1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/IR/IRBuilder.cpp
Sander de Smalen 5f91239343 Improve reduction intrinsics by overloading result value.
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.

For example:

  ; The LLVM LangRef specifies that the scalar result must equal the
  ; vector element type, but this is not checked/enforced by LLVM.
  declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)

This patch changes that into:

  declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)

Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.

Reviewers: RKSimon, arsenm, rnk, greened, aemerson

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D62996

llvm-svn: 363240
2019-06-13 09:37:38 +00:00

757 lines
29 KiB
C++

//===- IRBuilder.cpp - Builder for LLVM Instrs ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the IRBuilder class, which is used as a convenient way
// to create LLVM instructions with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IRBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <vector>
using namespace llvm;
/// CreateGlobalString - Make a new global variable with an initializer that
/// has array of i8 type filled in with the nul terminated string value
/// specified. If Name is specified, it is the name of the global variable
/// created.
GlobalVariable *IRBuilderBase::CreateGlobalString(StringRef Str,
const Twine &Name,
unsigned AddressSpace) {
Constant *StrConstant = ConstantDataArray::getString(Context, Str);
Module &M = *BB->getParent()->getParent();
auto *GV = new GlobalVariable(M, StrConstant->getType(), true,
GlobalValue::PrivateLinkage, StrConstant, Name,
nullptr, GlobalVariable::NotThreadLocal,
AddressSpace);
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
GV->setAlignment(1);
return GV;
}
Type *IRBuilderBase::getCurrentFunctionReturnType() const {
assert(BB && BB->getParent() && "No current function!");
return BB->getParent()->getReturnType();
}
Value *IRBuilderBase::getCastedInt8PtrValue(Value *Ptr) {
auto *PT = cast<PointerType>(Ptr->getType());
if (PT->getElementType()->isIntegerTy(8))
return Ptr;
// Otherwise, we need to insert a bitcast.
PT = getInt8PtrTy(PT->getAddressSpace());
BitCastInst *BCI = new BitCastInst(Ptr, PT, "");
BB->getInstList().insert(InsertPt, BCI);
SetInstDebugLocation(BCI);
return BCI;
}
static CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
IRBuilderBase *Builder,
const Twine &Name = "",
Instruction *FMFSource = nullptr) {
CallInst *CI = CallInst::Create(Callee, Ops, Name);
if (FMFSource)
CI->copyFastMathFlags(FMFSource);
Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),CI);
Builder->SetInstDebugLocation(CI);
return CI;
}
static InvokeInst *createInvokeHelper(Function *Invokee, BasicBlock *NormalDest,
BasicBlock *UnwindDest,
ArrayRef<Value *> Ops,
IRBuilderBase *Builder,
const Twine &Name = "") {
InvokeInst *II =
InvokeInst::Create(Invokee, NormalDest, UnwindDest, Ops, Name);
Builder->GetInsertBlock()->getInstList().insert(Builder->GetInsertPoint(),
II);
Builder->SetInstDebugLocation(II);
return II;
}
CallInst *IRBuilderBase::
CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = {Ptr, Val, Size, getInt1(isVolatile)};
Type *Tys[] = { Ptr->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
if (Align > 0)
cast<MemSetInst>(CI)->setDestAlignment(Align);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemSet(
Value *Ptr, Value *Val, Value *Size, unsigned Align, uint32_t ElementSize,
MDNode *TBAATag, MDNode *ScopeTag, MDNode *NoAliasTag) {
assert(Align >= ElementSize &&
"Pointer alignment must be at least element size.");
Ptr = getCastedInt8PtrValue(Ptr);
Value *Ops[] = {Ptr, Val, Size, getInt32(ElementSize)};
Type *Tys[] = {Ptr->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memset_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
cast<AtomicMemSetInst>(CI)->setDestAlignment(Align);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::
CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
Value *Size, bool isVolatile, MDNode *TBAATag,
MDNode *TBAAStructTag, MDNode *ScopeTag, MDNode *NoAliasTag) {
assert((DstAlign == 0 || isPowerOf2_32(DstAlign)) && "Must be 0 or a power of 2");
