mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
34a3716b46
This patch removes all uses of `std::iterator`, which was deprecated in C++17. While this isn't currently an issue while compiling LLVM, it's useful for those using LLVM as a library. For some reason there're a few places that were seemingly able to use `std` functions unqualified, which no longer works after this patch. I've updated those places, but I'm not really sure why it worked in the first place. Reviewed By: MaskRay Differential Revision: https://reviews.llvm.org/D67586
1342 lines
47 KiB
C++
1342 lines
47 KiB
C++
//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file exposes an interface to building/using memory SSA to
|
|
/// walk memory instructions using a use/def graph.
|
|
///
|
|
/// Memory SSA class builds an SSA form that links together memory access
|
|
/// instructions such as loads, stores, atomics, and calls. Additionally, it
|
|
/// does a trivial form of "heap versioning" Every time the memory state changes
|
|
/// in the program, we generate a new heap version. It generates
|
|
/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
|
|
///
|
|
/// As a trivial example,
|
|
/// define i32 @main() #0 {
|
|
/// entry:
|
|
/// %call = call noalias i8* @_Znwm(i64 4) #2
|
|
/// %0 = bitcast i8* %call to i32*
|
|
/// %call1 = call noalias i8* @_Znwm(i64 4) #2
|
|
/// %1 = bitcast i8* %call1 to i32*
|
|
/// store i32 5, i32* %0, align 4
|
|
/// store i32 7, i32* %1, align 4
|
|
/// %2 = load i32* %0, align 4
|
|
/// %3 = load i32* %1, align 4
|
|
/// %add = add nsw i32 %2, %3
|
|
/// ret i32 %add
|
|
/// }
|
|
///
|
|
/// Will become
|
|
/// define i32 @main() #0 {
|
|
/// entry:
|
|
/// ; 1 = MemoryDef(0)
|
|
/// %call = call noalias i8* @_Znwm(i64 4) #3
|
|
/// %2 = bitcast i8* %call to i32*
|
|
/// ; 2 = MemoryDef(1)
|
|
/// %call1 = call noalias i8* @_Znwm(i64 4) #3
|
|
/// %4 = bitcast i8* %call1 to i32*
|
|
/// ; 3 = MemoryDef(2)
|
|
/// store i32 5, i32* %2, align 4
|
|
/// ; 4 = MemoryDef(3)
|
|
/// store i32 7, i32* %4, align 4
|
|
/// ; MemoryUse(3)
|
|
/// %7 = load i32* %2, align 4
|
|
/// ; MemoryUse(4)
|
|
/// %8 = load i32* %4, align 4
|
|
/// %add = add nsw i32 %7, %8
|
|
/// ret i32 %add
|
|
/// }
|
|
///
|
|
/// Given this form, all the stores that could ever effect the load at %8 can be
|
|
/// gotten by using the MemoryUse associated with it, and walking from use to
|
|
/// def until you hit the top of the function.
|
|
///
|
|
/// Each def also has a list of users associated with it, so you can walk from
|
|
/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
|
|
/// but not the RHS of MemoryDefs. You can see this above at %7, which would
|
|
/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
|
|
/// store, all the MemoryUses on its use lists are may-aliases of that store
|
|
/// (but the MemoryDefs on its use list may not be).
|
|
///
|
|
/// MemoryDefs are not disambiguated because it would require multiple reaching
|
|
/// definitions, which would require multiple phis, and multiple memoryaccesses
|
|
/// per instruction.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_MEMORYSSA_H
|
|
#define LLVM_ANALYSIS_MEMORYSSA_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/ADT/simple_ilist.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/PHITransAddr.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DerivedUser.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
/// Enables memory ssa as a dependency for loop passes.
|
|
extern cl::opt<bool> EnableMSSALoopDependency;
|
|
|
|
class AllocaInst;
|
|
class Function;
|
|
class Instruction;
|
|
class MemoryAccess;
|
|
class MemorySSAWalker;
|
|
class LLVMContext;
|
|
class raw_ostream;
|
|
|
|
namespace MSSAHelpers {
|
|
|
|
struct AllAccessTag {};
|
|
struct DefsOnlyTag {};
|
|
|
|
} // end namespace MSSAHelpers
|
|
|
|
enum : unsigned {
|
|
// Used to signify what the default invalid ID is for MemoryAccess's
|
|
// getID()
|
|
INVALID_MEMORYACCESS_ID = -1U
|
|
};
|
|
|
|
template <class T> class memoryaccess_def_iterator_base;
|
|
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
|
|
using const_memoryaccess_def_iterator =
|
|
memoryaccess_def_iterator_base<const MemoryAccess>;
|
|
|
|
// The base for all memory accesses. All memory accesses in a block are
|
|
// linked together using an intrusive list.
|
|
class MemoryAccess
|
|
: public DerivedUser,
|
|
public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
|
|
public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
|
|
public:
|
|
using AllAccessType =
|
|
ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
|
|
using DefsOnlyType =
|
|
ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
|
|
|
|
MemoryAccess(const MemoryAccess &) = delete;
|
|
MemoryAccess &operator=(const MemoryAccess &) = delete;
|
|
|
|
void *operator new(size_t) = delete;
|
|
|
|
// Methods for support type inquiry through isa, cast, and
|
|
// dyn_cast
|
|
static bool classof(const Value *V) {
|
|
unsigned ID = V->getValueID();
|
|
return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
|
|
}
|
|
|
|
BasicBlock *getBlock() const { return Block; }
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
|
|
/// The user iterators for a memory access
|
|
using iterator = user_iterator;
|
|
using const_iterator = const_user_iterator;
|
|
|
|
/// This iterator walks over all of the defs in a given
|
|
/// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
|
|
/// MemoryUse/MemoryDef, this walks the defining access.
