1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/AArch64/AArch64PBQPRegAlloc.cpp
Duncan P. N. Exon Smith 13c519204e CodeGen: Take MachineInstr& in SlotIndexes and LiveIntervals, NFC
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals.  The MachineInstrs here are
never null, so this cleans up the API a bit.  It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).

At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.

llvm-svn: 262115
2016-02-27 06:40:41 +00:00

384 lines
11 KiB
C++

//===-- AArch64PBQPRegAlloc.cpp - AArch64 specific PBQP constraints -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file contains the AArch64 / Cortex-A57 specific register allocation
// constraints for use by the PBQP register allocator.
//
// It is essentially a transcription of what is contained in
// AArch64A57FPLoadBalancing, which tries to use a balanced
// mix of odd and even D-registers when performing a critical sequence of
// independent, non-quadword FP/ASIMD floating-point multiply-accumulates.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "aarch64-pbqp"
#include "AArch64.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64RegisterInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocPBQP.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
#ifndef NDEBUG
bool isFPReg(unsigned reg) {
return AArch64::FPR32RegClass.contains(reg) ||
AArch64::FPR64RegClass.contains(reg) ||
AArch64::FPR128RegClass.contains(reg);
}
#endif
bool isOdd(unsigned reg) {
switch (reg) {
default:
llvm_unreachable("Register is not from the expected class !");
case AArch64::S1:
case AArch64::S3:
case AArch64::S5:
case AArch64::S7:
case AArch64::S9:
case AArch64::S11:
case AArch64::S13:
case AArch64::S15:
case AArch64::S17:
case AArch64::S19:
case AArch64::S21:
case AArch64::S23:
case AArch64::S25:
case AArch64::S27:
case AArch64::S29:
case AArch64::S31:
case AArch64::D1:
case AArch64::D3:
case AArch64::D5:
case AArch64::D7:
case AArch64::D9:
case AArch64::D11:
case AArch64::D13:
case AArch64::D15:
case AArch64::D17:
case AArch64::D19:
case AArch64::D21:
case AArch64::D23:
case AArch64::D25:
case AArch64::D27:
case AArch64::D29:
case AArch64::D31:
case AArch64::Q1:
case AArch64::Q3:
case AArch64::Q5:
case AArch64::Q7:
case AArch64::Q9:
case AArch64::Q11:
case AArch64::Q13:
case AArch64::Q15:
case AArch64::Q17:
case AArch64::Q19:
case AArch64::Q21:
case AArch64::Q23:
case AArch64::Q25:
case AArch64::Q27:
case AArch64::Q29:
case AArch64::Q31:
return true;
case AArch64::S0:
case AArch64::S2:
case AArch64::S4:
case AArch64::S6:
case AArch64::S8:
case AArch64::S10:
case AArch64::S12:
case AArch64::S14:
case AArch64::S16:
case AArch64::S18:
case AArch64::S20:
case AArch64::S22:
case AArch64::S24:
case AArch64::S26:
case AArch64::S28:
case AArch64::S30:
case AArch64::D0:
case AArch64::D2:
case AArch64::D4:
case AArch64::D6:
case AArch64::D8:
case AArch64::D10:
case AArch64::D12:
case AArch64::D14:
case AArch64::D16:
case AArch64::D18:
case AArch64::D20:
case AArch64::D22:
case AArch64::D24:
case AArch64::D26:
case AArch64::D28:
case AArch64::D30:
case AArch64::Q0:
case AArch64::Q2:
case AArch64::Q4:
case AArch64::Q6:
case AArch64::Q8:
case AArch64::Q10:
case AArch64::Q12:
case AArch64::Q14:
case AArch64::Q16:
case AArch64::Q18:
case AArch64::Q20:
case AArch64::Q22:
case AArch64::Q24:
case AArch64::Q26:
case AArch64::Q28:
case AArch64::Q30:
return false;
}
}
bool haveSameParity(unsigned reg1, unsigned reg2) {
assert(isFPReg(reg1) && "Expecting an FP register for reg1");
assert(isFPReg(reg2) && "Expecting an FP register for reg2");
return isOdd(reg1) == isOdd(reg2);
}
}
bool A57ChainingConstraint::addIntraChainConstraint(PBQPRAGraph &G, unsigned Rd,
unsigned Ra) {
if (Rd == Ra)
return false;
LiveIntervals &LIs = G.getMetadata().LIS;
if (TRI->isPhysicalRegister(Rd) || TRI->isPhysicalRegister(Ra)) {
DEBUG(dbgs() << "Rd is a physical reg:" << TRI->isPhysicalRegister(Rd)
<< '\n');
DEBUG(dbgs() << "Ra is a physical reg:" << TRI->isPhysicalRegister(Ra)
<< '\n');
return false;
}
PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(Ra);
const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
&G.getNodeMetadata(node1).getAllowedRegs();
const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRaAllowed =
&G.getNodeMetadata(node2).getAllowedRegs();
PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
// The edge does not exist. Create one with the appropriate interference
// costs.