assert((SrcAlign == 0 || isPowerOf2_32(SrcAlign)) && "Must be 0 or a power of 2");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
auto* MCI = cast<MemCpyInst>(CI);
if (DstAlign > 0)
MCI->setDestAlignment(DstAlign);
if (SrcAlign > 0)
MCI->setSourceAlignment(SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemCpy(
Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
MDNode *ScopeTag, MDNode *NoAliasTag) {
assert(DstAlign >= ElementSize &&
"Pointer alignment must be at least element size");
assert(SrcAlign >= ElementSize &&
"Pointer alignment must be at least element size");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memcpy_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the alignment of the pointer args.
auto *AMCI = cast<AtomicMemCpyInst>(CI);
AMCI->setDestAlignment(DstAlign);
AMCI->setSourceAlignment(SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::
CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
Value *Size, bool isVolatile, MDNode *TBAATag, MDNode *ScopeTag,
MDNode *NoAliasTag) {
assert((DstAlign == 0 || isPowerOf2_32(DstAlign)) && "Must be 0 or a power of 2");
assert((SrcAlign == 0 || isPowerOf2_32(SrcAlign)) && "Must be 0 or a power of 2");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt1(isVolatile)};
Type *Tys[] = { Dst->getType(), Src->getType(), Size->getType() };
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Intrinsic::memmove, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
auto *MMI = cast<MemMoveInst>(CI);
if (DstAlign > 0)
MMI->setDestAlignment(DstAlign);
if (SrcAlign > 0)
MMI->setSourceAlignment(SrcAlign);
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
CallInst *IRBuilderBase::CreateElementUnorderedAtomicMemMove(
Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
uint32_t ElementSize, MDNode *TBAATag, MDNode *TBAAStructTag,
MDNode *ScopeTag, MDNode *NoAliasTag) {
assert(DstAlign >= ElementSize &&
"Pointer alignment must be at least element size");
assert(SrcAlign >= ElementSize &&
"Pointer alignment must be at least element size");
Dst = getCastedInt8PtrValue(Dst);
Src = getCastedInt8PtrValue(Src);
Value *Ops[] = {Dst, Src, Size, getInt32(ElementSize)};
Type *Tys[] = {Dst->getType(), Src->getType(), Size->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(
M, Intrinsic::memmove_element_unordered_atomic, Tys);
CallInst *CI = createCallHelper(TheFn, Ops, this);
// Set the alignment of the pointer args.
CI->addParamAttr(0, Attribute::getWithAlignment(CI->getContext(), DstAlign));
CI->addParamAttr(1, Attribute::getWithAlignment(CI->getContext(), SrcAlign));
// Set the TBAA info if present.
if (TBAATag)
CI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
// Set the TBAA Struct info if present.
if (TBAAStructTag)
CI->setMetadata(LLVMContext::MD_tbaa_struct, TBAAStructTag);
if (ScopeTag)
CI->setMetadata(LLVMContext::MD_alias_scope, ScopeTag);
if (NoAliasTag)
CI->setMetadata(LLVMContext::MD_noalias, NoAliasTag);
return CI;
}
static CallInst *getReductionIntrinsic(IRBuilderBase *Builder, Intrinsic::ID ID,
Value *Src) {
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Src};
Type *Tys[] = { Src->getType() };
auto Decl = Intrinsic::getDeclaration(M, ID, Tys);
return createCallHelper(Decl, Ops, Builder);
}
CallInst *IRBuilderBase::CreateFAddReduce(Value *Acc, Value *Src) {
Module *M = GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Acc, Src};
Type *Tys[] = {Acc->getType(), Src->getType()};
auto Decl = Intrinsic::getDeclaration(
M, Intrinsic::experimental_vector_reduce_v2_fadd, Tys);
return createCallHelper(Decl, Ops, this);
}
CallInst *IRBuilderBase::CreateFMulReduce(Value *Acc, Value *Src) {
Module *M = GetInsertBlock()->getParent()->getParent();
Value *Ops[] = {Acc, Src};
Type *Tys[] = {Acc->getType(), Src->getType()};
auto Decl = Intrinsic::getDeclaration(
M, Intrinsic::experimental_vector_reduce_v2_fmul, Tys);
return createCallHelper(Decl, Ops, this);
}
CallInst *IRBuilderBase::CreateAddReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_add,
Src);
}
CallInst *IRBuilderBase::CreateMulReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_mul,
Src);
}
CallInst *IRBuilderBase::CreateAndReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_and,
Src);
}
