mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
e67d8322ba
This reverts commit rGfaff707db82d. A failure found on an ARM 2-stage buildbot. The investigation is needed.
399 lines
15 KiB
C++
399 lines
15 KiB
C++
//===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the TargetMachine and LLVMTargetMachine classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETMACHINE_H
|
|
#define LLVM_TARGET_TARGETMACHINE_H
|
|
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
|
|
class Function;
|
|
class GlobalValue;
|
|
class MachineModuleInfoWrapperPass;
|
|
class Mangler;
|
|
class MCAsmInfo;
|
|
class MCContext;
|
|
class MCInstrInfo;
|
|
class MCRegisterInfo;
|
|
class MCSubtargetInfo;
|
|
class MCSymbol;
|
|
class raw_pwrite_stream;
|
|
class PassManagerBuilder;
|
|
struct PerFunctionMIParsingState;
|
|
class SMDiagnostic;
|
|
class SMRange;
|
|
class Target;
|
|
class TargetIntrinsicInfo;
|
|
class TargetIRAnalysis;
|
|
class TargetTransformInfo;
|
|
class TargetLoweringObjectFile;
|
|
class TargetPassConfig;
|
|
class TargetSubtargetInfo;
|
|
|
|
// The old pass manager infrastructure is hidden in a legacy namespace now.
|
|
namespace legacy {
|
|
class PassManagerBase;
|
|
}
|
|
using legacy::PassManagerBase;
|
|
|
|
namespace yaml {
|
|
struct MachineFunctionInfo;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Primary interface to the complete machine description for the target
|
|
/// machine. All target-specific information should be accessible through this
|
|
/// interface.
|
|
///
|
|
class TargetMachine {
|
|
protected: // Can only create subclasses.
|
|
TargetMachine(const Target &T, StringRef DataLayoutString,
|
|
const Triple &TargetTriple, StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options);
|
|
|
|
/// The Target that this machine was created for.
|
|
const Target &TheTarget;
|
|
|
|
/// DataLayout for the target: keep ABI type size and alignment.
|
|
///
|
|
/// The DataLayout is created based on the string representation provided
|
|
/// during construction. It is kept here only to avoid reparsing the string
|
|
/// but should not really be used during compilation, because it has an
|
|
/// internal cache that is context specific.
|
|
const DataLayout DL;
|
|
|
|
/// Triple string, CPU name, and target feature strings the TargetMachine
|
|
/// instance is created with.
|
|
Triple TargetTriple;
|
|
std::string TargetCPU;
|
|
std::string TargetFS;
|
|
|
|
Reloc::Model RM = Reloc::Static;
|
|
CodeModel::Model CMModel = CodeModel::Small;
|
|
CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
|
|
|
|
/// Contains target specific asm information.
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo;
|
|
std::unique_ptr<const MCRegisterInfo> MRI;
|
|
std::unique_ptr<const MCInstrInfo> MII;
|
|
std::unique_ptr<const MCSubtargetInfo> STI;
|
|
|
|
unsigned RequireStructuredCFG : 1;
|
|
unsigned O0WantsFastISel : 1;
|
|
|
|
public:
|
|
const TargetOptions DefaultOptions;
|
|
mutable TargetOptions Options;
|
|
|
|
TargetMachine(const TargetMachine &) = delete;
|
|
void operator=(const TargetMachine &) = delete;
|
|
virtual ~TargetMachine();
|
|
|
|
const Target &getTarget() const { return TheTarget; }
|
|
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
StringRef getTargetCPU() const { return TargetCPU; }
|
|
StringRef getTargetFeatureString() const { return TargetFS; }
|
|
|
|
/// Virtual method implemented by subclasses that returns a reference to that
|
|
/// target's TargetSubtargetInfo-derived member variable.
|
|
virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
|
|
return nullptr;
|
|
}
|
|
virtual TargetLoweringObjectFile *getObjFileLowering() const {
|
|
return nullptr;
|
|
}
|
|
|
|
/// Allocate and return a default initialized instance of the YAML
|
|
/// representation for the MachineFunctionInfo.
|
|
virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
|
|
return nullptr;
|
|
}
|
|
|
|
/// Allocate and initialize an instance of the YAML representation of the
|
|
/// MachineFunctionInfo.
|
|
virtual yaml::MachineFunctionInfo *
|
|
convertFuncInfoToYAML(const MachineFunction &MF) const {
|
|
return nullptr;
|
|
}
|
|
|
|
/// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
|
|
virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
|
|
PerFunctionMIParsingState &PFS,
|
|
SMDiagnostic &Error,
|
|
SMRange &SourceRange) const {
|
|
return false;
|
|
}
|
|
|
|
/// This method returns a pointer to the specified type of
|
|
/// TargetSubtargetInfo. In debug builds, it verifies that the object being
|
|
/// returned is of the correct type.