|
|
memoryaccess_def_iterator defs_begin();
|
|
const_memoryaccess_def_iterator defs_begin() const;
|
|
memoryaccess_def_iterator defs_end();
|
|
const_memoryaccess_def_iterator defs_end() const;
|
|
|
|
/// Get the iterators for the all access list and the defs only list
|
|
/// We default to the all access list.
|
|
AllAccessType::self_iterator getIterator() {
|
|
return this->AllAccessType::getIterator();
|
|
}
|
|
AllAccessType::const_self_iterator getIterator() const {
|
|
return this->AllAccessType::getIterator();
|
|
}
|
|
AllAccessType::reverse_self_iterator getReverseIterator() {
|
|
return this->AllAccessType::getReverseIterator();
|
|
}
|
|
AllAccessType::const_reverse_self_iterator getReverseIterator() const {
|
|
return this->AllAccessType::getReverseIterator();
|
|
}
|
|
DefsOnlyType::self_iterator getDefsIterator() {
|
|
return this->DefsOnlyType::getIterator();
|
|
}
|
|
DefsOnlyType::const_self_iterator getDefsIterator() const {
|
|
return this->DefsOnlyType::getIterator();
|
|
}
|
|
DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
|
|
return this->DefsOnlyType::getReverseIterator();
|
|
}
|
|
DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
|
|
return this->DefsOnlyType::getReverseIterator();
|
|
}
|
|
|
|
protected:
|
|
friend class MemoryDef;
|
|
friend class MemoryPhi;
|
|
friend class MemorySSA;
|
|
friend class MemoryUse;
|
|
friend class MemoryUseOrDef;
|
|
|
|
/// Used by MemorySSA to change the block of a MemoryAccess when it is
|
|
/// moved.
|
|
void setBlock(BasicBlock *BB) { Block = BB; }
|
|
|
|
/// Used for debugging and tracking things about MemoryAccesses.
|
|
/// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
|
|
inline unsigned getID() const;
|
|
|
|
MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
|
|
BasicBlock *BB, unsigned NumOperands)
|
|
: DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
|
|
Block(BB) {}
|
|
|
|
// Use deleteValue() to delete a generic MemoryAccess.
|
|
~MemoryAccess() = default;
|
|
|
|
private:
|
|
BasicBlock *Block;
|
|
};
|
|
|
|
template <>
|
|
struct ilist_alloc_traits<MemoryAccess> {
|
|
static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
|
|
MA.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// Class that has the common methods + fields of memory uses/defs. It's
|
|
/// a little awkward to have, but there are many cases where we want either a
|
|
/// use or def, and there are many cases where uses are needed (defs aren't
|
|
/// acceptable), and vice-versa.
|
|
///
|
|
/// This class should never be instantiated directly; make a MemoryUse or
|
|
/// MemoryDef instead.
|
|
class MemoryUseOrDef : public MemoryAccess {
|
|
public:
|
|
void *operator new(size_t) = delete;
|
|
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
|
|
|
|
/// Get the instruction that this MemoryUse represents.
|
|
Instruction *getMemoryInst() const { return MemoryInstruction; }
|
|
|
|
/// Get the access that produces the memory state used by this Use.
|
|
MemoryAccess *getDefiningAccess() const { return getOperand(0); }
|
|
|
|
static bool classof(const Value *MA) {
|
|
return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
|
|
}
|
|
|
|
// Sadly, these have to be public because they are needed in some of the
|
|
// iterators.
|
|
inline bool isOptimized() const;
|
|
inline MemoryAccess *getOptimized() const;
|
|
inline void setOptimized(MemoryAccess *);
|
|
|
|
// Retrieve AliasResult type of the optimized access. Ideally this would be
|
|
// returned by the caching walker and may go away in the future.
|
|
Optional<AliasResult> getOptimizedAccessType() const {
|
|
return isOptimized() ? OptimizedAccessAlias : None;
|
|
}
|
|
|
|
/// Reset the ID of what this MemoryUse was optimized to, causing it to
|
|
/// be rewalked by the walker if necessary.
|
|
/// This really should only be called by tests.
|
|
inline void resetOptimized();
|
|
|
|
protected:
|
|
friend class MemorySSA;
|
|
friend class MemorySSAUpdater;
|
|
|
|
MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
|
|
DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
|
|
unsigned NumOperands)
|
|
: MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
|
|
MemoryInstruction(MI), OptimizedAccessAlias(AliasResult::MayAlias) {
|
|
setDefiningAccess(DMA);
|
|
}
|
|
|
|
// Use deleteValue() to delete a generic MemoryUseOrDef.
|
|
~MemoryUseOrDef() = default;
|
|
|
|
void setOptimizedAccessType(Optional<AliasResult> AR) {
|
|
OptimizedAccessAlias = AR;
|
|
}
|
|
|
|
void setDefiningAccess(
|
|
MemoryAccess *DMA, bool Optimized = false,
|
|
Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias)) {
|
|
if (!Optimized) {
|
|
setOperand(0, DMA);
|
|
return;
|
|
}
|
|
setOptimized(DMA);
|
|
setOptimizedAccessType(AR);
|
|
}
|
|
|
|
private:
|
|
Instruction *MemoryInstruction;
|
|
Optional<AliasResult> OptimizedAccessAlias;
|
|
};
|
|
|
|
/// Represents read-only accesses to memory
|
|
///
|
|
/// In particular, the set of Instructions that will be represented by
|
|
/// MemoryUse's is exactly the set of Instructions for which
|
|
/// AliasAnalysis::getModRefInfo returns "Ref".