CallInst *IRBuilderBase::CreateOrReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_or,
Src);
}
CallInst *IRBuilderBase::CreateXorReduce(Value *Src) {
return getReductionIntrinsic(this, Intrinsic::experimental_vector_reduce_xor,
Src);
}
CallInst *IRBuilderBase::CreateIntMaxReduce(Value *Src, bool IsSigned) {
auto ID = IsSigned ? Intrinsic::experimental_vector_reduce_smax
: Intrinsic::experimental_vector_reduce_umax;
return getReductionIntrinsic(this, ID, Src);
}
CallInst *IRBuilderBase::CreateIntMinReduce(Value *Src, bool IsSigned) {
auto ID = IsSigned ? Intrinsic::experimental_vector_reduce_smin
: Intrinsic::experimental_vector_reduce_umin;
return getReductionIntrinsic(this, ID, Src);
}
CallInst *IRBuilderBase::CreateFPMaxReduce(Value *Src, bool NoNaN) {
auto Rdx = getReductionIntrinsic(
this, Intrinsic::experimental_vector_reduce_fmax, Src);
if (NoNaN) {
FastMathFlags FMF;
FMF.setNoNaNs();
Rdx->setFastMathFlags(FMF);
}
return Rdx;
}
CallInst *IRBuilderBase::CreateFPMinReduce(Value *Src, bool NoNaN) {
auto Rdx = getReductionIntrinsic(
this, Intrinsic::experimental_vector_reduce_fmin, Src);
if (NoNaN) {
FastMathFlags FMF;
FMF.setNoNaNs();
Rdx->setFastMathFlags(FMF);
}
return Rdx;
}
CallInst *IRBuilderBase::CreateLifetimeStart(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.start only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.start requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::lifetime_start, {Ptr->getType()});
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateLifetimeEnd(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"lifetime.end only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"lifetime.end requires the size to be an i64");
Value *Ops[] = { Size, Ptr };
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::lifetime_end, {Ptr->getType()});
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateInvariantStart(Value *Ptr, ConstantInt *Size) {
assert(isa<PointerType>(Ptr->getType()) &&
"invariant.start only applies to pointers.");
Ptr = getCastedInt8PtrValue(Ptr);
if (!Size)
Size = getInt64(-1);
else
assert(Size->getType() == getInt64Ty() &&
"invariant.start requires the size to be an i64");
Value *Ops[] = {Size, Ptr};
// Fill in the single overloaded type: memory object type.
Type *ObjectPtr[1] = {Ptr->getType()};
Module *M = BB->getParent()->getParent();
Function *TheFn =
Intrinsic::getDeclaration(M, Intrinsic::invariant_start, ObjectPtr);
return createCallHelper(TheFn, Ops, this);
}
CallInst *IRBuilderBase::CreateAssumption(Value *Cond) {
assert(Cond->getType() == getInt1Ty() &&
"an assumption condition must be of type i1");
Value *Ops[] = { Cond };
Module *M = BB->getParent()->getParent();
Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
return createCallHelper(FnAssume, Ops, this);
}
/// Create a call to a Masked Load intrinsic.
/// \p Ptr - base pointer for the load
/// \p Align - alignment of the source location
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
/// \p PassThru - pass-through value that is used to fill the masked-off lanes
/// of the result
/// \p Name - name of the result variable
CallInst *IRBuilderBase::CreateMaskedLoad(Value *Ptr, unsigned Align,
Value *Mask, Value *PassThru,
const Twine &Name) {
auto *PtrTy = cast<PointerType>(Ptr->getType());
Type *DataTy = PtrTy->getElementType();
assert(DataTy->isVectorTy() && "Ptr should point to a vector");
assert(Mask && "Mask should not be all-ones (null)");
if (!PassThru)
PassThru = UndefValue::get(DataTy);
Type *OverloadedTypes[] = { DataTy, PtrTy };
Value *Ops[] = { Ptr, getInt32(Align), Mask, PassThru};
return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops,
OverloadedTypes, Name);
}
/// Create a call to a Masked Store intrinsic.
/// \p Val - data to be stored,
/// \p Ptr - base pointer for the store
/// \p Align - alignment of the destination location
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
CallInst *IRBuilderBase::CreateMaskedStore(Value *Val, Value *Ptr,
unsigned Align, Value *Mask) {
auto *PtrTy = cast<PointerType>(Ptr->getType());
Type *DataTy = PtrTy->getElementType();
assert(DataTy->isVectorTy() && "Ptr should point to a vector");
assert(Mask && "Mask should not be all-ones (null)");
