1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Target/AArch64/AArch64CollectLOH.cpp
David Blaikie e01dc73ad2 Fix a bunch more layering of CodeGen headers that are in Target
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).

llvm-svn: 318490
2017-11-17 01:07:10 +00:00

548 lines
19 KiB
C++

//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that collect the Linker Optimization Hint (LOH).
// This pass should be run at the very end of the compilation flow, just before
// assembly printer.
// To be useful for the linker, the LOH must be printed into the assembly file.
//
// A LOH describes a sequence of instructions that may be optimized by the
// linker.
// This same sequence cannot be optimized by the compiler because some of
// the information will be known at link time.
// For instance, consider the following sequence:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// This sequence can be turned into:
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
// L3: ldr xC, sym+#imm
// It may also be turned into either the following more efficient
// code sequences:
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
// L1: adr xA, sym
// L3: ldr xC, [xB, #imm]
//
// To be valid a LOH must meet all the requirements needed by all the related
// possible linker transformations.
// For instance, using the running example, the constraints to emit
// ".loh AdrpAddLdr" are:
// - L1, L2, and L3 instructions are of the expected type, i.e.,
// respectively ADRP, ADD (immediate), and LD.
// - The result of L1 is used only by L2.
// - The register argument (xA) used in the ADD instruction is defined
// only by L1.
// - The result of L2 is used only by L3.
// - The base address (xB) in L3 is defined only L2.
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
// @PAGE/@PAGEOFF with no additional constants
//
// Currently supported LOHs are:
// * So called non-ADRP-related:
// - .loh AdrpAddLdr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdrGotLdr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdr L1, L3:
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xA, sym@PAGEOFF]
// - .loh AdrpAddStr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: str xC, [xB, #imm]
// - .loh AdrpLdrGotStr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: str xC, [xB, #imm]
// - .loh AdrpAdd L1, L2:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// For all these LOHs, L1, L2, L3 form a simple chain:
// L1 result is used only by L2 and L2 result by L3.
// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
// by L1.
// All these LOHs aim at using more efficient load/store patterns by folding
// some instructions used to compute the address directly into the load/store.
//
// * So called ADRP-related:
// - .loh AdrpAdrp L2, L1:
// L2: ADRP xA, sym1@PAGE
// L1: ADRP xA, sym2@PAGE
// L2 dominates L1 and xA is not redifined between L2 and L1
// This LOH aims at getting rid of redundant ADRP instructions.
//
// The overall design for emitting the LOHs is:
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
// 1. Associates them a label.
// 2. Emits them in a MCStreamer (EmitLOHDirective).
// - The MCMachOStreamer records them into the MCAssembler.
// - The MCAsmStreamer prints them.
// - Other MCStreamers ignore them.
// 3. Closes the MCStreamer:
// - The MachObjectWriter gets them from the MCAssembler and writes
// them in the object file.
// - Other ObjectWriters ignore them.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-collect-loh"
STATISTIC(NumADRPSimpleCandidate,
"Number of simplifiable ADRP dominate by another");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
#define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
namespace {
struct AArch64CollectLOH : public MachineFunctionPass {
static char ID;
AArch64CollectLOH() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.setPreservesAll();
}
};
char AArch64CollectLOH::ID = 0;
} // end anonymous namespace.
INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
AARCH64_COLLECT_LOH_NAME, false, false)
static bool canAddBePartOfLOH(const MachineInstr &MI) {
// Check immediate to see if the immediate is an address.
switch (MI.getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_BlockAddress:
return true;
}
}
/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
static bool canDefBePartOfLOH(const MachineInstr &MI) {
// Accept ADRP, ADDLow and LOADGot.
switch (MI.getOpcode()) {
default:
return false;
case AArch64::ADRP:
return true;
case AArch64::ADDXri:
return canAddBePartOfLOH(MI);
case AArch64::LDRXui:
// Check immediate to see if the immediate is an address.
switch (MI.getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
}
}
}
/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::STRBBui:
case AArch64::STRHHui:
case AArch64::STRBui:
case AArch64::STRHui:
case AArch64::STRWui:
case AArch64::STRXui:
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
// We can only optimize the index operand.
