mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
e3f2427596
Make the EarlyCSE optimizer not use recursion to do a depth first iteration. llvm-svn: 149445
571 lines
20 KiB
C++
571 lines
20 KiB
C++
//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a simple dominator tree walk that eliminates trivially
|
|
// redundant instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "early-cse"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <deque>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
|
|
STATISTIC(NumCSE, "Number of instructions CSE'd");
|
|
STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
|
|
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
|
|
STATISTIC(NumDSE, "Number of trivial dead stores removed");
|
|
|
|
static unsigned getHash(const void *V) {
|
|
return DenseMapInfo<const void*>::getHashValue(V);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SimpleValue
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// SimpleValue - Instances of this struct represent available values in the
|
|
/// scoped hash table.
|
|
struct SimpleValue {
|
|
Instruction *Inst;
|
|
|
|
SimpleValue(Instruction *I) : Inst(I) {
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
}
|
|
|
|
bool isSentinel() const {
|
|
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
|
|
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
}
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
|
// This can only handle non-void readnone functions.
|
|
if (CallInst *CI = dyn_cast<CallInst>(Inst))
|
|
return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
|
|
return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
|
|
isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
|
|
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
|
|
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
|
|
isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
// SimpleValue is POD.
|
|
template<> struct isPodLike<SimpleValue> {
|
|
static const bool value = true;
|
|
};
|
|
|
|
template<> struct DenseMapInfo<SimpleValue> {
|
|
static inline SimpleValue getEmptyKey() {
|
|
return DenseMapInfo<Instruction*>::getEmptyKey();
|
|
}
|
|
static inline SimpleValue getTombstoneKey() {
|
|
return DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
}
|
|
static unsigned getHashValue(SimpleValue Val);
|
|
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
|
|
};
|
|
}
|
|
|
|
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
|
|
Instruction *Inst = Val.Inst;
|
|
|
|
// Hash in all of the operands as pointers.
|
|
unsigned Res = 0;
|
|
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
|
|
Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(Inst))
|
|
Res ^= getHash(CI->getType());
|
|
else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
|
|
Res ^= CI->getPredicate();
|
|
else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
|
|
for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
|
|
E = EVI->idx_end(); I != E; ++I)
|
|
Res ^= *I;
|
|
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
|
|
for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
|
|
E = IVI->idx_end(); I != E; ++I)
|
|
Res ^= *I;
|
|
} else {
|
|
// nothing extra to hash in.
|
|
assert((isa<CallInst>(Inst) ||
|
|
isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
|
|
isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
|
|
isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
|
|
"Invalid/unknown instruction");
|
|
}
|
|
|
|
// Mix in the opcode.
|
|
return (Res << 1) ^ Inst->getOpcode();
|
|
}
|
|
|
|
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
return LHSI == RHSI;
|
|
|
|
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
|
|
return LHSI->isIdenticalTo(RHSI);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallValue
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// CallValue - Instances of this struct represent available call values in
|
|
/// the scoped hash table.
|
|
struct CallValue {
|
|
Instruction *Inst;
|
|
|
|
CallValue(Instruction *I) : Inst(I) {
|
|
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
|
|
}
|
|
|
|
bool isSentinel() const {
|
|
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
|
|
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
}
|
|
|
|
static bool canHandle(Instruction *Inst) {
|
|
// Don't value number anything that returns void.
|
|
if (Inst->getType()->isVoidTy())
|
|
return false;
|
|
|
|
CallInst *CI = dyn_cast<CallInst>(Inst);
|
|
if (CI == 0 || !CI->onlyReadsMemory())
|
|
return false;
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
// CallValue is POD.
|
|
template<> struct isPodLike<CallValue> {
|
|
static const bool value = true;
|
|
};
|
|
|
|
template<> struct DenseMapInfo<CallValue> {
|
|
static inline CallValue getEmptyKey() {
|
|
return DenseMapInfo<Instruction*>::getEmptyKey();
|
|
}
|
|
static inline CallValue getTombstoneKey() {
|
|
return DenseMapInfo<Instruction*>::getTombstoneKey();
|
|
}
|
|
static unsigned getHashValue(CallValue Val);
|
|
static bool isEqual(CallValue LHS, CallValue RHS);
|
|
};
|
|
}
|
|
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
|
|
Instruction *Inst = Val.Inst;
|
|
// Hash in all of the operands as pointers.
