1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/test/CodeGen/SystemZ/frame-16.ll
Richard Sandiford ae9a008dd7 [SystemZ] Automatically detect zEC12 and z196 hosts
As on other hosts, the CPU identification instruction is priveleged,
so we need to look through /proc/cpuinfo.  I copied the PowerPC way of
handling "generic".

Several tests were implicitly assuming z10 and so failed on z196.

llvm-svn: 193742
2013-10-31 12:14:17 +00:00

332 lines
12 KiB
LLVM

; Test the handling of base + index + displacement addresses for large frames,
; in cases where both 12-bit and 20-bit displacements are allowed.
; The tests here assume z10 register pressure, without the high words
; being available.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | \
; RUN: FileCheck -check-prefix=CHECK-NOFP %s
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 -disable-fp-elim | \
; RUN: FileCheck -check-prefix=CHECK-FP %s
; This file tests what happens when a displacement is converted from
; being relative to the start of a frame object to being relative to
; the frame itself. In some cases the test is only possible if two
; objects are allocated.
;
; Rather than rely on a particular order for those objects, the tests
; instead allocate two objects of the same size and apply the test to
; both of them. For consistency, all tests follow this model, even if
; one object would actually be enough.
; First check the highest offset that is in range of the 12-bit form.
;
; The last in-range doubleword offset is 4088. Since the frame has two
; emergency spill slots at 160(%r15), the amount that we need to allocate
; in order to put another object at offset 4088 is 4088 - 176 = 3912 bytes.
define void @f1(i8 %byte) {
; CHECK-NOFP-LABEL: f1:
; CHECK-NOFP: stc %r2, 4095(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f1:
; CHECK-FP: stc %r2, 4095(%r11)
; CHECK-FP: br %r14
%region1 = alloca [3912 x i8], align 8
%region2 = alloca [3912 x i8], align 8
%ptr1 = getelementptr inbounds [3912 x i8]* %region1, i64 0, i64 7
%ptr2 = getelementptr inbounds [3912 x i8]* %region2, i64 0, i64 7
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the first offset that is out-of-range of the 12-bit form.
define void @f2(i8 %byte) {
; CHECK-NOFP-LABEL: f2:
; CHECK-NOFP: stcy %r2, 4096(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f2:
; CHECK-FP: stcy %r2, 4096(%r11)
; CHECK-FP: br %r14
%region1 = alloca [3912 x i8], align 8
%region2 = alloca [3912 x i8], align 8
%ptr1 = getelementptr inbounds [3912 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [3912 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the last offset that is in range of the 20-bit form.
;
; The last in-range doubleword offset is 524280, so by the same reasoning
; as above, we need to allocate objects of 524280 - 176 = 524104 bytes.
define void @f3(i8 %byte) {
; CHECK-NOFP-LABEL: f3:
; CHECK-NOFP: stcy %r2, 524287(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f3:
; CHECK-FP: stcy %r2, 524287(%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 7
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 7
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the first out-of-range offset. We can't use an index register here,
; and the offset is also out of LAY's range, so expect a constant load
; followed by an addition.
define void @f4(i8 %byte) {
; CHECK-NOFP-LABEL: f4:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stc %r2, 0(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f4:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stc %r2, 0(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Add 4095 to the previous offset, to test the other end of the STC range.
; The instruction will actually be STCY before frame lowering.
define void @f5(i8 %byte) {
; CHECK-NOFP-LABEL: f5:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stc %r2, 4095(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f5:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stc %r2, 4095(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 4103
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 4103
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the next offset after that, which uses STCY instead of STC.
define void @f6(i8 %byte) {
; CHECK-NOFP-LABEL: f6:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stcy %r2, 4096(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f6:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stcy %r2, 4096(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 4104
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 4104
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Now try an offset of 524287 from the start of the object, with the
; object being at offset 1048576 (1 << 20). The backend prefers to create
; anchors 0x10000 bytes apart, so that the high part can be loaded using
; LLILH while still using STC in more cases than 0x40000 anchors would.
define void @f7(i8 %byte) {
; CHECK-NOFP-LABEL: f7:
; CHECK-NOFP: llilh %r1, 23
; CHECK-NOFP: stcy %r2, 65535(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f7:
; CHECK-FP: llilh %r1, 23
; CHECK-FP: stcy %r2, 65535(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [1048400 x i8], align 8
%region2 = alloca [1048400 x i8], align 8
%ptr1 = getelementptr inbounds [1048400 x i8]* %region1, i64 0, i64 524287