|
|
class MemoryUse final : public MemoryUseOrDef {
|
|
public:
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
|
|
|
|
MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
|
|
: MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
|
|
/*NumOperands=*/1) {}
|
|
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) { return User::operator new(s, 1); }
|
|
|
|
static bool classof(const Value *MA) {
|
|
return MA->getValueID() == MemoryUseVal;
|
|
}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
|
|
void setOptimized(MemoryAccess *DMA) {
|
|
OptimizedID = DMA->getID();
|
|
setOperand(0, DMA);
|
|
}
|
|
|
|
bool isOptimized() const {
|
|
return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
|
|
}
|
|
|
|
MemoryAccess *getOptimized() const {
|
|
return getDefiningAccess();
|
|
}
|
|
|
|
void resetOptimized() {
|
|
OptimizedID = INVALID_MEMORYACCESS_ID;
|
|
}
|
|
|
|
protected:
|
|
friend class MemorySSA;
|
|
|
|
private:
|
|
static void deleteMe(DerivedUser *Self);
|
|
|
|
unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
|
|
|
|
/// Represents a read-write access to memory, whether it is a must-alias,
|
|
/// or a may-alias.
|
|
///
|
|
/// In particular, the set of Instructions that will be represented by
|
|
/// MemoryDef's is exactly the set of Instructions for which
|
|
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
|
|
/// Note that, in order to provide def-def chains, all defs also have a use
|
|
/// associated with them. This use points to the nearest reaching
|
|
/// MemoryDef/MemoryPhi.
|
|
class MemoryDef final : public MemoryUseOrDef {
|
|
public:
|
|
friend class MemorySSA;
|
|
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
|
|
|
|
MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
|
|
unsigned Ver)
|
|
: MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
|
|
/*NumOperands=*/2),
|
|
ID(Ver) {}
|
|
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) { return User::operator new(s, 2); }
|
|
|
|
static bool classof(const Value *MA) {
|
|
return MA->getValueID() == MemoryDefVal;
|
|
}
|
|
|
|
void setOptimized(MemoryAccess *MA) {
|
|
setOperand(1, MA);
|
|
OptimizedID = MA->getID();
|
|
}
|
|
|
|
MemoryAccess *getOptimized() const {
|
|
return cast_or_null<MemoryAccess>(getOperand(1));
|
|
}
|
|
|
|
bool isOptimized() const {
|
|
return getOptimized() && OptimizedID == getOptimized()->getID();
|
|
}
|
|
|
|
void resetOptimized() {
|
|
OptimizedID = INVALID_MEMORYACCESS_ID;
|
|
setOperand(1, nullptr);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
|
|
unsigned getID() const { return ID; }
|
|
|
|
private:
|
|
static void deleteMe(DerivedUser *Self);
|
|
|
|
const unsigned ID;
|
|
unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
|
|
|
|
template <>
|
|
struct OperandTraits<MemoryUseOrDef> {
|
|
static Use *op_begin(MemoryUseOrDef *MUD) {
|
|
if (auto *MU = dyn_cast<MemoryUse>(MUD))
|
|
return OperandTraits<MemoryUse>::op_begin(MU);
|
|
return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
|
|
}
|
|
|
|
static Use *op_end(MemoryUseOrDef *MUD) {
|
|
if (auto *MU = dyn_cast<MemoryUse>(MUD))
|
|
return OperandTraits<MemoryUse>::op_end(MU);
|
|
return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
|
|
}
|
|
|
|
static unsigned operands(const MemoryUseOrDef *MUD) {
|
|
if (const auto *MU = dyn_cast<MemoryUse>(MUD))
|
|
return OperandTraits<MemoryUse>::operands(MU);
|
|
return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
|
|
}
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
|
|
|
|
/// Represents phi nodes for memory accesses.
|
|
///
|
|
/// These have the same semantic as regular phi nodes, with the exception that
|
|
/// only one phi will ever exist in a given basic block.
|
|
/// Guaranteeing one phi per block means guaranteeing there is only ever one
|
|
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
|
|
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
|
|
/// a MemoryPhi's operands.
|
|
/// That is, given
|
|
/// if (a) {
|
|
/// store %a
|
|
/// store %b
|
|
/// }
|
|
/// it *must* be transformed into
|
|
/// if (a) {
|
|
/// 1 = MemoryDef(liveOnEntry)
|
|
/// store %a
|
|
/// 2 = MemoryDef(1)
|
|
/// store %b
|
|
/// }
|
|
/// and *not*
|
|
/// if (a) {
|
|
/// 1 = MemoryDef(liveOnEntry)
|
|
/// store %a
|
|
/// 2 = MemoryDef(liveOnEntry)
|
|
/// store %b
|
|
/// }
|
|
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
|
|
/// end of the branch, and if there are not two phi nodes, one will be
|
|
/// disconnected completely from the SSA graph below that point.
|
|
/// Because MemoryUse's do not generate new definitions, they do not have this
|
|
/// issue.
|
|
class MemoryPhi final : public MemoryAccess {
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) { return User::operator new(s); }
|
|
|
|
public:
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
|
|
|
|
MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
|
|
: MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
|
|
ReservedSpace(NumPreds) {
|
|
allocHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
// Block iterator interface. This provides access to the list of incoming
|
|
// basic blocks, which parallels the list of incoming values.
|
|
using block_iterator = BasicBlock **;
|
|
using const_block_iterator = BasicBlock *const *;
|
|
|
|
block_iterator block_begin() {
|
|
return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
|
|
}
|
|
|
|
const_block_iterator block_begin() const {
|
|
return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
|
|
}
|
|
|
|
block_iterator block_end() { return block_begin() + getNumOperands(); }
|
|
|
|
const_block_iterator block_end() const {
|
|
return block_begin() + getNumOperands();
|
|
}
|
|
|
|
iterator_range<block_iterator> blocks() {
|
|
return make_range(block_begin(), block_end());
|
|
}
|
|
|
|
iterator_range<const_block_iterator> blocks() const {
|
|
return make_range(block_begin(), block_end());
|
|
}
|
|
|
|
op_range incoming_values() { return operands(); }
|
|
|
|
const_op_range incoming_values() const { return operands(); }
|
|
|
|
/// Return the number of incoming edges
|
|
unsigned getNumIncomingValues() const { return getNumOperands(); }
|
|
|
|
/// Return incoming value number x
|
|
MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
|
|
void setIncomingValue(unsigned I, MemoryAccess *V) {
|
|
assert(V && "PHI node got a null value!");
|
|
setOperand(I, V);
|
|
}
|
|
|
|
static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
|
|
static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
|
|
|
|
/// Return incoming basic block number @p i.