|
|
unsigned Res = 0;
|
|
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
|
|
assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
|
|
"Cannot value number calls with metadata operands");
|
|
Res ^= getHash(Inst->getOperand(i)) << (i & 0xF);
|
|
}
|
|
|
|
// Mix in the opcode.
|
|
return (Res << 1) ^ Inst->getOpcode();
|
|
}
|
|
|
|
bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
|
|
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
|
|
if (LHS.isSentinel() || RHS.isSentinel())
|
|
return LHSI == RHSI;
|
|
return LHSI->isIdenticalTo(RHSI);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EarlyCSE pass.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// EarlyCSE - This pass does a simple depth-first walk over the dominator
|
|
/// tree, eliminating trivially redundant instructions and using instsimplify
|
|
/// to canonicalize things as it goes. It is intended to be fast and catch
|
|
/// obvious cases so that instcombine and other passes are more effective. It
|
|
/// is expected that a later pass of GVN will catch the interesting/hard
|
|
/// cases.
|
|
class EarlyCSE : public FunctionPass {
|
|
public:
|
|
const TargetData *TD;
|
|
const TargetLibraryInfo *TLI;
|
|
DominatorTree *DT;
|
|
typedef RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
|
|
typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
|
|
AllocatorTy> ScopedHTType;
|
|
|
|
/// AvailableValues - This scoped hash table contains the current values of
|
|
/// all of our simple scalar expressions. As we walk down the domtree, we
|
|
/// look to see if instructions are in this: if so, we replace them with what
|
|
/// we find, otherwise we insert them so that dominated values can succeed in
|
|
/// their lookup.
|
|
ScopedHTType *AvailableValues;
|
|
|
|
/// AvailableLoads - This scoped hash table contains the current values
|
|
/// of loads. This allows us to get efficient access to dominating loads when
|
|
/// we have a fully redundant load. In addition to the most recent load, we
|
|
/// keep track of a generation count of the read, which is compared against
|
|
/// the current generation count. The current generation count is
|
|
/// incremented after every possibly writing memory operation, which ensures
|
|
/// that we only CSE loads with other loads that have no intervening store.
|
|
typedef RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
|
|
typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
|
|
DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
|
|
LoadHTType *AvailableLoads;
|
|
|
|
/// AvailableCalls - This scoped hash table contains the current values
|
|
/// of read-only call values. It uses the same generation count as loads.
|
|
typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
|
|
CallHTType *AvailableCalls;
|
|
|
|
/// CurrentGeneration - This is the current generation of the memory value.
|
|
unsigned CurrentGeneration;
|
|
|
|
static char ID;
|
|
explicit EarlyCSE() : FunctionPass(ID) {
|
|
initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
private:
|
|
|
|
// NodeScope - almost a POD, but needs to call the constructors for the
|
|
// scoped hash tables so that a new scope gets pushed on. These are RAII so
|
|
// that the scope gets popped when the NodeScope is destroyed.
|
|
class NodeScope {
|
|
public:
|
|
NodeScope(ScopedHTType *availableValues,
|
|
LoadHTType *availableLoads,
|
|
CallHTType *availableCalls) :
|
|
Scope(*availableValues),
|
|
LoadScope(*availableLoads),
|
|
CallScope(*availableCalls) {}
|
|
|
|
private:
|
|
NodeScope(const NodeScope&); // DO NOT IMPLEMENT
|
|
|
|
ScopedHTType::ScopeTy Scope;
|
|
LoadHTType::ScopeTy LoadScope;
|
|
CallHTType::ScopeTy CallScope;
|
|
};
|
|
|
|
// StackNode - contains all the needed information to create a stack for
|
|
// doing a depth first tranversal of the tree. This includes scopes for
|
|
// values, loads, and calls as well as the generation. There is a child
|
|
// iterator so that the children do not need to be store spearately.
|
|
class StackNode {
|
|
public:
|
|
StackNode(ScopedHTType *availableValues,
|
|
LoadHTType *availableLoads,
|
|
CallHTType *availableCalls,
|
|
unsigned cg, DomTreeNode *n,
|
|
DomTreeNode::iterator child, DomTreeNode::iterator end) :
|
|
CurrentGeneration(cg), ChildGeneration(cg), Node(n),
|
|
ChildIter(child), EndIter(end),
|
|
Scopes(availableValues, availableLoads, availableCalls),
|
|
Processed(false) {}
|
|
|
|
// Accessors.