%ptr2 = getelementptr inbounds [1048400 x i8]* %region2, i64 0, i64 524287
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Keep the object-relative offset the same but bump the size of the
; objects by one doubleword.
define void @f8(i8 %byte) {
; CHECK-NOFP-LABEL: f8:
; CHECK-NOFP: llilh %r1, 24
; CHECK-NOFP: stc %r2, 7(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f8:
; CHECK-FP: llilh %r1, 24
; CHECK-FP: stc %r2, 7(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [1048408 x i8], align 8
%region2 = alloca [1048408 x i8], align 8
%ptr1 = getelementptr inbounds [1048408 x i8]* %region1, i64 0, i64 524287
%ptr2 = getelementptr inbounds [1048408 x i8]* %region2, i64 0, i64 524287
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Check a case where the original displacement is out of range. The backend
; should force separate address logic from the outset. We don't yet do any
; kind of anchor optimization, so there should be no offset on the STC itself.
;
; Before frame lowering this is an LA followed by the AGFI seen below.
; The LA then gets lowered into the LLILH/LA form. The exact sequence
; isn't that important though.
define void @f9(i8 %byte) {
; CHECK-NOFP-LABEL: f9:
; CHECK-NOFP: llilh [[R1:%r[1-5]]], 16
; CHECK-NOFP: la [[R2:%r[1-5]]], 8([[R1]],%r15)
; CHECK-NOFP: agfi [[R2]], 524288
; CHECK-NOFP: stc %r2, 0([[R2]])
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f9:
; CHECK-FP: llilh [[R1:%r[1-5]]], 16
; CHECK-FP: la [[R2:%r[1-5]]], 8([[R1]],%r11)
; CHECK-FP: agfi [[R2]], 524288
; CHECK-FP: stc %r2, 0([[R2]])
; CHECK-FP: br %r14
%region1 = alloca [1048408 x i8], align 8
%region2 = alloca [1048408 x i8], align 8
%ptr1 = getelementptr inbounds [1048408 x i8]* %region1, i64 0, i64 524288
%ptr2 = getelementptr inbounds [1048408 x i8]* %region2, i64 0, i64 524288
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Repeat f4 in a case that needs the emergency spill slots (because all
; call-clobbered registers are live and no call-saved ones have been
; allocated).
define void @f10(i32 *%vptr, i8 %byte) {
; CHECK-NOFP-LABEL: f10:
; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
; CHECK-NOFP: llilh [[REGISTER]], 8
; CHECK-NOFP: stc %r3, 0([[REGISTER]],%r15)
; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f10:
; CHECK-FP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r11)
; CHECK-FP: llilh [[REGISTER]], 8
; CHECK-FP: stc %r3, 0([[REGISTER]],%r11)
; CHECK-FP: lg [[REGISTER]], [[OFFSET]](%r11)
; CHECK-FP: br %r14
%i0 = load volatile i32 *%vptr
%i1 = load volatile i32 *%vptr
%i4 = load volatile i32 *%vptr
%i5 = load volatile i32 *%vptr
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
store volatile i32 %i0, i32 *%vptr
store volatile i32 %i1, i32 *%vptr
store volatile i32 %i4, i32 *%vptr
store volatile i32 %i5, i32 *%vptr
ret void
}
; And again with maximum register pressure. The only spill slots that the
; NOFP case needs are the emergency ones, so the offsets are the same as for f4.
; However, the FP case uses %r11 as the frame pointer and must therefore
; spill a second register. This leads to an extra displacement of 8.
define void @f11(i32 *%vptr, i8 %byte) {
; CHECK-NOFP-LABEL: f11:
; CHECK-NOFP: stmg %r6, %r15,
; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
; CHECK-NOFP: llilh [[REGISTER]], 8
; CHECK-NOFP: stc %r3, 0([[REGISTER]],%r15)
; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
; CHECK-NOFP: lmg %r6, %r15,
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f11:
; CHECK-FP: stmg %r6, %r15,
; CHECK-FP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r11)
; CHECK-FP: llilh [[REGISTER]], 8
; CHECK-FP: stc %r3, 8([[REGISTER]],%r11)
; CHECK-FP: lg [[REGISTER]], [[OFFSET]](%r11)
; CHECK-FP: lmg %r6, %r15,
; CHECK-FP: br %r14
%i0 = load volatile i32 *%vptr
%i1 = load volatile i32 *%vptr
%i4 = load volatile i32 *%vptr
%i5 = load volatile i32 *%vptr
%i6 = load volatile i32 *%vptr
%i7 = load volatile i32 *%vptr
%i8 = load volatile i32 *%vptr
%i9 = load volatile i32 *%vptr
%i10 = load volatile i32 *%vptr
%i11 = load volatile i32 *%vptr
%i12 = load volatile i32 *%vptr
%i13 = load volatile i32 *%vptr
%i14 = load volatile i32 *%vptr
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
store volatile i32 %i0, i32 *%vptr
store volatile i32 %i1, i32 *%vptr
store volatile i32 %i4, i32 *%vptr
store volatile i32 %i5, i32 *%vptr
store volatile i32 %i6, i32 *%vptr
store volatile i32 %i7, i32 *%vptr
store volatile i32 %i8, i32 *%vptr
store volatile i32 %i9, i32 *%vptr
store volatile i32 %i10, i32 *%vptr
store volatile i32 %i11, i32 *%vptr
store volatile i32 %i12, i32 *%vptr
store volatile i32 %i13, i32 *%vptr
store volatile i32 %i14, i32 *%vptr
ret void
}
; Repeat f4 in a case where the index register is already occupied.
define void @f12(i8 %byte, i64 %index) {
; CHECK-NOFP-LABEL: f12:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: agr %r1, %r15
; CHECK-NOFP: stc %r2, 0(%r3,%r1)
; CHECK-NOFP: br %r14
;
; CHECK-FP-LABEL: f12:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: agr %r1, %r11
; CHECK-FP: stc %r2, 0(%r3,%r1)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%index1 = add i64 %index, 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 %index1
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 %index1
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}