mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
1c8d54ed9f
llvm-svn: 132309
424 lines
16 KiB
C++
424 lines
16 KiB
C++
//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SPLITKIT_H
|
|
#define LLVM_CODEGEN_SPLITKIT_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/IndexedMap.h"
|
|
#include "llvm/ADT/IntervalMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
|
|
namespace llvm {
|
|
|
|
class ConnectedVNInfoEqClasses;
|
|
class LiveInterval;
|
|
class LiveIntervals;
|
|
class LiveRangeEdit;
|
|
class MachineInstr;
|
|
class MachineLoopInfo;
|
|
class MachineRegisterInfo;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterInfo;
|
|
class VirtRegMap;
|
|
class VNInfo;
|
|
class raw_ostream;
|
|
|
|
/// At some point we should just include MachineDominators.h:
|
|
class MachineDominatorTree;
|
|
template <class NodeT> class DomTreeNodeBase;
|
|
typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
|
|
|
|
|
|
/// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting
|
|
/// opportunities.
|
|
class SplitAnalysis {
|
|
public:
|
|
const MachineFunction &MF;
|
|
const VirtRegMap &VRM;
|
|
const LiveIntervals &LIS;
|
|
const MachineLoopInfo &Loops;
|
|
const TargetInstrInfo &TII;
|
|
|
|
// Sorted slot indexes of using instructions.
|
|
SmallVector<SlotIndex, 8> UseSlots;
|
|
|
|
/// Additional information about basic blocks where the current variable is
|
|
/// live. Such a block will look like one of these templates:
|
|
///
|
|
/// 1. | o---x | Internal to block. Variable is only live in this block.
|
|
/// 2. |---x | Live-in, kill.
|
|
/// 3. | o---| Def, live-out.
|
|
/// 4. |---x o---| Live-in, kill, def, live-out. Counted by NumGapBlocks.
|
|
/// 5. |---o---o---| Live-through with uses or defs.
|
|
/// 6. |-----------| Live-through without uses. Counted by NumThroughBlocks.
|
|
///
|
|
/// Two BlockInfo entries are created for template 4. One for the live-in
|
|
/// segment, and one for the live-out segment. These entries look as if the
|
|
/// block were split in the middle where the live range isn't live.
|
|
///
|
|
/// Live-through blocks without any uses don't get BlockInfo entries. They
|
|
/// are simply listed in ThroughBlocks instead.
|
|
///
|
|
struct BlockInfo {
|
|
MachineBasicBlock *MBB;
|
|
SlotIndex FirstUse; ///< First instr using current reg.
|
|
SlotIndex LastUse; ///< Last instr using current reg.
|
|
bool LiveThrough; ///< Live in whole block (Templ 5. above).
|
|
bool LiveIn; ///< Current reg is live in.
|
|
bool LiveOut; ///< Current reg is live out.
|
|
};
|
|
|
|
private:
|
|
// Current live interval.
|
|
const LiveInterval *CurLI;
|
|
|
|
/// LastSplitPoint - Last legal split point in each basic block in the current
|
|
/// function. The first entry is the first terminator, the second entry is the
|
|
/// last valid split point for a variable that is live in to a landing pad
|
|
/// successor.
|
|
SmallVector<std::pair<SlotIndex, SlotIndex>, 8> LastSplitPoint;
|
|
|
|
/// UseBlocks - Blocks where CurLI has uses.
|
|
SmallVector<BlockInfo, 8> UseBlocks;
|
|
|
|
/// NumGapBlocks - Number of duplicate entries in UseBlocks for blocks where
|
|
/// the live range has a gap.
|
|
unsigned NumGapBlocks;
|
|
|
|
/// ThroughBlocks - Block numbers where CurLI is live through without uses.
|
|
BitVector ThroughBlocks;
|
|
|
|
/// NumThroughBlocks - Number of live-through blocks.
|
|
unsigned NumThroughBlocks;
|
|
|
|
/// DidRepairRange - analyze was forced to shrinkToUses().
|
|
bool DidRepairRange;
|
|
|
|
SlotIndex computeLastSplitPoint(unsigned Num);
|
|
|
|
// Sumarize statistics by counting instructions using CurLI.
|
|
void analyzeUses();
|
|
|
|
/// calcLiveBlockInfo - Compute per-block information about CurLI.
|
|
bool calcLiveBlockInfo();
|
|
|
|
public:
|
|
SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli);
|
|
|
|
/// analyze - set CurLI to the specified interval, and analyze how it may be
|
|
/// split.
