg.AM = nullptr;
}
Result &operator=(Result &&RHS) {
AM = RHS.AM;
// We have to null out the analysis manager in the moved-from state
// because we are taking ownership of the responsibilty to clear the
// analysis state.
RHS.AM = nullptr;
return *this;
}
~Result() {
// AM is cleared in a moved from state where there is nothing to do.
if (!AM)
return;
// Clear out the analysis manager if we're being destroyed -- it means we
// didn't even see an invalidate call when we got invalidated.
AM->clear();
}
/// \brief Accessor for the analysis manager.
AnalysisManagerT &getManager() { return *AM; }
/// \brief Handler for invalidation of the module.
///
/// If this analysis itself is preserved, then we assume that the set of \c
/// Function objects in the \c Module hasn't changed and thus we don't need
/// to invalidate *all* cached data associated with a \c Function* in the \c
/// FunctionAnalysisManager.
///
/// Regardless of whether this analysis is marked as preserved, all of the
/// analyses in the \c FunctionAnalysisManager are potentially invalidated
/// based on the set of preserved analyses.
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
// If this proxy isn't marked as preserved, then we can't even invalidate
// individual function analyses, there may be an invalid set of Function
// objects in the cache making it impossible to incrementally preserve
// them. Just clear the entire manager.
if (!PA.preserved(InnerAnalysisManagerProxy::ID()))
AM->clear();
// Return false to indicate that this result is still a valid proxy.
return false;
}
private:
AnalysisManagerT *AM;
};
explicit InnerAnalysisManagerProxy(AnalysisManagerT &AM) : AM(&AM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
InnerAnalysisManagerProxy(const InnerAnalysisManagerProxy &Arg)
: AM(Arg.AM) {}
InnerAnalysisManagerProxy(InnerAnalysisManagerProxy &&Arg)
: AM(std::move(Arg.AM)) {}
InnerAnalysisManagerProxy &operator=(InnerAnalysisManagerProxy RHS) {
std::swap(AM, RHS.AM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
///
/// This doesn't do any interesting work, it is primarily used to insert our
/// proxy result object into the module analysis cache so that we can proxy
/// invalidation to the function analysis manager.
///
/// In debug builds, it will also assert that the analysis manager is empty
/// as no queries should arrive at the function analysis manager prior to
/// this analysis being requested.
Result run(IRUnitT &IR, AnalysisManager<IRUnitT> &) { return Result(*AM); }
private:
friend AnalysisInfoMixin<
InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
static char PassID;
AnalysisManagerT *AM;
};
template <typename AnalysisManagerT, typename IRUnitT>
char InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>::PassID;
extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
Module>;
/// Provide the \c FunctionAnalysisManager to \c Module proxy.
typedef InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>
FunctionAnalysisManagerModuleProxy;
/// \brief A function analysis which acts as a proxy for a module analysis
/// manager.
///
/// This primarily provides an accessor to a parent module analysis manager to
/// function passes. Only the const interface of the module analysis manager is
/// provided to indicate that once inside of a function analysis pass you
/// cannot request a module analysis to actually run. Instead, the user must
/// rely on the \c getCachedResult API.
///
/// This proxy *doesn't* manage the invalidation in any way. That is handled by
/// the recursive return path of each layer of the pass manager and the
/// returned PreservedAnalysis set.
template <typename AnalysisManagerT, typename IRUnitT>
class OuterAnalysisManagerProxy
: public AnalysisInfoMixin<
OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
public:
/// \brief Result proxy object for \c OuterAnalysisManagerProxy.
class Result {
public:
explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
// We have to explicitly define all the special member functions because
// MSVC refuses to generate them.
Result(const Result &Arg) : AM(Arg.AM) {}
Result(Result &&Arg) : AM(std::move(Arg.AM)) {}
Result &operator=(Result RHS) {
std::swap(AM, RHS.AM);
return *this;
}
const AnalysisManagerT &getManager() const { return *AM; }
/// \brief Handle invalidation by ignoring it, this pass is immutable.
bool invalidate(IRUnitT &) { return false; }
private:
const AnalysisManagerT *AM;
};
OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
OuterAnalysisManagerProxy(const OuterAnalysisManagerProxy &Arg)
: AM(Arg.AM) {}
OuterAnalysisManagerProxy(OuterAnalysisManagerProxy &&Arg)
: AM(std::move(Arg.AM)) {}
OuterAnalysisManagerProxy &operator=(OuterAnalysisManagerProxy RHS) {
std::swap(AM, RHS.AM);
return *this;
}
/// \brief Run the analysis pass and create our proxy result object.
/// Nothing to see here, it just forwards the \c AM reference into the
/// result.