// In case we have str xA, [xA, #imm], this is two different uses
// of xA and we cannot fold, otherwise the xA stored may be wrong,
// even if #imm == 0.
return MI.getOperandNo(&MO) == 1 &&
MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
}
}
/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
static bool isCandidateLoad(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSBWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHWui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
case AArch64::LDRBui:
case AArch64::LDRHui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
}
}
/// Check whether the given instruction can load a litteral.
static bool supportLoadFromLiteral(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSWui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
return true;
}
}
/// Number of GPR registers traked by mapRegToGPRIndex()
static const unsigned N_GPR_REGS = 31;
/// Map register number to index from 0-30.
static int mapRegToGPRIndex(MCPhysReg Reg) {
static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
return Reg - AArch64::X0;
if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
return Reg - AArch64::W0;
// TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
// handle them as special cases.
if (Reg == AArch64::FP)
return 29;
if (Reg == AArch64::LR)
return 30;
return -1;
}
/// State tracked per register.
/// The main algorithm walks backwards over a basic block maintaining this
/// datastructure for each tracked general purpose register.
struct LOHInfo {
MCLOHType Type : 8; ///< "Best" type of LOH possible.
bool IsCandidate : 1; ///< Possible LOH candidate.
bool OneUser : 1; ///< Found exactly one user (yet).
bool MultiUsers : 1; ///< Found multiple users.
const MachineInstr *MI0; ///< First instruction involved in the LOH.
const MachineInstr *MI1; ///< Second instruction involved in the LOH
/// (if any).
const MachineInstr *LastADRP; ///< Last ADRP in same register.
};
/// Update state \p Info given \p MI uses the tracked register.
static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
LOHInfo &Info) {
// We have multiple uses if we already found one before.
if (Info.MultiUsers || Info.OneUser) {
Info.IsCandidate = false;
Info.MultiUsers = true;
return;
}
Info.OneUser = true;
// Start new LOHInfo if applicable.
if (isCandidateLoad(MI)) {
Info.Type = MCLOH_AdrpLdr;
Info.IsCandidate = true;
Info.MI0 = &MI;
// Note that even this is AdrpLdr now, we can switch to a Ldr variant
// later.
} else if (isCandidateStore(MI, MO)) {
Info.Type = MCLOH_AdrpAddStr;
Info.IsCandidate = true;
Info.MI0 = &MI;
Info.MI1 = nullptr;
} else if (MI.getOpcode() == AArch64::ADDXri) {
Info.Type = MCLOH_AdrpAdd;
Info.IsCandidate = true;
Info.MI0 = &MI;
} else if (MI.getOpcode() == AArch64::LDRXui &&
MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
Info.Type = MCLOH_AdrpLdrGot;
Info.IsCandidate = true;
Info.MI0 = &MI;
}
}
/// Update state \p Info given the tracked register is clobbered.
static void handleClobber(LOHInfo &Info) {
Info.IsCandidate = false;
Info.OneUser = false;
Info.MultiUsers = false;
Info.LastADRP = nullptr;
}
/// Update state \p Info given that \p MI is possibly the middle instruction
/// of an LOH involving 3 instructions.
static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
LOHInfo &OpInfo) {
if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
return false;
// Copy LOHInfo for dest register to LOHInfo for source register.
if (&DefInfo != &OpInfo) {
OpInfo = DefInfo;
// Invalidate \p DefInfo because we track it in \p OpInfo now.
handleClobber(DefInfo);
} else
DefInfo.LastADRP = nullptr;
// Advance state machine.
assert(OpInfo.IsCandidate && "Expect valid state");
if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
if (OpInfo.Type == MCLOH_AdrpLdr) {
OpInfo.Type = MCLOH_AdrpAddLdr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
} else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
OpInfo.Type = MCLOH_AdrpAddStr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
}
} else {
assert(MI.getOpcode() == AArch64::LDRXui && "Expect LDRXui");
assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
"Expected GOT relocation");
if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
OpInfo.Type = MCLOH_AdrpLdrGotStr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
} else if (OpInfo.Type == MCLOH_AdrpLdr) {
OpInfo.Type = MCLOH_AdrpLdrGotLdr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
}
}
return false;
}
/// Update state when seeing and ADRP instruction.
static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
LOHInfo &Info) {
if (Info.LastADRP != nullptr) {
DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n" << '\t' << MI << '\t'
<< *Info.LastADRP);
AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
++NumADRPSimpleCandidate;
}
// Produce LOH directive if possible.
