1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/tools/llvm-profgen/ProfiledBinary.cpp
wlei db7fa377e4 [CSSPGO][llvm-profgen] Context-sensitive profile data generation
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.

This change supports context-sensitive profile data generation into llvm-profgen. With simultaneous sampling for LBR and call stack, we can identify leaf of LBR sample with calling context from stack sample . During the process of deriving fall through path from LBR entries, we unwind LBR by replaying all the calls and returns (including implicit calls/returns due to inlining) backwards on top of the sampled call stack. Then the state of call stack as we unwind through LBR always represents the calling context of current fall through path.

we have two types of virtual unwinding 1) LBR unwinding and 2) linear range unwinding.
Specifically, for each LBR entry which can be classified into call, return, regular branch, LBR unwinding will replay the operation by pushing, popping or switching leaf frame towards the call stack and since the initial call stack is most recently sampled, the replay should be in anti-execution order, i.e. for the regular case, pop the call stack when LBR is call, push frame on call stack when LBR is return. After each LBR processed, it also needs to align with the next LBR by going through instructions from previous LBR's target to current LBR's source, which we named linear unwinding. As instruction from linear range can come from different function by inlining, linear unwinding will do the range splitting and record counters through the range with same inline context.

With each fall through path from LBR unwinding, we aggregate each sample into counters by the calling context and eventually generate full context sensitive profile (without relying on inlining) to driver compiler's PGO/FDO.

A breakdown of noteworthy changes:
- Added `HybridSample` class as the abstraction perf sample including LBR stack and call stack
* Extended `PerfReader` to implement auto-detect whether input perf script output contains CS profile, then do the parsing. Multiple `HybridSample` are extracted
* Speed up by aggregating  `HybridSample` into `AggregatedSamples`
* Added VirtualUnwinder that consumes aggregated  `HybridSample` and implements unwinding of calls, returns, and linear path that contains implicit call/return from inlining. Ranges and branches counters are aggregated by the calling context.
 Here calling context is string type, each context is a pair of function name and callsite location info, the whole context is like `main:1 @ foo:2 @ bar`.
* Added PorfileGenerater that accumulates counters by ranges unfolding or branch target mapping, then generates context-sensitive function profile including function body, inferring callee's head sample, callsite target samples, eventually records into ProfileMap.

* Leveraged LLVM build-in(`SampleProfWriter`) writer to support different serialization format with no stop
- `getCanonicalFnName` for callee name and name from ELF section
- Added regression test for both unwinding and profile generation

Test Plan:
ninja & ninja check-llvm

Reviewed By: hoy, wenlei, wmi

Differential Revision: https://reviews.llvm.org/D89723
2020-12-07 13:48:58 -08:00