if (edge == G.invalidEdgeId()) {
const LiveInterval &ld = LIs.getInterval(Rd);
const LiveInterval &la = LIs.getInterval(Ra);
bool livesOverlap = ld.overlaps(la);
PBQPRAGraph::RawMatrix costs(vRdAllowed->size() + 1,
vRaAllowed->size() + 1, 0);
for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
unsigned pRd = (*vRdAllowed)[i];
for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
unsigned pRa = (*vRaAllowed)[j];
if (livesOverlap && TRI->regsOverlap(pRd, pRa))
costs[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
else
costs[i + 1][j + 1] = haveSameParity(pRd, pRa) ? 0.0 : 1.0;
}
}
G.addEdge(node1, node2, std::move(costs));
return true;
}
if (G.getEdgeNode1Id(edge) == node2) {
std::swap(node1, node2);
std::swap(vRdAllowed, vRaAllowed);
}
// Enforce minCost(sameParity(RaClass)) > maxCost(otherParity(RdClass))
PBQPRAGraph::RawMatrix costs(G.getEdgeCosts(edge));
for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
unsigned pRd = (*vRdAllowed)[i];
// Get the maximum cost (excluding unallocatable reg) for same parity
// registers
PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
unsigned pRa = (*vRaAllowed)[j];
if (haveSameParity(pRd, pRa))
if (costs[i + 1][j + 1] !=
std::numeric_limits<PBQP::PBQPNum>::infinity() &&
costs[i + 1][j + 1] > sameParityMax)
sameParityMax = costs[i + 1][j + 1];
}
// Ensure all registers with a different parity have a higher cost
// than sameParityMax
for (unsigned j = 0, je = vRaAllowed->size(); j != je; ++j) {
unsigned pRa = (*vRaAllowed)[j];
if (!haveSameParity(pRd, pRa))
if (sameParityMax > costs[i + 1][j + 1])
costs[i + 1][j + 1] = sameParityMax + 1.0;
}
}
G.updateEdgeCosts(edge, std::move(costs));
return true;
}
void A57ChainingConstraint::addInterChainConstraint(PBQPRAGraph &G, unsigned Rd,
unsigned Ra) {
LiveIntervals &LIs = G.getMetadata().LIS;
// Do some Chain management
if (Chains.count(Ra)) {
if (Rd != Ra) {
DEBUG(dbgs() << "Moving acc chain from " << PrintReg(Ra, TRI) << " to "
<< PrintReg(Rd, TRI) << '\n';);
Chains.remove(Ra);
Chains.insert(Rd);
}
} else {
DEBUG(dbgs() << "Creating new acc chain for " << PrintReg(Rd, TRI)
<< '\n';);
Chains.insert(Rd);
}
PBQPRAGraph::NodeId node1 = G.getMetadata().getNodeIdForVReg(Rd);
const LiveInterval &ld = LIs.getInterval(Rd);
for (auto r : Chains) {
// Skip self
if (r == Rd)
continue;
const LiveInterval &lr = LIs.getInterval(r);
if (ld.overlaps(lr)) {
const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRdAllowed =
&G.getNodeMetadata(node1).getAllowedRegs();
PBQPRAGraph::NodeId node2 = G.getMetadata().getNodeIdForVReg(r);
const PBQPRAGraph::NodeMetadata::AllowedRegVector *vRrAllowed =
&G.getNodeMetadata(node2).getAllowedRegs();