|
|
unsigned currentGeneration() { return CurrentGeneration; }
|
|
unsigned childGeneration() { return ChildGeneration; }
|
|
void childGeneration(unsigned generation) { ChildGeneration = generation; }
|
|
DomTreeNode *node() { return Node; }
|
|
DomTreeNode::iterator childIter() { return ChildIter; }
|
|
DomTreeNode *nextChild() {
|
|
DomTreeNode *child = *ChildIter;
|
|
++ChildIter;
|
|
return child;
|
|
}
|
|
DomTreeNode::iterator end() { return EndIter; }
|
|
bool isProcessed() { return Processed; }
|
|
void process() { Processed = true; }
|
|
|
|
private:
|
|
StackNode(const StackNode&); // DO NOT IMPLEMENT
|
|
|
|
// Members.
|
|
unsigned CurrentGeneration;
|
|
unsigned ChildGeneration;
|
|
DomTreeNode *Node;
|
|
DomTreeNode::iterator ChildIter;
|
|
DomTreeNode::iterator EndIter;
|
|
NodeScope Scopes;
|
|
bool Processed;
|
|
};
|
|
|
|
bool processNode(DomTreeNode *Node);
|
|
|
|
// This transformation requires dominator postdominator info
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<TargetLibraryInfo>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
}
|
|
|
|
char EarlyCSE::ID = 0;
|
|
|
|
// createEarlyCSEPass - The public interface to this file.
|
|
FunctionPass *llvm::createEarlyCSEPass() {
|
|
return new EarlyCSE();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
|
|
INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
|
|
|
|
bool EarlyCSE::processNode(DomTreeNode *Node) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
|
|
// If this block has a single predecessor, then the predecessor is the parent
|
|
// of the domtree node and all of the live out memory values are still current
|
|
// in this block. If this block has multiple predecessors, then they could
|
|
// have invalidated the live-out memory values of our parent value. For now,
|
|
// just be conservative and invalidate memory if this block has multiple
|
|
// predecessors.
|
|
if (BB->getSinglePredecessor() == 0)
|
|
++CurrentGeneration;
|
|
|
|
/// LastStore - Keep track of the last non-volatile store that we saw... for
|
|
/// as long as there in no instruction that reads memory. If we see a store
|
|
/// to the same location, we delete the dead store. This zaps trivial dead
|
|
/// stores which can occur in bitfield code among other things.
|
|
StoreInst *LastStore = 0;
|
|
|
|
bool Changed = false;
|
|
|
|
// See if any instructions in the block can be eliminated. If so, do it. If
|
|
// not, add them to AvailableValues.
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
|
|
Instruction *Inst = I++;
|
|
|
|
// Dead instructions should just be removed.
|
|
if (isInstructionTriviallyDead(Inst)) {
|
|
DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumSimplify;
|
|
continue;
|
|
}
|
|
|
|
// If the instruction can be simplified (e.g. X+0 = X) then replace it with
|
|
// its simpler value.
|
|
if (Value *V = SimplifyInstruction(Inst, TD, TLI, DT)) {
|
|
DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
|
|
Inst->replaceAllUsesWith(V);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumSimplify;
|
|
continue;
|
|
}
|
|
|
|
// If this is a simple instruction that we can value number, process it.
|
|
if (SimpleValue::canHandle(Inst)) {
|
|
// See if the instruction has an available value. If so, use it.
|
|
if (Value *V = AvailableValues->lookup(Inst)) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
|
|
Inst->replaceAllUsesWith(V);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSE;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, just remember that this value is available.
|
|
AvailableValues->insert(Inst, Inst);
|
|
continue;
|
|
}
|
|
|
|
// If this is a non-volatile load, process it.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
|
|
// Ignore volatile loads.
|
|
if (!LI->isSimple()) {
|
|
LastStore = 0;
|
|
continue;
|
|
}
|
|
|
|
// If we have an available version of this load, and if it is the right
|
|
// generation, replace this instruction.
|
|
std::pair<Value*, unsigned> InVal =
|
|
AvailableLoads->lookup(Inst->getOperand(0));
|
|
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
|
|
<< *InVal.first << '\n');
|
|
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSELoad;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, remember that we have this instruction.
|
|
AvailableLoads->insert(Inst->getOperand(0),
|
|
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
|
|
LastStore = 0;
|
|
continue;
|
|
}
|
|
|
|
// If this instruction may read from memory, forget LastStore.
