mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
9a8d215400
Use range-based for loops in TableGen. Reviewed By: Paul-C-Anagnostopoulos Differential Revision: https://reviews.llvm.org/D101994
3979 lines
152 KiB
C++
3979 lines
152 KiB
C++
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a target specifier matcher for converting parsed
|
|
// assembly operands in the MCInst structures. It also emits a matcher for
|
|
// custom operand parsing.
|
|
//
|
|
// Converting assembly operands into MCInst structures
|
|
// ---------------------------------------------------
|
|
//
|
|
// The input to the target specific matcher is a list of literal tokens and
|
|
// operands. The target specific parser should generally eliminate any syntax
|
|
// which is not relevant for matching; for example, comma tokens should have
|
|
// already been consumed and eliminated by the parser. Most instructions will
|
|
// end up with a single literal token (the instruction name) and some number of
|
|
// operands.
|
|
//
|
|
// Some example inputs, for X86:
|
|
// 'addl' (immediate ...) (register ...)
|
|
// 'add' (immediate ...) (memory ...)
|
|
// 'call' '*' %epc
|
|
//
|
|
// The assembly matcher is responsible for converting this input into a precise
|
|
// machine instruction (i.e., an instruction with a well defined encoding). This
|
|
// mapping has several properties which complicate matching:
|
|
//
|
|
// - It may be ambiguous; many architectures can legally encode particular
|
|
// variants of an instruction in different ways (for example, using a smaller
|
|
// encoding for small immediates). Such ambiguities should never be
|
|
// arbitrarily resolved by the assembler, the assembler is always responsible
|
|
// for choosing the "best" available instruction.
|
|
//
|
|
// - It may depend on the subtarget or the assembler context. Instructions
|
|
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
|
|
// an SSE instruction in a file being assembled for i486) should be accepted
|
|
// and rejected by the assembler front end. However, if the proper encoding
|
|
// for an instruction is dependent on the assembler context then the matcher
|
|
// is responsible for selecting the correct machine instruction for the
|
|
// current mode.
|
|
//
|
|
// The core matching algorithm attempts to exploit the regularity in most
|
|
// instruction sets to quickly determine the set of possibly matching
|
|
// instructions, and the simplify the generated code. Additionally, this helps
|
|
// to ensure that the ambiguities are intentionally resolved by the user.
|
|
//
|
|
// The matching is divided into two distinct phases:
|
|
//
|
|
// 1. Classification: Each operand is mapped to the unique set which (a)
|
|
// contains it, and (b) is the largest such subset for which a single
|
|
// instruction could match all members.
|
|
//
|
|
// For register classes, we can generate these subgroups automatically. For
|
|
// arbitrary operands, we expect the user to define the classes and their
|
|
// relations to one another (for example, 8-bit signed immediates as a
|
|
// subset of 32-bit immediates).
|
|
//
|
|
// By partitioning the operands in this way, we guarantee that for any
|
|
// tuple of classes, any single instruction must match either all or none
|
|
// of the sets of operands which could classify to that tuple.
|
|
//
|
|
// In addition, the subset relation amongst classes induces a partial order
|
|
// on such tuples, which we use to resolve ambiguities.
|
|
//
|
|
// 2. The input can now be treated as a tuple of classes (static tokens are
|
|
// simple singleton sets). Each such tuple should generally map to a single
|
|
// instruction (we currently ignore cases where this isn't true, whee!!!),
|
|
// which we can emit a simple matcher for.
|
|
//
|
|
// Custom Operand Parsing
|
|
// ----------------------
|
|
//
|
|
// Some targets need a custom way to parse operands, some specific instructions
|
|
// can contain arguments that can represent processor flags and other kinds of
|
|
// identifiers that need to be mapped to specific values in the final encoded
|
|
// instructions. The target specific custom operand parsing works in the
|
|
// following way:
|
|
//
|
|
// 1. A operand match table is built, each entry contains a mnemonic, an
|
|
// operand class, a mask for all operand positions for that same
|
|
// class/mnemonic and target features to be checked while trying to match.
|
|
//
|
|
// 2. The operand matcher will try every possible entry with the same
|
|
// mnemonic and will check if the target feature for this mnemonic also
|
|
// matches. After that, if the operand to be matched has its index
|
|
// present in the mask, a successful match occurs. Otherwise, fallback
|
|
// to the regular operand parsing.