Type *OverloadedTypes[] = { DataTy, PtrTy };
Value *Ops[] = { Val, Ptr, getInt32(Align), Mask };
return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, OverloadedTypes);
}
/// Create a call to a Masked intrinsic, with given intrinsic Id,
/// an array of operands - Ops, and an array of overloaded types -
/// OverloadedTypes.
CallInst *IRBuilderBase::CreateMaskedIntrinsic(Intrinsic::ID Id,
ArrayRef<Value *> Ops,
ArrayRef<Type *> OverloadedTypes,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Function *TheFn = Intrinsic::getDeclaration(M, Id, OverloadedTypes);
return createCallHelper(TheFn, Ops, this, Name);
}
/// Create a call to a Masked Gather intrinsic.
/// \p Ptrs - vector of pointers for loading
/// \p Align - alignment for one element
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
/// \p PassThru - pass-through value that is used to fill the masked-off lanes
/// of the result
/// \p Name - name of the result variable
CallInst *IRBuilderBase::CreateMaskedGather(Value *Ptrs, unsigned Align,
Value *Mask, Value *PassThru,
const Twine& Name) {
auto PtrsTy = cast<VectorType>(Ptrs->getType());
auto PtrTy = cast<PointerType>(PtrsTy->getElementType());
unsigned NumElts = PtrsTy->getVectorNumElements();
Type *DataTy = VectorType::get(PtrTy->getElementType(), NumElts);
if (!Mask)
Mask = Constant::getAllOnesValue(VectorType::get(Type::getInt1Ty(Context),
NumElts));
if (!PassThru)
PassThru = UndefValue::get(DataTy);
Type *OverloadedTypes[] = {DataTy, PtrsTy};
Value * Ops[] = {Ptrs, getInt32(Align), Mask, PassThru};
// We specify only one type when we create this intrinsic. Types of other
// arguments are derived from this type.
return CreateMaskedIntrinsic(Intrinsic::masked_gather, Ops, OverloadedTypes,
Name);
}
/// Create a call to a Masked Scatter intrinsic.
/// \p Data - data to be stored,
/// \p Ptrs - the vector of pointers, where the \p Data elements should be
/// stored
/// \p Align - alignment for one element
/// \p Mask - vector of booleans which indicates what vector lanes should
/// be accessed in memory
CallInst *IRBuilderBase::CreateMaskedScatter(Value *Data, Value *Ptrs,
unsigned Align, Value *Mask) {
auto PtrsTy = cast<VectorType>(Ptrs->getType());
auto DataTy = cast<VectorType>(Data->getType());
unsigned NumElts = PtrsTy->getVectorNumElements();
#ifndef NDEBUG
auto PtrTy = cast<PointerType>(PtrsTy->getElementType());
assert(NumElts == DataTy->getVectorNumElements() &&
PtrTy->getElementType() == DataTy->getElementType() &&
"Incompatible pointer and data types");
#endif
if (!Mask)
Mask = Constant::getAllOnesValue(VectorType::get(Type::getInt1Ty(Context),
NumElts));
Type *OverloadedTypes[] = {DataTy, PtrsTy};
Value * Ops[] = {Data, Ptrs, getInt32(Align), Mask};
// We specify only one type when we create this intrinsic. Types of other
// arguments are derived from this type.
return CreateMaskedIntrinsic(Intrinsic::masked_scatter, Ops, OverloadedTypes);
}
template <typename T0, typename T1, typename T2, typename T3>
static std::vector<Value *>
getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs,
ArrayRef<T3> GCArgs) {
std::vector<Value *> Args;
Args.push_back(B.getInt64(ID));
Args.push_back(B.getInt32(NumPatchBytes));
Args.push_back(ActualCallee);
Args.push_back(B.getInt32(CallArgs.size()));
Args.push_back(B.getInt32(Flags));
Args.insert(Args.end(), CallArgs.begin(), CallArgs.end());
Args.push_back(B.getInt32(TransitionArgs.size()));
Args.insert(Args.end(), TransitionArgs.begin(), TransitionArgs.end());
Args.push_back(B.getInt32(DeoptArgs.size()));
Args.insert(Args.end(), DeoptArgs.begin(), DeoptArgs.end());
Args.insert(Args.end(), GCArgs.begin(), GCArgs.end());
return Args;
}
template <typename T0, typename T1, typename T2, typename T3>
static CallInst *CreateGCStatepointCallCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualCallee, uint32_t Flags, ArrayRef<T0> CallArgs,
ArrayRef<T1> TransitionArgs, ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs,
const Twine &Name) {
// Extract out the type of the callee.
auto *FuncPtrType = cast<PointerType>(ActualCallee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Type *ArgTypes[] = { FuncPtrType };