|
|
void analyze(const LiveInterval *li);
|
|
|
|
/// didRepairRange() - Returns true if CurLI was invalid and has been repaired
|
|
/// by analyze(). This really shouldn't happen, but sometimes the coalescer
|
|
/// can create live ranges that end in mid-air.
|
|
bool didRepairRange() const { return DidRepairRange; }
|
|
|
|
/// clear - clear all data structures so SplitAnalysis is ready to analyze a
|
|
/// new interval.
|
|
void clear();
|
|
|
|
/// getParent - Return the last analyzed interval.
|
|
const LiveInterval &getParent() const { return *CurLI; }
|
|
|
|
/// getLastSplitPoint - Return that base index of the last valid split point
|
|
/// in the basic block numbered Num.
|
|
SlotIndex getLastSplitPoint(unsigned Num) {
|
|
// Inline the common simple case.
|
|
if (LastSplitPoint[Num].first.isValid() &&
|
|
!LastSplitPoint[Num].second.isValid())
|
|
return LastSplitPoint[Num].first;
|
|
return computeLastSplitPoint(Num);
|
|
}
|
|
|
|
/// isOriginalEndpoint - Return true if the original live range was killed or
|
|
/// (re-)defined at Idx. Idx should be the 'def' slot for a normal kill/def,
|
|
/// and 'use' for an early-clobber def.
|
|
/// This can be used to recognize code inserted by earlier live range
|
|
/// splitting.
|
|
bool isOriginalEndpoint(SlotIndex Idx) const;
|
|
|
|
/// getUseBlocks - Return an array of BlockInfo objects for the basic blocks
|
|
/// where CurLI has uses.
|
|
ArrayRef<BlockInfo> getUseBlocks() const { return UseBlocks; }
|
|
|
|
/// getNumThroughBlocks - Return the number of through blocks.
|
|
unsigned getNumThroughBlocks() const { return NumThroughBlocks; }
|
|
|
|
/// isThroughBlock - Return true if CurLI is live through MBB without uses.
|
|
bool isThroughBlock(unsigned MBB) const { return ThroughBlocks.test(MBB); }
|
|
|
|
/// getThroughBlocks - Return the set of through blocks.
|
|
const BitVector &getThroughBlocks() const { return ThroughBlocks; }
|
|
|
|
/// getNumLiveBlocks - Return the number of blocks where CurLI is live.
|
|
unsigned getNumLiveBlocks() const {
|
|
return getUseBlocks().size() - NumGapBlocks + getNumThroughBlocks();
|
|
}
|
|
|
|
/// countLiveBlocks - Return the number of blocks where li is live. This is
|
|
/// guaranteed to return the same number as getNumLiveBlocks() after calling
|
|
/// analyze(li).
|
|
unsigned countLiveBlocks(const LiveInterval *li) const;
|
|
|
|
typedef SmallPtrSet<const MachineBasicBlock*, 16> BlockPtrSet;
|
|
|
|
/// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from
|
|
/// having CurLI split to a new live interval. Return true if Blocks can be
|
|
/// passed to SplitEditor::splitSingleBlocks.
|
|
bool getMultiUseBlocks(BlockPtrSet &Blocks);
|
|
};
|
|
|
|
|
|
/// SplitEditor - Edit machine code and LiveIntervals for live range
|
|
/// splitting.
|
|
///
|
|
/// - Create a SplitEditor from a SplitAnalysis.
|
|
/// - Start a new live interval with openIntv.
|
|
/// - Mark the places where the new interval is entered using enterIntv*
|
|
/// - Mark the ranges where the new interval is used with useIntv*
|
|
/// - Mark the places where the interval is exited with exitIntv*.
|
|
/// - Finish the current interval with closeIntv and repeat from 2.
|
|
/// - Rewrite instructions with finish().
|
|
///
|
|
class SplitEditor {
|
|
SplitAnalysis &SA;
|
|
LiveIntervals &LIS;
|
|
VirtRegMap &VRM;
|
|
MachineRegisterInfo &MRI;
|
|
MachineDominatorTree &MDT;
|
|
const TargetInstrInfo &TII;
|
|
const TargetRegisterInfo &TRI;
|
|
|
|
/// Edit - The current parent register and new intervals created.
|
|
LiveRangeEdit *Edit;
|
|
|
|
/// Index into Edit of the currently open interval.
|
|
/// The index 0 is used for the complement, so the first interval started by
|
|
/// openIntv will be 1.
|
|
unsigned OpenIdx;
|
|
|
|
typedef IntervalMap<SlotIndex, unsigned> RegAssignMap;
|
|
|
|
/// Allocator for the interval map. This will eventually be shared with
|
|
/// SlotIndexes and LiveIntervals.