|
|
template <typename STC> const STC &getSubtarget(const Function &F) const {
|
|
return *static_cast<const STC*>(getSubtargetImpl(F));
|
|
}
|
|
|
|
/// Create a DataLayout.
|
|
const DataLayout createDataLayout() const { return DL; }
|
|
|
|
/// Test if a DataLayout if compatible with the CodeGen for this target.
|
|
///
|
|
/// The LLVM Module owns a DataLayout that is used for the target independent
|
|
/// optimizations and code generation. This hook provides a target specific
|
|
/// check on the validity of this DataLayout.
|
|
bool isCompatibleDataLayout(const DataLayout &Candidate) const {
|
|
return DL == Candidate;
|
|
}
|
|
|
|
/// Get the pointer size for this target.
|
|
///
|
|
/// This is the only time the DataLayout in the TargetMachine is used.
|
|
unsigned getPointerSize(unsigned AS) const {
|
|
return DL.getPointerSize(AS);
|
|
}
|
|
|
|
unsigned getPointerSizeInBits(unsigned AS) const {
|
|
return DL.getPointerSizeInBits(AS);
|
|
}
|
|
|
|
unsigned getProgramPointerSize() const {
|
|
return DL.getPointerSize(DL.getProgramAddressSpace());
|
|
}
|
|
|
|
unsigned getAllocaPointerSize() const {
|
|
return DL.getPointerSize(DL.getAllocaAddrSpace());
|
|
}
|
|
|
|
/// Reset the target options based on the function's attributes.
|
|
// FIXME: Remove TargetOptions that affect per-function code generation
|
|
// from TargetMachine.
|
|
void resetTargetOptions(const Function &F) const;
|
|
|
|
/// Return target specific asm information.
|
|
const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
|
|
|
|
const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
|
|
const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
|
|
const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
|
|
|
|
/// If intrinsic information is available, return it. If not, return null.
|
|
virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool requiresStructuredCFG() const { return RequireStructuredCFG; }
|
|
void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
|
|
|
|
/// Returns the code generation relocation model. The choices are static, PIC,
|
|
/// and dynamic-no-pic, and target default.
|
|
Reloc::Model getRelocationModel() const;
|
|
|
|
/// Returns the code model. The choices are small, kernel, medium, large, and
|
|
/// target default.
|
|
CodeModel::Model getCodeModel() const;
|
|
|
|
bool isPositionIndependent() const;
|
|
|
|
bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
|
|
|
|
/// Returns true if this target uses emulated TLS.
|
|
bool useEmulatedTLS() const;
|
|
|
|
/// Returns the TLS model which should be used for the given global variable.
|
|
TLSModel::Model getTLSModel(const GlobalValue *GV) const;
|
|
|
|
/// Returns the optimization level: None, Less, Default, or Aggressive.
|
|
CodeGenOpt::Level getOptLevel() const;
|
|
|
|
/// Overrides the optimization level.
|
|
void setOptLevel(CodeGenOpt::Level Level);
|
|
|
|
void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
|
|
bool getO0WantsFastISel() { return O0WantsFastISel; }
|
|
void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
|
|
void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
|
|
void setGlobalISelAbort(GlobalISelAbortMode Mode) {
|
|
Options.GlobalISelAbort = Mode;
|
|
}
|
|
void setMachineOutliner(bool Enable) {
|
|
Options.EnableMachineOutliner = Enable;
|
|
}
|
|
void setSupportsDefaultOutlining(bool Enable) {
|
|
Options.SupportsDefaultOutlining = Enable;
|
|
}
|
|
|
|
bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
|
|
|
|
bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
|
|
|
|
/// Return true if data objects should be emitted into their own section,
|
|
/// corresponds to -fdata-sections.
|
|
bool getDataSections() const {
|
|
return Options.DataSections;
|
|
}
|
|
|
|
/// Return true if functions should be emitted into their own section,
|
|
/// corresponding to -ffunction-sections.
|
|
bool getFunctionSections() const {
|
|
return Options.FunctionSections;
|
|
}
|
|
|
|
/// Get a \c TargetIRAnalysis appropriate for the target.
|
|
///
|
|
/// This is used to construct the new pass manager's target IR analysis pass,
|
|
/// set up appropriately for this target machine. Even the old pass manager
|
|
/// uses this to answer queries about the IR.
|
|
TargetIRAnalysis getTargetIRAnalysis();
|
|
|
|
/// Return a TargetTransformInfo for a given function.
|
|
///
|
|
/// The returned TargetTransformInfo is specialized to the subtarget
|
|
/// corresponding to \p F.
|
|
virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
|
|
|
|
/// Allow the target to modify the pass manager, e.g. by calling
|
|
/// PassManagerBuilder::addExtension.
|
|
virtual void adjustPassManager(PassManagerBuilder &) {}
|
|
|
|
/// Add passes to the specified pass manager to get the specified file
|
|
/// emitted. Typically this will involve several steps of code generation.
|
|
/// This method should return true if emission of this file type is not
|
|
/// supported, or false on success.