|
|
if (Inst->mayReadFromMemory())
|
|
LastStore = 0;
|
|
|
|
// If this is a read-only call, process it.
|
|
if (CallValue::canHandle(Inst)) {
|
|
// If we have an available version of this call, and if it is the right
|
|
// generation, replace this instruction.
|
|
std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
|
|
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
|
|
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
|
|
<< *InVal.first << '\n');
|
|
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
++NumCSECall;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, remember that we have this instruction.
|
|
AvailableCalls->insert(Inst,
|
|
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
|
|
continue;
|
|
}
|
|
|
|
// Okay, this isn't something we can CSE at all. Check to see if it is
|
|
// something that could modify memory. If so, our available memory values
|
|
// cannot be used so bump the generation count.
|
|
if (Inst->mayWriteToMemory()) {
|
|
++CurrentGeneration;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
// We do a trivial form of DSE if there are two stores to the same
|
|
// location with no intervening loads. Delete the earlier store.
|
|
if (LastStore &&
|
|
LastStore->getPointerOperand() == SI->getPointerOperand()) {
|
|
DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
|
|
<< *Inst << '\n');
|
|
LastStore->eraseFromParent();
|
|
Changed = true;
|
|
++NumDSE;
|
|
LastStore = 0;
|
|
continue;
|
|
}
|
|
|
|
// Okay, we just invalidated anything we knew about loaded values. Try
|
|
// to salvage *something* by remembering that the stored value is a live
|
|
// version of the pointer. It is safe to forward from volatile stores
|
|
// to non-volatile loads, so we don't have to check for volatility of
|
|
// the store.
|
|
AvailableLoads->insert(SI->getPointerOperand(),
|
|
std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
|
|
|
|
// Remember that this was the last store we saw for DSE.
|
|
if (SI->isSimple())
|
|
LastStore = SI;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool EarlyCSE::runOnFunction(Function &F) {
|
|
std::deque<StackNode *> nodesToProcess;
|
|
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
TLI = &getAnalysis<TargetLibraryInfo>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
// Tables that the pass uses when walking the domtree.
|
|
ScopedHTType AVTable;
|
|
AvailableValues = &AVTable;
|
|
LoadHTType LoadTable;
|
|
AvailableLoads = &LoadTable;
|
|
CallHTType CallTable;
|
|
AvailableCalls = &CallTable;
|
|
|
|
CurrentGeneration = 0;
|
|
bool Changed = false;
|
|
|
|
// Process the root node.
|
|
nodesToProcess.push_front(
|
|
new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
|
|
CurrentGeneration, DT->getRootNode(),
|
|
DT->getRootNode()->begin(),
|
|
DT->getRootNode()->end()));
|
|
|
|
// Save the current generation.
|
|
unsigned LiveOutGeneration = CurrentGeneration;
|
|
|
|
// Process the stack.
|
|
while (!nodesToProcess.empty()) {
|
|
// Grab the first item off the stack. Set the current generation, remove
|
|
// the node from the stack, and process it.
|
|
StackNode *NodeToProcess = nodesToProcess.front();
|
|
|
|
// Initialize class members.
|
|
CurrentGeneration = NodeToProcess->currentGeneration();
|
|
|
|
// Check if the node needs to be processed.
|
|
if (!NodeToProcess->isProcessed()) {
|
|
// Process the node.
|
|
Changed |= processNode(NodeToProcess->node());
|
|
NodeToProcess->childGeneration(CurrentGeneration);
|
|
NodeToProcess->process();
|
|
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
|
|
// Push the next child onto the stack.
|
|
DomTreeNode *child = NodeToProcess->nextChild();
|
|
nodesToProcess.push_front(
|
|
new StackNode(AvailableValues,
|
|
AvailableLoads,
|
|
AvailableCalls,
|
|
NodeToProcess->childGeneration(), child,
|
|
child->begin(), child->end()));
|
|
} else {
|
|
// It has been processed, and there are no more children to process,
|
|
// so delete it and pop it off the stack.
|
|
delete NodeToProcess;
|
|
nodesToProcess.pop_front();
|
|
}
|
|
} // while (!nodes...)
|
|
|
|
// Reset the current generation.
|
|
CurrentGeneration = LiveOutGeneration;
|
|
|
|
return Changed;
|
|
}
|