|
|
RegAssignMap::Allocator Allocator;
|
|
|
|
/// RegAssign - Map of the assigned register indexes.
|
|
/// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at
|
|
/// Idx.
|
|
RegAssignMap RegAssign;
|
|
|
|
typedef DenseMap<std::pair<unsigned, unsigned>, VNInfo*> ValueMap;
|
|
|
|
/// Values - keep track of the mapping from parent values to values in the new
|
|
/// intervals. Given a pair (RegIdx, ParentVNI->id), Values contains:
|
|
///
|
|
/// 1. No entry - the value is not mapped to Edit.get(RegIdx).
|
|
/// 2. Null - the value is mapped to multiple values in Edit.get(RegIdx).
|
|
/// Each value is represented by a minimal live range at its def.
|
|
/// 3. A non-null VNInfo - the value is mapped to a single new value.
|
|
/// The new value has no live ranges anywhere.
|
|
ValueMap Values;
|
|
|
|
typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
|
|
typedef IndexedMap<LiveOutPair, MBB2NumberFunctor> LiveOutMap;
|
|
|
|
// LiveOutCache - Map each basic block where a new register is live out to the
|
|
// live-out value and its defining block.
|
|
// One of these conditions shall be true:
|
|
//
|
|
// 1. !LiveOutCache.count(MBB)
|
|
// 2. LiveOutCache[MBB].second.getNode() == MBB
|
|
// 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB]
|
|
//
|
|
// This is only a cache, the values can be computed as:
|
|
//
|
|
// VNI = Edit.get(RegIdx)->getVNInfoAt(LIS.getMBBEndIdx(MBB))
|
|
// Node = mbt_[LIS.getMBBFromIndex(VNI->def)]
|
|
//
|
|
// The cache is also used as a visited set by extendRange(). It can be shared
|
|
// by all the new registers because at most one is live out of each block.
|
|
LiveOutMap LiveOutCache;
|
|
|
|
// LiveOutSeen - Indexed by MBB->getNumber(), a bit is set for each valid
|
|
// entry in LiveOutCache.
|
|
BitVector LiveOutSeen;
|
|
|
|
/// LiveInBlock - Info for updateSSA() about a block where a register is
|
|
/// live-in.
|
|
/// The updateSSA caller provides DomNode and Kill inside MBB, updateSSA()
|
|
/// adds the computed live-in value.
|
|
struct LiveInBlock {
|
|
// Dominator tree node for the block.
|
|
// Cleared by updateSSA when the final value has been determined.
|
|
MachineDomTreeNode *DomNode;
|
|
|
|
// Live-in value filled in by updateSSA once it is known.
|
|
VNInfo *Value;
|
|
|
|
// Position in block where the live-in range ends, or SlotIndex() if the
|
|
// range passes through the block.
|
|
SlotIndex Kill;
|
|
|
|
LiveInBlock(MachineDomTreeNode *node) : DomNode(node), Value(0) {}
|
|
};
|
|
|
|
/// LiveInBlocks - List of live-in blocks used by findReachingDefs() and
|
|
/// updateSSA(). This list is usually empty, it exists here to avoid frequent
|
|
/// reallocations.
|
|
SmallVector<LiveInBlock, 16> LiveInBlocks;
|
|
|
|
/// defValue - define a value in RegIdx from ParentVNI at Idx.
|
|
/// Idx does not have to be ParentVNI->def, but it must be contained within
|
|
/// ParentVNI's live range in ParentLI. The new value is added to the value
|
|
/// map.
|
|
/// Return the new LI value.
|
|
VNInfo *defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx);
|
|
|
|
/// markComplexMapped - Mark ParentVNI as complex mapped in RegIdx regardless
|
|
/// of the number of defs.
|
|
void markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI);
|
|
|
|
/// defFromParent - Define Reg from ParentVNI at UseIdx using either
|
|
/// rematerialization or a COPY from parent. Return the new value.
|
|
VNInfo *defFromParent(unsigned RegIdx,
|
|
VNInfo *ParentVNI,
|
|
SlotIndex UseIdx,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I);
|
|
|
|
/// extendRange - Extend the live range of Edit.get(RegIdx) so it reaches Idx.
|
|
/// Insert PHIDefs as needed to preserve SSA form.
|
|
void extendRange(unsigned RegIdx, SlotIndex Idx);
|
|
|
|
/// findReachingDefs - Starting from MBB, add blocks to LiveInBlocks until all
|
|
/// reaching defs for LI are found.
|
|
/// @param LI Live interval whose value is needed.
|
|
/// @param MBB Block where LI should be live-in.