|
|
//
|
|
// 3. For a match success, each operand class that has a 'ParserMethod'
|
|
// becomes part of a switch from where the custom method is called.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTarget.h"
|
|
#include "SubtargetFeatureInfo.h"
|
|
#include "Types.h"
|
|
#include "llvm/ADT/CachedHashString.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/StringMatcher.h"
|
|
#include "llvm/TableGen/StringToOffsetTable.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <forward_list>
|
|
#include <map>
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "asm-matcher-emitter"
|
|
|
|
cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
|
|
|
|
static cl::opt<std::string>
|
|
MatchPrefix("match-prefix", cl::init(""),
|
|
cl::desc("Only match instructions with the given prefix"),
|
|
cl::cat(AsmMatcherEmitterCat));
|
|
|
|
namespace {
|
|
class AsmMatcherInfo;
|
|
|
|
// Register sets are used as keys in some second-order sets TableGen creates
|
|
// when generating its data structures. This means that the order of two
|
|
// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
|
|
// can even affect compiler output (at least seen in diagnostics produced when
|
|
// all matches fail). So we use a type that sorts them consistently.
|
|
typedef std::set<Record*, LessRecordByID> RegisterSet;
|
|
|
|
class AsmMatcherEmitter {
|
|
RecordKeeper &Records;
|
|
public:
|
|
AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
|
|
|
|
void run(raw_ostream &o);
|
|
};
|
|
|
|
/// ClassInfo - Helper class for storing the information about a particular
|
|
/// class of operands which can be matched.
|
|
struct ClassInfo {
|
|
enum ClassInfoKind {
|
|
/// Invalid kind, for use as a sentinel value.
|
|
Invalid = 0,
|
|
|
|
/// The class for a particular token.
|
|
Token,
|
|
|
|
/// The (first) register class, subsequent register classes are
|
|
/// RegisterClass0+1, and so on.
|
|
RegisterClass0,
|
|
|
|
/// The (first) user defined class, subsequent user defined classes are
|
|
/// UserClass0+1, and so on.
|
|
UserClass0 = 1<<16
|
|
};
|
|
|
|
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
|
|
/// N) for the Nth user defined class.
|
|
unsigned Kind;
|
|
|
|
/// SuperClasses - The super classes of this class. Note that for simplicities
|
|
/// sake user operands only record their immediate super class, while register
|
|
/// operands include all superclasses.
|
|
std::vector<ClassInfo*> SuperClasses;
|
|
|
|
/// Name - The full class name, suitable for use in an enum.
|
|
std::string Name;
|
|
|
|
/// ClassName - The unadorned generic name for this class (e.g., Token).
|
|
std::string ClassName;
|
|
|
|
/// ValueName - The name of the value this class represents; for a token this
|
|
/// is the literal token string, for an operand it is the TableGen class (or
|
|
/// empty if this is a derived class).
|
|
std::string ValueName;
|
|
|
|
/// PredicateMethod - The name of the operand method to test whether the
|
|
/// operand matches this class; this is not valid for Token or register kinds.
|
|
std::string PredicateMethod;
|
|
|
|
/// RenderMethod - The name of the operand method to add this operand to an
|
|
/// MCInst; this is not valid for Token or register kinds.
|
|
std::string RenderMethod;
|
|
|
|
/// ParserMethod - The name of the operand method to do a target specific
|
|
/// parsing on the operand.
|
|
std::string ParserMethod;
|
|
|
|
/// For register classes: the records for all the registers in this class.
|
|
RegisterSet Registers;
|
|
|
|
/// For custom match classes: the diagnostic kind for when the predicate fails.
|
|
std::string DiagnosticType;
|
|
|
|
/// For custom match classes: the diagnostic string for when the predicate fails.
|
|
std::string DiagnosticString;
|
|
|
|
/// Is this operand optional and not always required.
|
|
bool IsOptional;
|
|
|
|
/// DefaultMethod - The name of the method that returns the default operand
|
|
/// for optional operand
|
|
std::string DefaultMethod;
|
|
|
|
public:
|
|
/// isRegisterClass() - Check if this is a register class.
|
|
bool isRegisterClass() const {
|
|
return Kind >= RegisterClass0 && Kind < UserClass0;
|
|
}
|
|
|
|
/// isUserClass() - Check if this is a user defined class.
|
|
bool isUserClass() const {
|
|
return Kind >= UserClass0;
|
|
}
|
|
|
|
/// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
|
|
/// are related if they are in the same class hierarchy.
|
|
bool isRelatedTo(const ClassInfo &RHS) const {
|
|
// Tokens are only related to tokens.
|
|
if (Kind == Token || RHS.Kind == Token)
|
|
return Kind == Token && RHS.Kind == Token;
|
|
|
|
// Registers classes are only related to registers classes, and only if
|
|
// their intersection is non-empty.