|
|
BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
|
|
|
|
/// Return incoming basic block corresponding
|
|
/// to an operand of the PHI.
|
|
BasicBlock *getIncomingBlock(const Use &U) const {
|
|
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
|
|
return getIncomingBlock(unsigned(&U - op_begin()));
|
|
}
|
|
|
|
/// Return incoming basic block corresponding
|
|
/// to value use iterator.
|
|
BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
|
|
return getIncomingBlock(I.getUse());
|
|
}
|
|
|
|
void setIncomingBlock(unsigned I, BasicBlock *BB) {
|
|
assert(BB && "PHI node got a null basic block!");
|
|
block_begin()[I] = BB;
|
|
}
|
|
|
|
/// Add an incoming value to the end of the PHI list
|
|
void addIncoming(MemoryAccess *V, BasicBlock *BB) {
|
|
if (getNumOperands() == ReservedSpace)
|
|
growOperands(); // Get more space!
|
|
// Initialize some new operands.
|
|
setNumHungOffUseOperands(getNumOperands() + 1);
|
|
setIncomingValue(getNumOperands() - 1, V);
|
|
setIncomingBlock(getNumOperands() - 1, BB);
|
|
}
|
|
|
|
/// Return the first index of the specified basic
|
|
/// block in the value list for this PHI. Returns -1 if no instance.
|
|
int getBasicBlockIndex(const BasicBlock *BB) const {
|
|
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
|
|
if (block_begin()[I] == BB)
|
|
return I;
|
|
return -1;
|
|
}
|
|
|
|
MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
|
|
int Idx = getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "Invalid basic block argument!");
|
|
return getIncomingValue(Idx);
|
|
}
|
|
|
|
// After deleting incoming position I, the order of incoming may be changed.
|
|
void unorderedDeleteIncoming(unsigned I) {
|
|
unsigned E = getNumOperands();
|
|
assert(I < E && "Cannot remove out of bounds Phi entry.");
|
|
// MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
|
|
// itself should be deleted.
|
|
assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
|
|
"at least 2 values.");
|
|
setIncomingValue(I, getIncomingValue(E - 1));
|
|
setIncomingBlock(I, block_begin()[E - 1]);
|
|
setOperand(E - 1, nullptr);
|
|
block_begin()[E - 1] = nullptr;
|
|
setNumHungOffUseOperands(getNumOperands() - 1);
|
|
}
|
|
|
|
// After deleting entries that satisfy Pred, remaining entries may have
|
|
// changed order.
|
|
template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
|
|
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
|
|
if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
|
|
unorderedDeleteIncoming(I);
|
|
E = getNumOperands();
|
|
--I;
|
|
}
|
|
assert(getNumOperands() >= 1 &&
|
|
"Cannot remove all incoming blocks in a MemoryPhi.");
|
|
}
|
|
|
|
// After deleting incoming block BB, the incoming blocks order may be changed.
|
|
void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
|
|
unorderedDeleteIncomingIf(
|
|
[&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
|
|
}
|
|
|
|
// After deleting incoming memory access MA, the incoming accesses order may
|
|
// be changed.
|
|
void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
|
|
unorderedDeleteIncomingIf(
|
|
[&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
|
|
}
|
|
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == MemoryPhiVal;
|
|
}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
|
|
unsigned getID() const { return ID; }
|
|
|
|
protected:
|
|
friend class MemorySSA;
|
|
|
|
/// this is more complicated than the generic
|
|
/// User::allocHungoffUses, because we have to allocate Uses for the incoming
|
|
/// values and pointers to the incoming blocks, all in one allocation.
|
|
void allocHungoffUses(unsigned N) {
|
|
User::allocHungoffUses(N, /* IsPhi */ true);
|
|
}
|
|
|
|
private:
|
|
// For debugging only
|
|
const unsigned ID;
|
|
unsigned ReservedSpace;
|
|
|
|
/// This grows the operand list in response to a push_back style of
|
|
/// operation. This grows the number of ops by 1.5 times.
|
|
void growOperands() {
|
|
unsigned E = getNumOperands();
|
|
// 2 op PHI nodes are VERY common, so reserve at least enough for that.
|
|
ReservedSpace = std::max(E + E / 2, 2u);
|
|
growHungoffUses(ReservedSpace, /* IsPhi */ true);
|
|
}
|
|
|
|
static void deleteMe(DerivedUser *Self);
|
|
};
|
|
|
|
inline unsigned MemoryAccess::getID() const {
|
|
assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
|
|
"only memory defs and phis have ids");
|
|
if (const auto *MD = dyn_cast<MemoryDef>(this))
|
|
return MD->getID();
|
|
return cast<MemoryPhi>(this)->getID();
|
|
}
|
|
|
|
inline bool MemoryUseOrDef::isOptimized() const {
|
|
if (const auto *MD = dyn_cast<MemoryDef>(this))
|
|
return MD->isOptimized();
|
|
return cast<MemoryUse>(this)->isOptimized();
|
|
}
|
|
|
|
inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
|
|
if (const auto *MD = dyn_cast<MemoryDef>(this))
|
|
return MD->getOptimized();
|
|
return cast<MemoryUse>(this)->getOptimized();
|
|
}
|
|
|
|
inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
|
|
if (auto *MD = dyn_cast<MemoryDef>(this))
|
|
MD->setOptimized(MA);
|
|
else
|
|
cast<MemoryUse>(this)->setOptimized(MA);
|
|
}
|
|
|
|
inline void MemoryUseOrDef::resetOptimized() {
|
|
if (auto *MD = dyn_cast<MemoryDef>(this))
|
|
MD->resetOptimized();
|
|
else
|
|
cast<MemoryUse>(this)->resetOptimized();
|
|
}
|
|
|
|
template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
|
|
|
|
/// Encapsulates MemorySSA, including all data associated with memory
|
|
/// accesses.