|
|
/// @param Kill Kill point in MBB.
|
|
/// @return Unique value seen, or NULL.
|
|
VNInfo *findReachingDefs(LiveInterval *LI, MachineBasicBlock *MBB,
|
|
SlotIndex Kill);
|
|
|
|
/// updateSSA - Compute and insert PHIDefs such that all blocks in
|
|
// LiveInBlocks get a known live-in value. Add live ranges to the blocks.
|
|
void updateSSA();
|
|
|
|
/// transferValues - Transfer values to the new ranges.
|
|
/// Return true if any ranges were skipped.
|
|
bool transferValues();
|
|
|
|
/// extendPHIKillRanges - Extend the ranges of all values killed by original
|
|
/// parent PHIDefs.
|
|
void extendPHIKillRanges();
|
|
|
|
/// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers.
|
|
void rewriteAssigned(bool ExtendRanges);
|
|
|
|
/// deleteRematVictims - Delete defs that are dead after rematerializing.
|
|
void deleteRematVictims();
|
|
|
|
public:
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
/// Newly created intervals will be appended to newIntervals.
|
|
SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&,
|
|
MachineDominatorTree&);
|
|
|
|
/// reset - Prepare for a new split.
|
|
void reset(LiveRangeEdit&);
|
|
|
|
/// Create a new virtual register and live interval.
|
|
/// Return the interval index, starting from 1. Interval index 0 is the
|
|
/// implicit complement interval.
|
|
unsigned openIntv();
|
|
|
|
/// currentIntv - Return the current interval index.
|
|
unsigned currentIntv() const { return OpenIdx; }
|
|
|
|
/// selectIntv - Select a previously opened interval index.
|
|
void selectIntv(unsigned Idx);
|
|
|
|
/// enterIntvBefore - Enter the open interval before the instruction at Idx.
|
|
/// If the parent interval is not live before Idx, a COPY is not inserted.
|
|
/// Return the beginning of the new live range.
|
|
SlotIndex enterIntvBefore(SlotIndex Idx);
|
|
|
|
/// enterIntvAtEnd - Enter the open interval at the end of MBB.
|
|
/// Use the open interval from he inserted copy to the MBB end.
|
|
/// Return the beginning of the new live range.
|
|
SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB);
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
|
void useIntv(const MachineBasicBlock &MBB);
|
|
|
|
/// useIntv - indicate that all instructions in range should use OpenLI.
|
|
void useIntv(SlotIndex Start, SlotIndex End);
|
|
|
|
/// leaveIntvAfter - Leave the open interval after the instruction at Idx.
|
|
/// Return the end of the live range.
|
|
SlotIndex leaveIntvAfter(SlotIndex Idx);
|
|
|
|
/// leaveIntvBefore - Leave the open interval before the instruction at Idx.
|
|
/// Return the end of the live range.
|
|
SlotIndex leaveIntvBefore(SlotIndex Idx);
|
|
|
|
/// leaveIntvAtTop - Leave the interval at the top of MBB.
|
|
/// Add liveness from the MBB top to the copy.
|
|
/// Return the end of the live range.
|
|
SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB);
|
|
|
|
/// overlapIntv - Indicate that all instructions in range should use the open
|
|
/// interval, but also let the complement interval be live.
|
|
///
|
|
/// This doubles the register pressure, but is sometimes required to deal with
|
|
/// register uses after the last valid split point.
|
|
///
|
|
/// The Start index should be a return value from a leaveIntv* call, and End
|
|
/// should be in the same basic block. The parent interval must have the same
|
|
/// value across the range.
|
|
///
|
|
void overlapIntv(SlotIndex Start, SlotIndex End);
|
|
|
|
/// finish - after all the new live ranges have been created, compute the
|
|
/// remaining live range, and rewrite instructions to use the new registers.
|
|
/// @param LRMap When not null, this vector will map each live range in Edit
|
|
/// back to the indices returned by openIntv.
|
|
/// There may be extra indices created by dead code elimination.
|
|
void finish(SmallVectorImpl<unsigned> *LRMap = 0);
|
|
|
|
/// dump - print the current interval maping to dbgs().
|
|
void dump() const;
|
|
|
|
// ===--- High level methods ---===
|
|
|
|
/// splitSingleBlock - Split CurLI into a separate live interval around the
|
|
/// uses in a single block. This is intended to be used as part of a larger
|
|
/// split, and doesn't call finish().
|
|
void splitSingleBlock(const SplitAnalysis::BlockInfo &BI);
|
|
|
|
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
|
|
/// basic block in Blocks.
|
|
void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks);
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|