Result run(IRUnitT &, AnalysisManager<IRUnitT> &) { return Result(*AM); }
private:
friend AnalysisInfoMixin<
OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
static char PassID;
const AnalysisManagerT *AM;
};
template <typename AnalysisManagerT, typename IRUnitT>
char OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT>::PassID;
extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
Function>;
/// Provide the \c ModuleAnalysisManager to \c Fucntion proxy.
typedef OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>
ModuleAnalysisManagerFunctionProxy;
/// \brief Trivial adaptor that maps from a module to its functions.
///
/// Designed to allow composition of a FunctionPass(Manager) and
/// a ModulePassManager. Note that if this pass is constructed with a pointer
/// to a \c ModuleAnalysisManager it will run the
/// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
/// pass over the module to enable a \c FunctionAnalysisManager to be used
/// within this run safely.
///
/// Function passes run within this adaptor can rely on having exclusive access
/// to the function they are run over. They should not read or modify any other
/// functions! Other threads or systems may be manipulating other functions in
/// the module, and so their state should never be relied on.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
///
/// Function passes can also read the module containing the function, but they
/// should not modify that module outside of the use lists of various globals.
/// For example, a function pass is not permitted to add functions to the
/// module.
/// FIXME: Make the above true for all of LLVM's actual passes, some still
/// violate this principle.
template <typename FunctionPassT>
class ModuleToFunctionPassAdaptor
: public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
public:
explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
: Pass(std::move(Pass)) {}
// We have to explicitly define all the special member functions because MSVC
// refuses to generate them.
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
: Pass(Arg.Pass) {}
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
: Pass(std::move(Arg.Pass)) {}
friend void swap(ModuleToFunctionPassAdaptor &LHS,
ModuleToFunctionPassAdaptor &RHS) {
using std::swap;
swap(LHS.Pass, RHS.Pass);
}
ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
swap(*this, RHS);
return *this;
}
/// \brief Runs the function pass across every function in the module.
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
// Setup the function analysis manager from its proxy.
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
PreservedAnalyses PA = PreservedAnalyses::all();
for (Function &F : M) {
if (F.isDeclaration())
continue;
PreservedAnalyses PassPA = Pass.run(F, FAM);
// We know that the function pass couldn't have invalidated any other
// function's analyses (that's the contract of a function pass), so
// directly handle the function analysis manager's invalidation here and
// update our preserved set to reflect that these have already been
// handled.
PassPA = FAM.invalidate(F, std::move(PassPA));
// Then intersect the preserved set so that invalidation of module
// analyses will eventually occur when the module pass completes.
PA.intersect(std::move(PassPA));
}
// By definition we preserve the proxy. This precludes *any* invalidation
// of function analyses by the proxy, but that's OK because we've taken
// care to invalidate analyses in the function analysis manager
// incrementally above.
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}
private:
FunctionPassT Pass;
};
/// \brief A function to deduce a function pass type and wrap it in the
/// templated adaptor.
template <typename FunctionPassT>
ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
}
/// \brief A template utility pass to force an analysis result to be available.
///
/// This is a no-op pass which simply forces a specific analysis pass's result
/// to be available when it is run.
template <typename AnalysisT>
struct RequireAnalysisPass : PassInfoMixin<RequireAnalysisPass<AnalysisT>> {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
template <typename IRUnitT>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> &AM) {
(void)AM.template getResult<AnalysisT>(Arg);
return PreservedAnalyses::all();
}
};
/// \brief A template utility pass to force an analysis result to be
/// invalidated.
///
/// This is a no-op pass which simply forces a specific analysis result to be
/// invalidated when it is run.
template <typename AnalysisT>
struct InvalidateAnalysisPass
: PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
/// \brief Run this pass over some unit of IR.
///
/// This pass can be run over any unit of IR and use any analysis manager
/// provided they satisfy the basic API requirements. When this pass is
/// created, these methods can be instantiated to satisfy whatever the
/// context requires.
template <typename IRUnitT>
PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> &AM) {
// We have to directly invalidate the analysis result as we can't
// enumerate all other analyses and use the preserved set to control it.
AM.template invalidate<AnalysisT>(Arg);
return PreservedAnalyses::all();
}
};
/// \brief A utility pass that does nothing but preserves no analyses.
///
/// As a consequence fo not preserving any analyses, this pass will force all
/// analysis passes to be re-run to produce fresh results if any are needed.
struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
/// \brief Run this pass over some unit of IR.
template <typename IRUnitT>
PreservedAnalyses run(IRUnitT &, AnalysisManager<IRUnitT> &) {
return PreservedAnalyses::none();
}
};
}
#endif