|
|
class MemorySSA {
|
|
public:
|
|
MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
|
|
|
|
// MemorySSA must remain where it's constructed; Walkers it creates store
|
|
// pointers to it.
|
|
MemorySSA(MemorySSA &&) = delete;
|
|
|
|
~MemorySSA();
|
|
|
|
MemorySSAWalker *getWalker();
|
|
MemorySSAWalker *getSkipSelfWalker();
|
|
|
|
/// Given a memory Mod/Ref'ing instruction, get the MemorySSA
|
|
/// access associated with it. If passed a basic block gets the memory phi
|
|
/// node that exists for that block, if there is one. Otherwise, this will get
|
|
/// a MemoryUseOrDef.
|
|
MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
|
|
return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
|
|
}
|
|
|
|
MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
|
|
return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
|
|
}
|
|
|
|
DominatorTree &getDomTree() const { return *DT; }
|
|
|
|
void dump() const;
|
|
void print(raw_ostream &) const;
|
|
|
|
/// Return true if \p MA represents the live on entry value
|
|
///
|
|
/// Loads and stores from pointer arguments and other global values may be
|
|
/// defined by memory operations that do not occur in the current function, so
|
|
/// they may be live on entry to the function. MemorySSA represents such
|
|
/// memory state by the live on entry definition, which is guaranteed to occur
|
|
/// before any other memory access in the function.
|
|
inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
|
|
return MA == LiveOnEntryDef.get();
|
|
}
|
|
|
|
inline MemoryAccess *getLiveOnEntryDef() const {
|
|
return LiveOnEntryDef.get();
|
|
}
|
|
|
|
// Sadly, iplists, by default, owns and deletes pointers added to the
|
|
// list. It's not currently possible to have two iplists for the same type,
|
|
// where one owns the pointers, and one does not. This is because the traits
|
|
// are per-type, not per-tag. If this ever changes, we should make the
|
|
// DefList an iplist.
|
|
using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
|
|
using DefsList =
|
|
simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
|
|
|
|
/// Return the list of MemoryAccess's for a given basic block.
|
|
///
|
|
/// This list is not modifiable by the user.
|
|
const AccessList *getBlockAccesses(const BasicBlock *BB) const {
|
|
return getWritableBlockAccesses(BB);
|
|
}
|
|
|
|
/// Return the list of MemoryDef's and MemoryPhi's for a given basic
|
|
/// block.
|
|
///
|
|
/// This list is not modifiable by the user.
|
|
const DefsList *getBlockDefs(const BasicBlock *BB) const {
|
|
return getWritableBlockDefs(BB);
|
|
}
|
|
|
|
/// Given two memory accesses in the same basic block, determine
|
|
/// whether MemoryAccess \p A dominates MemoryAccess \p B.
|
|
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
|
|
|
|
/// Given two memory accesses in potentially different blocks,
|
|
/// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
|
|
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
|
|
|
|
/// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
|
|
/// dominates Use \p B.
|
|
bool dominates(const MemoryAccess *A, const Use &B) const;
|
|
|
|
/// Verify that MemorySSA is self consistent (IE definitions dominate
|
|
/// all uses, uses appear in the right places). This is used by unit tests.
|
|
void verifyMemorySSA() const;
|
|
|
|
/// Used in various insertion functions to specify whether we are talking
|
|
/// about the beginning or end of a block.
|
|
enum InsertionPlace { Beginning, End, BeforeTerminator };
|
|
|
|
protected:
|
|
// Used by Memory SSA annotater, dumpers, and wrapper pass
|
|
friend class MemorySSAAnnotatedWriter;
|
|
friend class MemorySSAPrinterLegacyPass;
|
|
friend class MemorySSAUpdater;
|
|
|
|
void verifyOrderingDominationAndDefUses(Function &F) const;
|
|
void verifyDominationNumbers(const Function &F) const;
|
|
void verifyPrevDefInPhis(Function &F) const;
|
|
|
|
// This is used by the use optimizer and updater.
|
|
AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
|
|
auto It = PerBlockAccesses.find(BB);
|
|
return It == PerBlockAccesses.end() ? nullptr : It->second.get();
|
|
}
|
|
|
|
// This is used by the use optimizer and updater.
|
|
DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
|
|
auto It = PerBlockDefs.find(BB);
|
|
return It == PerBlockDefs.end() ? nullptr : It->second.get();
|
|
}
|
|
|
|
// These is used by the updater to perform various internal MemorySSA
|
|
// machinsations. They do not always leave the IR in a correct state, and
|
|
// relies on the updater to fixup what it breaks, so it is not public.
|
|
|
|
void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
|
|
void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
|
|
|
|
// Rename the dominator tree branch rooted at BB.