if (Info.IsCandidate) {
switch (Info.Type) {
case MCLOH_AdrpAdd:
DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n" << '\t' << MI << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
++NumADRSimpleCandidate;
break;
case MCLOH_AdrpLdr:
if (supportLoadFromLiteral(*Info.MI0)) {
DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n" << '\t' << MI << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
++NumADRPToLDR;
}
break;
case MCLOH_AdrpAddLdr:
DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n" << '\t' << MI << '\t'
<< *Info.MI1 << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
++NumADDToLDR;
break;
case MCLOH_AdrpAddStr:
if (Info.MI1 != nullptr) {
DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n" << '\t' << MI << '\t'
<< *Info.MI1 << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
++NumADDToSTR;
}
break;
case MCLOH_AdrpLdrGotLdr:
DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n" << '\t' << MI << '\t'
<< *Info.MI1 << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
++NumLDRToLDR;
break;
case MCLOH_AdrpLdrGotStr:
DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n" << '\t' << MI << '\t'
<< *Info.MI1 << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
++NumLDRToSTR;
break;
case MCLOH_AdrpLdrGot:
DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n" << '\t' << MI << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
break;
case MCLOH_AdrpAdrp:
llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
}
}
handleClobber(Info);
Info.LastADRP = &MI;
}
static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
LOHInfo *LOHInfos) {
if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
return;
int Idx = mapRegToGPRIndex(Reg);
if (Idx >= 0)
handleClobber(LOHInfos[Idx]);
}
static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
// Handle defs and regmasks.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
const uint32_t *RegMask = MO.getRegMask();
for (MCPhysReg Reg : AArch64::GPR32RegClass)
handleRegMaskClobber(RegMask, Reg, LOHInfos);
for (MCPhysReg Reg : AArch64::GPR64RegClass)
handleRegMaskClobber(RegMask, Reg, LOHInfos);
continue;
}
if (!MO.isReg() || !MO.isDef())
continue;
int Idx = mapRegToGPRIndex(MO.getReg());
if (Idx < 0)
continue;
handleClobber(LOHInfos[Idx]);
}
// Handle uses.
for (const MachineOperand &MO : MI.uses()) {
if (!MO.isReg() || !MO.readsReg())
continue;
int Idx = mapRegToGPRIndex(MO.getReg());
if (Idx < 0)
continue;
handleUse(MI, MO, LOHInfos[Idx]);
}
}
bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
<< "Looking in function " << MF.getName() << '\n');
LOHInfo LOHInfos[N_GPR_REGS];
AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
for (const MachineBasicBlock &MBB : MF) {
// Reset register tracking state.
memset(LOHInfos, 0, sizeof(LOHInfos));
// Live-out registers are used.
for (const MachineBasicBlock *Succ : MBB.successors()) {
for (const auto &LI : Succ->liveins()) {
int RegIdx = mapRegToGPRIndex(LI.PhysReg);
if (RegIdx >= 0)
LOHInfos[RegIdx].OneUser = true;
}
}
// Walk the basic block backwards and update the per register state machine
// in the process.
for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
case AArch64::ADDXri:
case AArch64::LDRXui:
if (canDefBePartOfLOH(MI)) {
const MachineOperand &Def = MI.getOperand(0);
const MachineOperand &Op = MI.getOperand(1);
assert(Def.isReg() && Def.isDef() && "Expected reg def");
assert(Op.isReg() && Op.isUse() && "Expected reg use");
int DefIdx = mapRegToGPRIndex(Def.getReg());
int OpIdx = mapRegToGPRIndex(Op.getReg());
if (DefIdx >= 0 && OpIdx >= 0 &&
handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
continue;
}
break;
case AArch64::ADRP:
const MachineOperand &Op0 = MI.getOperand(0);
int Idx = mapRegToGPRIndex(Op0.getReg());
if (Idx >= 0) {
handleADRP(MI, AFI, LOHInfos[Idx]);
continue;
}
break;
}
handleNormalInst(MI, LOHInfos);
}
}
// Return "no change": The pass only collects information.
return false;
}
FunctionPass *llvm::createAArch64CollectLOHPass() {
return new AArch64CollectLOH();
}