Function *FnStatepoint =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_statepoint,
ArgTypes);
std::vector<Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualCallee, Flags,
CallArgs, TransitionArgs, DeoptArgs, GCArgs);
return createCallHelper(FnStatepoint, Args, Builder, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Value *> CallArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None /* No Transition Args */, DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags,
ArrayRef<Use> CallArgs, ArrayRef<Use> TransitionArgs,
ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Use, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
DeoptArgs, GCArgs, Name);
}
CallInst *IRBuilderBase::CreateGCStatepointCall(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee,
ArrayRef<Use> CallArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointCallCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualCallee, uint32_t(StatepointFlags::None),
CallArgs, None, DeoptArgs, GCArgs, Name);
}
template <typename T0, typename T1, typename T2, typename T3>
static InvokeInst *CreateGCStatepointInvokeCommon(
IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes,
Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest,
uint32_t Flags, ArrayRef<T0> InvokeArgs, ArrayRef<T1> TransitionArgs,
ArrayRef<T2> DeoptArgs, ArrayRef<T3> GCArgs, const Twine &Name) {
// Extract out the type of the callee.
auto *FuncPtrType = cast<PointerType>(ActualInvokee->getType());
assert(isa<FunctionType>(FuncPtrType->getElementType()) &&
"actual callee must be a callable value");
Module *M = Builder->GetInsertBlock()->getParent()->getParent();
// Fill in the one generic type'd argument (the function is also vararg)
Function *FnStatepoint = Intrinsic::getDeclaration(
M, Intrinsic::experimental_gc_statepoint, {FuncPtrType});
std::vector<Value *> Args =
getStatepointArgs(*Builder, ID, NumPatchBytes, ActualInvokee, Flags,
InvokeArgs, TransitionArgs, DeoptArgs, GCArgs);
return createInvokeHelper(FnStatepoint, NormalDest, UnwindDest, Args, Builder,
Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest,
ArrayRef<Value *> InvokeArgs, ArrayRef<Value *> DeoptArgs,
ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Value *, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None /* No Transition Args*/,
DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Use, Use, Use, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
}
InvokeInst *IRBuilderBase::CreateGCStatepointInvoke(
uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name) {
return CreateGCStatepointInvokeCommon<Use, Value *, Value *, Value *>(
this, ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
uint32_t(StatepointFlags::None), InvokeArgs, None, DeoptArgs, GCArgs,
Name);
}
CallInst *IRBuilderBase::CreateGCResult(Instruction *Statepoint,
Type *ResultType,
const Twine &Name) {
Intrinsic::ID ID = Intrinsic::experimental_gc_result;
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Function *FnGCResult = Intrinsic::getDeclaration(M, ID, Types);
Value *Args[] = {Statepoint};
return createCallHelper(FnGCResult, Args, this, Name);
}
CallInst *IRBuilderBase::CreateGCRelocate(Instruction *Statepoint,
int BaseOffset,
int DerivedOffset,
Type *ResultType,
const Twine &Name) {
Module *M = BB->getParent()->getParent();
Type *Types[] = {ResultType};
Function *FnGCRelocate =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Value *Args[] = {Statepoint,
getInt32(BaseOffset),
getInt32(DerivedOffset)};
return createCallHelper(FnGCRelocate, Args, this, Name);
}
CallInst *IRBuilderBase::CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, {V->getType()});
return createCallHelper(Fn, {V}, this, Name, FMFSource);
}
CallInst *IRBuilderBase::CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS,
Value *RHS,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, { LHS->getType() });
return createCallHelper(Fn, {LHS, RHS}, this, Name, FMFSource);
}
CallInst *IRBuilderBase::CreateIntrinsic(Intrinsic::ID ID,
ArrayRef<Type *> Types,
ArrayRef<Value *> Args,
Instruction *FMFSource,
const Twine &Name) {
Module *M = BB->getModule();
Function *Fn = Intrinsic::getDeclaration(M, ID, Types);
return createCallHelper(Fn, Args, this, Name, FMFSource);
}