|
|
void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
|
|
SmallPtrSetImpl<BasicBlock *> &Visited) {
|
|
renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
|
|
}
|
|
|
|
void removeFromLookups(MemoryAccess *);
|
|
void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
|
|
void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
|
|
InsertionPlace);
|
|
void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
|
|
AccessList::iterator);
|
|
MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
|
|
const MemoryUseOrDef *Template = nullptr,
|
|
bool CreationMustSucceed = true);
|
|
|
|
private:
|
|
template <class AliasAnalysisType> class ClobberWalkerBase;
|
|
template <class AliasAnalysisType> class CachingWalker;
|
|
template <class AliasAnalysisType> class SkipSelfWalker;
|
|
class OptimizeUses;
|
|
|
|
CachingWalker<AliasAnalysis> *getWalkerImpl();
|
|
void buildMemorySSA(BatchAAResults &BAA);
|
|
|
|
void prepareForMoveTo(MemoryAccess *, BasicBlock *);
|
|
void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
|
|
|
|
using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
|
|
using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
|
|
|
|
void markUnreachableAsLiveOnEntry(BasicBlock *BB);
|
|
MemoryPhi *createMemoryPhi(BasicBlock *BB);
|
|
template <typename AliasAnalysisType>
|
|
MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
|
|
const MemoryUseOrDef *Template = nullptr);
|
|
void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
|
|
MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
|
|
void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
|
|
void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
|
|
SmallPtrSetImpl<BasicBlock *> &Visited,
|
|
bool SkipVisited = false, bool RenameAllUses = false);
|
|
AccessList *getOrCreateAccessList(const BasicBlock *);
|
|
DefsList *getOrCreateDefsList(const BasicBlock *);
|
|
void renumberBlock(const BasicBlock *) const;
|
|
AliasAnalysis *AA;
|
|
DominatorTree *DT;
|
|
Function &F;
|
|
|
|
// Memory SSA mappings
|
|
DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
|
|
|
|
// These two mappings contain the main block to access/def mappings for
|
|
// MemorySSA. The list contained in PerBlockAccesses really owns all the
|
|
// MemoryAccesses.
|
|
// Both maps maintain the invariant that if a block is found in them, the
|
|
// corresponding list is not empty, and if a block is not found in them, the
|
|
// corresponding list is empty.
|
|
AccessMap PerBlockAccesses;
|
|
DefsMap PerBlockDefs;
|
|
std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
|
|
|
|
// Domination mappings
|
|
// Note that the numbering is local to a block, even though the map is
|
|
// global.
|
|
mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
|
|
mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
|
|
|
|
// Memory SSA building info
|
|
std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
|
|
std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
|
|
std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
|
|
unsigned NextID;
|
|
};
|
|
|
|
// Internal MemorySSA utils, for use by MemorySSA classes and walkers
|
|
class MemorySSAUtil {
|
|
protected:
|
|
friend class GVNHoist;
|
|
friend class MemorySSAWalker;
|
|
|
|
// This function should not be used by new passes.
|
|
static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
|
|
AliasAnalysis &AA);
|
|
};
|
|
|
|
// This pass does eager building and then printing of MemorySSA. It is used by
|
|
// the tests to be able to build, dump, and verify Memory SSA.
|
|
class MemorySSAPrinterLegacyPass : public FunctionPass {
|
|
public:
|
|
MemorySSAPrinterLegacyPass();
|
|
|
|
bool runOnFunction(Function &) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
static char ID;
|
|
};
|
|
|
|
/// An analysis that produces \c MemorySSA for a function.
|
|
///
|
|
class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
|
|
friend AnalysisInfoMixin<MemorySSAAnalysis>;
|
|
|
|
static AnalysisKey Key;
|
|
|
|
public:
|
|
// Wrap MemorySSA result to ensure address stability of internal MemorySSA
|
|
// pointers after construction. Use a wrapper class instead of plain
|
|
// unique_ptr<MemorySSA> to avoid build breakage on MSVC.
|
|
struct Result {
|
|
Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
|
|
|
|
MemorySSA &getMSSA() { return *MSSA.get(); }
|
|
|
|
std::unique_ptr<MemorySSA> MSSA;
|
|
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv);
|
|
};
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Printer pass for \c MemorySSA.
|
|
class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
|
|
raw_ostream &OS;
|
|
|
|
public:
|
|
explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Verifier pass for \c MemorySSA.
|
|
struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Legacy analysis pass which computes \c MemorySSA.
|
|
class MemorySSAWrapperPass : public FunctionPass {
|
|
public:
|
|
MemorySSAWrapperPass();
|
|
|
|
static char ID;
|
|
|
|
bool runOnFunction(Function &) override;
|
|
void releaseMemory() override;
|
|
MemorySSA &getMSSA() { return *MSSA; }
|
|
const MemorySSA &getMSSA() const { return *MSSA; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
void verifyAnalysis() const override;
|
|
void print(raw_ostream &OS, const Module *M = nullptr) const override;
|
|
|
|
private:
|
|
std::unique_ptr<MemorySSA> MSSA;
|
|
};
|
|
|
|
/// This is the generic walker interface for walkers of MemorySSA.
|
|
/// Walkers are used to be able to further disambiguate the def-use chains
|
|
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
|
|
/// you.
|
|
/// In particular, while the def-use chains provide basic information, and are
|
|
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
|
|
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
|
|
/// information. In particular, they may want to use SCEV info to further
|
|
/// disambiguate memory accesses, or they may want the nearest dominating
|
|
/// may-aliasing MemoryDef for a call or a store. This API enables a
|
|
/// standardized interface to getting and using that info.
|
|
class MemorySSAWalker {
|
|
public:
|
|
MemorySSAWalker(MemorySSA *);
|
|
virtual ~MemorySSAWalker() = default;
|
|
|
|
using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
|
|
|
|
/// Given a memory Mod/Ref/ModRef'ing instruction, calling this
|
|
/// will give you the nearest dominating MemoryAccess that Mod's the location
|
|
/// the instruction accesses (by skipping any def which AA can prove does not
|
|
/// alias the location(s) accessed by the instruction given).
|
|
///
|
|
/// Note that this will return a single access, and it must dominate the
|
|
/// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
|
|
/// this will return the MemoryPhi, not the operand. This means that
|
|
/// given:
|
|
/// if (a) {
|
|
/// 1 = MemoryDef(liveOnEntry)
|
|
/// store %a
|
|
/// } else {
|
|
/// 2 = MemoryDef(liveOnEntry)
|
|
/// store %b
|
|
/// }
|
|
/// 3 = MemoryPhi(2, 1)
|
|
/// MemoryUse(3)
|
|
/// load %a
|
|
///
|
|
/// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
|
|
/// in the if (a) branch.