|
|
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
|
|
/// will be used to set the MachineModuloInfo for this PM.
|
|
virtual bool
|
|
addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
|
|
raw_pwrite_stream *, CodeGenFileType,
|
|
bool /*DisableVerify*/ = true,
|
|
MachineModuleInfoWrapperPass *MMIWP = nullptr) {
|
|
return true;
|
|
}
|
|
|
|
/// Add passes to the specified pass manager to get machine code emitted with
|
|
/// the MCJIT. This method returns true if machine code is not supported. It
|
|
/// fills the MCContext Ctx pointer which can be used to build custom
|
|
/// MCStreamer.
|
|
///
|
|
virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
|
|
raw_pwrite_stream &,
|
|
bool /*DisableVerify*/ = true) {
|
|
return true;
|
|
}
|
|
|
|
/// True if subtarget inserts the final scheduling pass on its own.
|
|
///
|
|
/// Branch relaxation, which must happen after block placement, can
|
|
/// on some targets (e.g. SystemZ) expose additional post-RA
|
|
/// scheduling opportunities.
|
|
virtual bool targetSchedulesPostRAScheduling() const { return false; };
|
|
|
|
void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
|
|
Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
|
|
MCSymbol *getSymbol(const GlobalValue *GV) const;
|
|
};
|
|
|
|
/// This class describes a target machine that is implemented with the LLVM
|
|
/// target-independent code generator.
|
|
///
|
|
class LLVMTargetMachine : public TargetMachine {
|
|
protected: // Can only create subclasses.
|
|
LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
|
|
const Triple &TT, StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options, Reloc::Model RM,
|
|
CodeModel::Model CM, CodeGenOpt::Level OL);
|
|
|
|
void initAsmInfo();
|
|
|
|
public:
|
|
/// Get a TargetTransformInfo implementation for the target.
|
|
///
|
|
/// The TTI returned uses the common code generator to answer queries about
|
|
/// the IR.
|
|
TargetTransformInfo getTargetTransformInfo(const Function &F) override;
|
|
|
|
/// Create a pass configuration object to be used by addPassToEmitX methods
|
|
/// for generating a pipeline of CodeGen passes.
|
|
virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
|
|
|
|
/// Add passes to the specified pass manager to get the specified file
|
|
/// emitted. Typically this will involve several steps of code generation.
|
|
/// \p MMIWP is an optional parameter that, if set to non-nullptr,
|
|
/// will be used to set the MachineModuloInfo for this PM.
|
|
bool
|
|
addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
|
|
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
|
|
bool DisableVerify = true,
|
|
MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
|
|
|
|
/// Add passes to the specified pass manager to get machine code emitted with
|
|
/// the MCJIT. This method returns true if machine code is not supported. It
|
|
/// fills the MCContext Ctx pointer which can be used to build custom
|
|
/// MCStreamer.
|
|
bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
|
|
raw_pwrite_stream &Out,
|
|
bool DisableVerify = true) override;
|
|
|
|
/// Returns true if the target is expected to pass all machine verifier
|
|
/// checks. This is a stopgap measure to fix targets one by one. We will
|
|
/// remove this at some point and always enable the verifier when
|
|
/// EXPENSIVE_CHECKS is enabled.
|
|
virtual bool isMachineVerifierClean() const { return true; }
|
|
|
|
/// Adds an AsmPrinter pass to the pipeline that prints assembly or
|
|
/// machine code from the MI representation.
|
|
bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
|
|
raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
|
|
MCContext &Context);
|
|
|
|
/// True if the target uses physical regs (as nearly all targets do). False
|
|
/// for stack machines such as WebAssembly and other virtual-register
|
|
/// machines. If true, all vregs must be allocated before PEI. If false, then
|
|
/// callee-save register spilling and scavenging are not needed or used. If
|
|
/// false, implicitly defined registers will still be assumed to be physical
|
|
/// registers, except that variadic defs will be allocated vregs.
|
|
virtual bool usesPhysRegsForValues() const { return true; }
|
|
|
|
/// True if the target wants to use interprocedural register allocation by
|
|
/// default. The -enable-ipra flag can be used to override this.
|
|
virtual bool useIPRA() const {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// Helper method for getting the code model, returning Default if
|
|
/// CM does not have a value. The tiny and kernel models will produce
|
|
/// an error, so targets that support them or require more complex codemodel
|
|
/// selection logic should implement and call their own getEffectiveCodeModel.
|
|
inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
|
|
CodeModel::Model Default) {
|
|
if (CM) {
|
|
// By default, targets do not support the tiny and kernel models.
|
|
if (*CM == CodeModel::Tiny)
|
|
report_fatal_error("Target does not support the tiny CodeModel", false);
|
|
if (*CM == CodeModel::Kernel)
|
|
report_fatal_error("Target does not support the kernel CodeModel", false);
|
|
return *CM;
|
|
}
|
|
return Default;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TARGET_TARGETMACHINE_H
|