398 lines
14 KiB
C++

//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfiledBinary.h"
#include "ErrorHandling.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#define DEBUG_TYPE "load-binary"
using namespace llvm;
using namespace sampleprof;
static cl::opt<bool> ShowDisassembly("show-disassembly", cl::ReallyHidden,
cl::init(false), cl::ZeroOrMore,
cl::desc("Print disassembled code."));
static cl::opt<bool> ShowSourceLocations("show-source-locations",
cl::ReallyHidden, cl::init(false),
cl::ZeroOrMore,
cl::desc("Print source locations."));
namespace llvm {
namespace sampleprof {
static const Target *getTarget(const ObjectFile *Obj) {
Triple TheTriple = Obj->makeTriple();
std::string Error;
std::string ArchName;
const Target *TheTarget =
TargetRegistry::lookupTarget(ArchName, TheTriple, Error);
if (!TheTarget)
exitWithError(Error, Obj->getFileName());
return TheTarget;
}
template <class ELFT>
static uint64_t getELFImageLMAForSec(const ELFFile<ELFT> &Obj,
const object::ELFSectionRef &Sec,
StringRef FileName) {
// Search for a PT_LOAD segment containing the requested section. Return this
// segment's p_addr as the image load address for the section.
const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName);
for (const typename ELFT::Phdr &Phdr : PhdrRange)
if ((Phdr.p_type == ELF::PT_LOAD) && (Phdr.p_vaddr <= Sec.getAddress()) &&
(Phdr.p_vaddr + Phdr.p_memsz > Sec.getAddress()))
// Segments will always be loaded at a page boundary.
return Phdr.p_paddr & ~(Phdr.p_align - 1U);
return 0;
}
// Get the image load address for a specific section. Note that an image is
// loaded by segments (a group of sections) and segments may not be consecutive
// in memory.
static uint64_t getELFImageLMAForSec(const object::ELFSectionRef &Sec) {
if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Sec.getObject()))
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
ELFObj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Sec.getObject()))
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
ELFObj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Sec.getObject()))
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec,
ELFObj->getFileName());
const auto *ELFObj = cast<ELF64BEObjectFile>(Sec.getObject());
return getELFImageLMAForSec(ELFObj->getELFFile(), Sec, ELFObj->getFileName());
}
void ProfiledBinary::load() {
// Attempt to open the binary.
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
Binary &Binary = *OBinary.getBinary();
auto *Obj = dyn_cast<ELFObjectFileBase>(&Binary);
if (!Obj)
exitWithError("not a valid Elf image", Path);
TheTriple = Obj->makeTriple();
// Current only support X86
if (!TheTriple.isX86())
exitWithError("unsupported target", TheTriple.getTriple());
LLVM_DEBUG(dbgs() << "Loading " << Path << "\n");
// Find the preferred base address for text sections.
setPreferredBaseAddress(Obj);
// Disassemble the text sections.
disassemble(Obj);
// Use function start and return address to infer prolog and epilog
ProEpilogTracker.inferPrologOffsets(FuncStartAddrMap);
ProEpilogTracker.inferEpilogOffsets(RetAddrs);
// TODO: decode other sections.
return;
}
bool ProfiledBinary::inlineContextEqual(uint64_t Address1,
uint64_t Address2) const {
uint64_t Offset1 = virtualAddrToOffset(Address1);
uint64_t Offset2 = virtualAddrToOffset(Address2);
const FrameLocationStack &Context1 = getFrameLocationStack(Offset1);
const FrameLocationStack &Context2 = getFrameLocationStack(Offset2);
if (Context1.size() != Context2.size())
return false;
// The leaf frame contains location within the leaf, and it
// needs to be remove that as it's not part of the calling context
return std::equal(Context1.begin(), Context1.begin() + Context1.size() - 1,
Context2.begin(), Context2.begin() + Context2.size() - 1);
}
std::string
ProfiledBinary::getExpandedContextStr(const std::list<uint64_t> &Stack) const {
std::string ContextStr;
SmallVector<std::string, 8> ContextVec;
// Process from frame root to leaf
for (auto Iter = Stack.rbegin(); Iter != Stack.rend(); Iter++) {
uint64_t Offset = virtualAddrToOffset(*Iter);
const FrameLocationStack &ExpandedContext = getFrameLocationStack(Offset);
for (const auto &Loc : ExpandedContext) {
ContextVec.push_back(getCallSite(Loc));
}
}
assert(ContextVec.size() && "Context length should be at least 1");
std::ostringstream OContextStr;
for (uint32_t I = 0; I < (uint32_t)ContextVec.size(); I++) {
if (OContextStr.str().size()) {
OContextStr << " @ ";
}
if (I == ContextVec.size() - 1) {
// Only keep the function name for the leaf frame
StringRef Ref(ContextVec[I]);
OContextStr << Ref.split(":").first.str();
} else {
OContextStr << ContextVec[I];
}
}
return OContextStr.str();
}
void ProfiledBinary::setPreferredBaseAddress(const ELFObjectFileBase *Obj) {
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
if (Section.isText()) {
PreferredBaseAddress = getELFImageLMAForSec(Section);
return;
}
}
exitWithError("no text section found", Obj->getFileName());
}
bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols,
const SectionRef &Section) {
std::size_t SE = Symbols.size();
uint64_t SectionOffset = Section.getAddress() - PreferredBaseAddress;
uint64_t SectSize = Section.getSize();
uint64_t StartOffset = Symbols[SI].Addr - PreferredBaseAddress;
uint64_t EndOffset = (SI + 1 < SE)
? Symbols[SI + 1].Addr - PreferredBaseAddress
: SectionOffset + SectSize;
if (StartOffset >= EndOffset)
return true;
std::string &&SymbolName = Symbols[SI].Name.str();
if (ShowDisassembly)
outs() << '<' << SymbolName << ">:\n";
uint64_t Offset = StartOffset;
while (Offset < EndOffset) {
MCInst Inst;
uint64_t Size;
// Disassemble an instruction.
if (!DisAsm->getInstruction(Inst, Size, Bytes.slice(Offset - SectionOffset),
Offset + PreferredBaseAddress, nulls()))
return false;
if (ShowDisassembly) {