|
|
MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
|
|
MemoryAccess *MA = MSSA->getMemoryAccess(I);
|
|
assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
|
|
return getClobberingMemoryAccess(MA);
|
|
}
|
|
|
|
/// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
|
|
/// but takes a MemoryAccess instead of an Instruction.
|
|
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
|
|
|
|
/// Given a potentially clobbering memory access and a new location,
|
|
/// calling this will give you the nearest dominating clobbering MemoryAccess
|
|
/// (by skipping non-aliasing def links).
|
|
///
|
|
/// This version of the function is mainly used to disambiguate phi translated
|
|
/// pointers, where the value of a pointer may have changed from the initial
|
|
/// memory access. Note that this expects to be handed either a MemoryUse,
|
|
/// or an already potentially clobbering access. Unlike the above API, if
|
|
/// given a MemoryDef that clobbers the pointer as the starting access, it
|
|
/// will return that MemoryDef, whereas the above would return the clobber
|
|
/// starting from the use side of the memory def.
|
|
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
|
|
const MemoryLocation &) = 0;
|
|
|
|
/// Given a memory access, invalidate anything this walker knows about
|
|
/// that access.
|
|
/// This API is used by walkers that store information to perform basic cache
|
|
/// invalidation. This will be called by MemorySSA at appropriate times for
|
|
/// the walker it uses or returns.
|
|
virtual void invalidateInfo(MemoryAccess *) {}
|
|
|
|
protected:
|
|
friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
|
|
// constructor.
|
|
MemorySSA *MSSA;
|
|
};
|
|
|
|
/// A MemorySSAWalker that does no alias queries, or anything else. It
|
|
/// simply returns the links as they were constructed by the builder.
|
|
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
|
|
public:
|
|
// Keep the overrides below from hiding the Instruction overload of
|
|
// getClobberingMemoryAccess.
|
|
using MemorySSAWalker::getClobberingMemoryAccess;
|
|
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
|
|
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
|
|
const MemoryLocation &) override;
|
|
};
|
|
|
|
using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
|
|
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
|
|
|
|
/// Iterator base class used to implement const and non-const iterators
|
|
/// over the defining accesses of a MemoryAccess.
|
|
template <class T>
|
|
class memoryaccess_def_iterator_base
|
|
: public iterator_facade_base<memoryaccess_def_iterator_base<T>,
|
|
std::forward_iterator_tag, T, ptrdiff_t, T *,
|
|
T *> {
|
|
using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
|
|
|
|
public:
|
|
memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
|
|
memoryaccess_def_iterator_base() = default;
|
|
|
|
bool operator==(const memoryaccess_def_iterator_base &Other) const {
|
|
return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
|
|
}
|
|
|
|
// This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
|
|
// block from the operand in constant time (In a PHINode, the uselist has
|
|
// both, so it's just subtraction). We provide it as part of the
|
|
// iterator to avoid callers having to linear walk to get the block.
|
|
// If the operation becomes constant time on MemoryPHI's, this bit of
|
|
// abstraction breaking should be removed.
|
|
BasicBlock *getPhiArgBlock() const {
|
|
MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
|
|
assert(MP && "Tried to get phi arg block when not iterating over a PHI");
|
|
return MP->getIncomingBlock(ArgNo);
|
|
}
|
|
|
|
typename std::iterator_traits<BaseT>::pointer operator*() const {
|
|
assert(Access && "Tried to access past the end of our iterator");
|
|
// Go to the first argument for phis, and the defining access for everything
|
|
// else.
|
|
if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
|
|
return MP->getIncomingValue(ArgNo);
|
|
return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
|
|
}
|
|
|
|
using BaseT::operator++;
|
|
memoryaccess_def_iterator_base &operator++() {
|
|
assert(Access && "Hit end of iterator");
|
|
if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
|
|
if (++ArgNo >= MP->getNumIncomingValues()) {
|
|
ArgNo = 0;
|
|
Access = nullptr;
|
|
}
|
|
} else {
|
|
Access = nullptr;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
T *Access = nullptr;
|
|
unsigned ArgNo = 0;
|
|
};
|
|
|
|
inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
|
|
return memoryaccess_def_iterator(this);
|
|
}
|
|
|
|
inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
|
|
return const_memoryaccess_def_iterator(this);
|
|
}
|
|
|
|
inline memoryaccess_def_iterator MemoryAccess::defs_end() {
|
|
return memoryaccess_def_iterator();
|
|
}
|
|
|
|
inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
|
|
return const_memoryaccess_def_iterator();
|
|
}
|
|
|
|
/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
|
|
/// and uses in the inverse case.
|
|
template <> struct GraphTraits<MemoryAccess *> {
|
|
using NodeRef = MemoryAccess *;
|
|
using ChildIteratorType = memoryaccess_def_iterator;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<MemoryAccess *>> {
|
|
using NodeRef = MemoryAccess *;
|
|
using ChildIteratorType = MemoryAccess::iterator;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
|
|
};
|
|
|
|
/// Provide an iterator that walks defs, giving both the memory access,
|
|
/// and the current pointer location, updating the pointer location as it
|
|
/// changes due to phi node translation.
|
|
///
|
|
/// This iterator, while somewhat specialized, is what most clients actually
|
|
/// want when walking upwards through MemorySSA def chains. It takes a pair of
|
|
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
|
|
/// memory location through phi nodes for the user.