PBQPRAGraph::EdgeId edge = G.findEdge(node1, node2);
assert(edge != G.invalidEdgeId() &&
"PBQP error ! The edge should exist !");
DEBUG(dbgs() << "Refining constraint !\n";);
if (G.getEdgeNode1Id(edge) == node2) {
std::swap(node1, node2);
std::swap(vRdAllowed, vRrAllowed);
}
// Enforce that cost is higher with all other Chains of the same parity
PBQP::Matrix costs(G.getEdgeCosts(edge));
for (unsigned i = 0, ie = vRdAllowed->size(); i != ie; ++i) {
unsigned pRd = (*vRdAllowed)[i];
// Get the maximum cost (excluding unallocatable reg) for all other
// parity registers
PBQP::PBQPNum sameParityMax = std::numeric_limits<PBQP::PBQPNum>::min();
for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
unsigned pRa = (*vRrAllowed)[j];
if (!haveSameParity(pRd, pRa))
if (costs[i + 1][j + 1] !=
std::numeric_limits<PBQP::PBQPNum>::infinity() &&
costs[i + 1][j + 1] > sameParityMax)
sameParityMax = costs[i + 1][j + 1];
}
// Ensure all registers with same parity have a higher cost
// than sameParityMax
for (unsigned j = 0, je = vRrAllowed->size(); j != je; ++j) {
unsigned pRa = (*vRrAllowed)[j];
if (haveSameParity(pRd, pRa))
if (sameParityMax > costs[i + 1][j + 1])
costs[i + 1][j + 1] = sameParityMax + 1.0;
}
}
G.updateEdgeCosts(edge, std::move(costs));
}
}
}
static bool regJustKilledBefore(const LiveIntervals &LIs, unsigned reg,
const MachineInstr &MI) {
const LiveInterval &LI = LIs.getInterval(reg);
SlotIndex SI = LIs.getInstructionIndex(MI);
return LI.expiredAt(SI);
}
void A57ChainingConstraint::apply(PBQPRAGraph &G) {
const MachineFunction &MF = G.getMetadata().MF;
LiveIntervals &LIs = G.getMetadata().LIS;
TRI = MF.getSubtarget().getRegisterInfo();
DEBUG(MF.dump());
for (const auto &MBB: MF) {
Chains.clear(); // FIXME: really needed ? Could not work at MF level ?
for (const auto &MI: MBB) {
// Forget Chains which have expired
for (auto r : Chains) {
SmallVector<unsigned, 8> toDel;
if(regJustKilledBefore(LIs, r, MI)) {
DEBUG(dbgs() << "Killing chain " << PrintReg(r, TRI) << " at ";
MI.print(dbgs()););
toDel.push_back(r);
}
while (!toDel.empty()) {
Chains.remove(toDel.back());
toDel.pop_back();
}
}
switch (MI.getOpcode()) {
case AArch64::FMSUBSrrr:
case AArch64::FMADDSrrr:
case AArch64::FNMSUBSrrr:
case AArch64::FNMADDSrrr:
case AArch64::FMSUBDrrr:
case AArch64::FMADDDrrr:
case AArch64::FNMSUBDrrr:
case AArch64::FNMADDDrrr: {
unsigned Rd = MI.getOperand(0).getReg();
unsigned Ra = MI.getOperand(3).getReg();
if (addIntraChainConstraint(G, Rd, Ra))
addInterChainConstraint(G, Rd, Ra);
break;
}
case AArch64::FMLAv2f32:
case AArch64::FMLSv2f32: {
unsigned Rd = MI.getOperand(0).getReg();
addInterChainConstraint(G, Rd, Rd);
break;
}
default:
break;
}
}
}
}