outs() << format("%8" PRIx64 ":", Offset);
size_t Start = outs().tell();
IPrinter->printInst(&Inst, Offset + Size, "", *STI.get(), outs());
if (ShowSourceLocations) {
unsigned Cur = outs().tell() - Start;
if (Cur < 40)
outs().indent(40 - Cur);
InstructionPointer Inst(this, Offset);
outs() << getReversedLocWithContext(symbolize(Inst));
}
outs() << "\n";
}
const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode());
// Populate a vector of the symbolized callsite at this location
InstructionPointer IP(this, Offset);
Offset2LocStackMap[Offset] = symbolize(IP, true);
// Populate address maps.
CodeAddrs.push_back(Offset);
if (MCDesc.isCall())
CallAddrs.insert(Offset);
else if (MCDesc.isReturn())
RetAddrs.insert(Offset);
Offset += Size;
}
if (ShowDisassembly)
outs() << "\n";
FuncStartAddrMap[StartOffset] = Symbols[SI].Name.str();
return true;
}
void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) {
const Target *TheTarget = getTarget(Obj);
std::string TripleName = TheTriple.getTriple();
StringRef FileName = Obj->getFileName();
MRI.reset(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
exitWithError("no register info for target " + TripleName, FileName);
MCTargetOptions MCOptions;
AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!AsmInfo)
exitWithError("no assembly info for target " + TripleName, FileName);
SubtargetFeatures Features = Obj->getFeatures();
STI.reset(
TheTarget->createMCSubtargetInfo(TripleName, "", Features.getString()));
if (!STI)
exitWithError("no subtarget info for target " + TripleName, FileName);
MII.reset(TheTarget->createMCInstrInfo());
if (!MII)
exitWithError("no instruction info for target " + TripleName, FileName);
MCObjectFileInfo MOFI;
MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm)
exitWithError("no disassembler for target " + TripleName, FileName);
MIA.reset(TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
IPrinter.reset(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
IPrinter->setPrintBranchImmAsAddress(true);
}
void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) {
// Set up disassembler and related components.
setUpDisassembler(Obj);
// Create a mapping from virtual address to symbol name. The symbols in text
// sections are the candidates to dissassemble.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
StringRef FileName = Obj->getFileName();
for (const SymbolRef &Symbol : Obj->symbols()) {
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj->section_end())
AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE));
}
// Sort all the symbols. Use a stable sort to stabilize the output.
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
stable_sort(SecSyms.second);
if (ShowDisassembly)
outs() << "\nDisassembly of " << FileName << ":\n";
// Dissassemble a text section.
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
if (!Section.isText())
continue;
uint64_t ImageLoadAddr = PreferredBaseAddress;
uint64_t SectionOffset = Section.getAddress() - ImageLoadAddr;
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Register the text section.
TextSections.insert({SectionOffset, SectSize});
if (ShowDisassembly) {
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
outs() << "\nDisassembly of section " << SectionName;
outs() << " [" << format("0x%" PRIx64, SectionOffset) << ", "
<< format("0x%" PRIx64, SectionOffset + SectSize) << "]:\n\n";
}
// Get the section data.
ArrayRef<uint8_t> Bytes =
arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName));
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
// Disassemble symbol by symbol.
for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
if (!dissassembleSymbol(SI, Bytes, Symbols, Section))
exitWithError("disassembling error", FileName);
}
}
}
void ProfiledBinary::setupSymbolizer() {
symbolize::LLVMSymbolizer::Options SymbolizerOpts;
SymbolizerOpts.PrintFunctions =
DILineInfoSpecifier::FunctionNameKind::LinkageName;
SymbolizerOpts.Demangle = false;
SymbolizerOpts.DefaultArch = TheTriple.getArchName().str();
SymbolizerOpts.UseSymbolTable = false;
SymbolizerOpts.RelativeAddresses = false;
Symbolizer = std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts);
}
FrameLocationStack ProfiledBinary::symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName) {
assert(this == IP.Binary &&
"Binary should only symbolize its own instruction");
auto Addr = object::SectionedAddress{IP.Offset + PreferredBaseAddress,
object::SectionedAddress::UndefSection};
DIInliningInfo InlineStack =
unwrapOrError(Symbolizer->symbolizeInlinedCode(Path, Addr), getName());
FrameLocationStack CallStack;
for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) {
const auto &CallerFrame = InlineStack.getFrame(I);
if (CallerFrame.FunctionName == "<invalid>")
break;
StringRef FunctionName(CallerFrame.FunctionName);
if (UseCanonicalFnName)
FunctionName = FunctionSamples::getCanonicalFnName(FunctionName);
LineLocation Line(CallerFrame.Line - CallerFrame.StartLine,
CallerFrame.Discriminator);
FrameLocation Callsite(FunctionName.str(), Line);
CallStack.push_back(Callsite);
}
return CallStack;
}
InstructionPointer::InstructionPointer(ProfiledBinary *Binary, uint64_t Address,
bool RoundToNext)
: Binary(Binary), Address(Address) {
Index = Binary->getIndexForAddr(Address);
if (RoundToNext) {
// we might get address which is not the code
// it should round to the next valid address
this->Address = Binary->getAddressforIndex(Index);
}
}
void InstructionPointer::advance() {
Index++;
Address = Binary->getAddressforIndex(Index);
}
void InstructionPointer::backward() {
Index--;
Address = Binary->getAddressforIndex(Index);
}
void InstructionPointer::update(uint64_t Addr) {
Address = Addr;
Index = Binary->getIndexForAddr(Address);
}
} // end namespace sampleprof
} // end namespace llvm