|
|
class upward_defs_iterator
|
|
: public iterator_facade_base<upward_defs_iterator,
|
|
std::forward_iterator_tag,
|
|
const MemoryAccessPair> {
|
|
using BaseT = upward_defs_iterator::iterator_facade_base;
|
|
|
|
public:
|
|
upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT,
|
|
bool *PerformedPhiTranslation = nullptr)
|
|
: DefIterator(Info.first), Location(Info.second),
|
|
OriginalAccess(Info.first), DT(DT),
|
|
PerformedPhiTranslation(PerformedPhiTranslation) {
|
|
CurrentPair.first = nullptr;
|
|
|
|
WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
|
|
fillInCurrentPair();
|
|
}
|
|
|
|
upward_defs_iterator() { CurrentPair.first = nullptr; }
|
|
|
|
bool operator==(const upward_defs_iterator &Other) const {
|
|
return DefIterator == Other.DefIterator;
|
|
}
|
|
|
|
typename std::iterator_traits<BaseT>::reference operator*() const {
|
|
assert(DefIterator != OriginalAccess->defs_end() &&
|
|
"Tried to access past the end of our iterator");
|
|
return CurrentPair;
|
|
}
|
|
|
|
using BaseT::operator++;
|
|
upward_defs_iterator &operator++() {
|
|
assert(DefIterator != OriginalAccess->defs_end() &&
|
|
"Tried to access past the end of the iterator");
|
|
++DefIterator;
|
|
if (DefIterator != OriginalAccess->defs_end())
|
|
fillInCurrentPair();
|
|
return *this;
|
|
}
|
|
|
|
BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
|
|
|
|
private:
|
|
/// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
|
|
/// loop. In particular, this guarantees that it only references a single
|
|
/// MemoryLocation during execution of the containing function.
|
|
bool IsGuaranteedLoopInvariant(Value *Ptr) const;
|
|
|
|
void fillInCurrentPair() {
|
|
CurrentPair.first = *DefIterator;
|
|
CurrentPair.second = Location;
|
|
if (WalkingPhi && Location.Ptr) {
|
|
// Mark size as unknown, if the location is not guaranteed to be
|
|
// loop-invariant for any possible loop in the function. Setting the size
|
|
// to unknown guarantees that any memory accesses that access locations
|
|
// after the pointer are considered as clobbers, which is important to
|
|
// catch loop carried dependences.
|
|
if (Location.Ptr &&
|
|
!IsGuaranteedLoopInvariant(const_cast<Value *>(Location.Ptr)))
|
|
CurrentPair.second =
|
|
Location.getWithNewSize(LocationSize::beforeOrAfterPointer());
|
|
PHITransAddr Translator(
|
|
const_cast<Value *>(Location.Ptr),
|
|
OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
|
|
|
|
if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
|
|
DefIterator.getPhiArgBlock(), DT,
|
|
true)) {
|
|
Value *TransAddr = Translator.getAddr();
|
|
if (TransAddr != Location.Ptr) {
|
|
CurrentPair.second = CurrentPair.second.getWithNewPtr(TransAddr);
|
|
|
|
if (TransAddr &&
|
|
!IsGuaranteedLoopInvariant(const_cast<Value *>(TransAddr)))
|
|
CurrentPair.second = CurrentPair.second.getWithNewSize(
|
|
LocationSize::beforeOrAfterPointer());
|
|
|
|
if (PerformedPhiTranslation)
|
|
*PerformedPhiTranslation = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemoryAccessPair CurrentPair;
|
|
memoryaccess_def_iterator DefIterator;
|
|
MemoryLocation Location;
|
|
MemoryAccess *OriginalAccess = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
bool WalkingPhi = false;
|
|
bool *PerformedPhiTranslation = nullptr;
|
|
};
|
|
|
|
inline upward_defs_iterator
|
|
upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT,
|
|
bool *PerformedPhiTranslation = nullptr) {
|
|
return upward_defs_iterator(Pair, &DT, PerformedPhiTranslation);
|
|
}
|
|
|
|
inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
|
|
|
|
inline iterator_range<upward_defs_iterator>
|
|
upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) {
|
|
return make_range(upward_defs_begin(Pair, DT), upward_defs_end());
|
|
}
|
|
|
|
/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
|
|
/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
|
|
/// comparing against a null def_chain_iterator, this will compare equal only
|
|
/// after walking said Phi/liveOnEntry.
|
|
///
|
|
/// The UseOptimizedChain flag specifies whether to walk the clobbering
|
|
/// access chain, or all the accesses.
|
|
///
|
|
/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
|
|
/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
|
|
/// a phi node. The optimized chain walks the clobbering access of a store.
|
|
/// So if you are just trying to find, given a store, what the next
|
|
/// thing that would clobber the same memory is, you want the optimized chain.
|
|
template <class T, bool UseOptimizedChain = false>
|
|
struct def_chain_iterator
|
|
: public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
|
|
std::forward_iterator_tag, MemoryAccess *> {
|
|
def_chain_iterator() : MA(nullptr) {}
|
|
def_chain_iterator(T MA) : MA(MA) {}
|
|
|
|
T operator*() const { return MA; }
|
|
|
|
def_chain_iterator &operator++() {
|
|
// N.B. liveOnEntry has a null defining access.
|
|
if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
|
|
if (UseOptimizedChain && MUD->isOptimized())
|
|
MA = MUD->getOptimized();
|
|
else
|
|
MA = MUD->getDefiningAccess();
|
|
} else {
|
|
MA = nullptr;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
|
|
|
|
private:
|
|
T MA;
|
|
};
|
|
|
|
template <class T>
|
|
inline iterator_range<def_chain_iterator<T>>
|
|
def_chain(T MA, MemoryAccess *UpTo = nullptr) {
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
|
|
"UpTo isn't in the def chain!");
|
|
#endif
|
|
return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
|
|
}
|
|
|
|
template <class T>
|
|
inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
|
|
return make_range(def_chain_iterator<T, true>(MA),
|
|
def_chain_iterator<T, true>(nullptr));
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ANALYSIS_MEMORYSSA_H
|