|
|
if (isRegisterClass() || RHS.isRegisterClass()) {
|
|
if (!isRegisterClass() || !RHS.isRegisterClass())
|
|
return false;
|
|
|
|
RegisterSet Tmp;
|
|
std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
|
|
std::set_intersection(Registers.begin(), Registers.end(),
|
|
RHS.Registers.begin(), RHS.Registers.end(),
|
|
II, LessRecordByID());
|
|
|
|
return !Tmp.empty();
|
|
}
|
|
|
|
// Otherwise we have two users operands; they are related if they are in the
|
|
// same class hierarchy.
|
|
//
|
|
// FIXME: This is an oversimplification, they should only be related if they
|
|
// intersect, however we don't have that information.
|
|
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
|
|
const ClassInfo *Root = this;
|
|
while (!Root->SuperClasses.empty())
|
|
Root = Root->SuperClasses.front();
|
|
|
|
const ClassInfo *RHSRoot = &RHS;
|
|
while (!RHSRoot->SuperClasses.empty())
|
|
RHSRoot = RHSRoot->SuperClasses.front();
|
|
|
|
return Root == RHSRoot;
|
|
}
|
|
|
|
/// isSubsetOf - Test whether this class is a subset of \p RHS.
|
|
bool isSubsetOf(const ClassInfo &RHS) const {
|
|
// This is a subset of RHS if it is the same class...
|
|
if (this == &RHS)
|
|
return true;
|
|
|
|
// ... or if any of its super classes are a subset of RHS.
|
|
SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
|
|
SuperClasses.end());
|
|
SmallPtrSet<const ClassInfo *, 16> Visited;
|
|
while (!Worklist.empty()) {
|
|
auto *CI = Worklist.pop_back_val();
|
|
if (CI == &RHS)
|
|
return true;
|
|
for (auto *Super : CI->SuperClasses)
|
|
if (Visited.insert(Super).second)
|
|
Worklist.push_back(Super);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int getTreeDepth() const {
|
|
int Depth = 0;
|
|
const ClassInfo *Root = this;
|
|
while (!Root->SuperClasses.empty()) {
|
|
Depth++;
|
|
Root = Root->SuperClasses.front();
|
|
}
|
|
return Depth;
|
|
}
|
|
|
|
const ClassInfo *findRoot() const {
|
|
const ClassInfo *Root = this;
|
|
while (!Root->SuperClasses.empty())
|
|
Root = Root->SuperClasses.front();
|
|
return Root;
|
|
}
|
|
|
|
/// Compare two classes. This does not produce a total ordering, but does
|
|
/// guarantee that subclasses are sorted before their parents, and that the
|
|
/// ordering is transitive.
|
|
bool operator<(const ClassInfo &RHS) const {
|
|
if (this == &RHS)
|
|
return false;
|
|
|
|
// First, enforce the ordering between the three different types of class.
|
|
// Tokens sort before registers, which sort before user classes.
|
|
if (Kind == Token) {
|
|
if (RHS.Kind != Token)
|
|
return true;
|
|
assert(RHS.Kind == Token);
|
|
} else if (isRegisterClass()) {
|
|
if (RHS.Kind == Token)
|
|
return false;
|
|
else if (RHS.isUserClass())
|
|
return true;
|
|
assert(RHS.isRegisterClass());
|
|
} else if (isUserClass()) {
|
|
if (!RHS.isUserClass())
|
|
return false;
|
|
assert(RHS.isUserClass());
|
|
} else {
|
|
llvm_unreachable("Unknown ClassInfoKind");
|
|
}
|
|
|
|
if (Kind == Token || isUserClass()) {
|
|
// Related tokens and user classes get sorted by depth in the inheritence
|
|
// tree (so that subclasses are before their parents).
|
|
if (isRelatedTo(RHS)) {
|
|
if (getTreeDepth() > RHS.getTreeDepth())
|
|
return true;
|
|
if (getTreeDepth() < RHS.getTreeDepth())
|
|
return false;
|
|
} else {
|
|
// Unrelated tokens and user classes are ordered by the name of their
|
|
// root nodes, so that there is a consistent ordering between
|
|
// unconnected trees.
|
|
return findRoot()->ValueName < RHS.findRoot()->ValueName;
|
|
}
|
|
} else if (isRegisterClass()) {
|
|
// For register sets, sort by number of registers. This guarantees that
|
|
// a set will always sort before all of it's strict supersets.
|
|
if (Registers.size() != RHS.Registers.size())
|
|
return Registers.size() < RHS.Registers.size();
|
|
} else {
|
|
llvm_unreachable("Unknown ClassInfoKind");
|
|
}
|
|
|
|
// FIXME: We should be able to just return false here, as we only need a
|
|
// partial order (we use stable sorts, so this is deterministic) and the
|
|
// name of a class shouldn't be significant. However, some of the backends
|
|
// accidentally rely on this behaviour, so it will have to stay like this
|
|
// until they are fixed.
|
|
return ValueName < RHS.ValueName;
|
|
}
|
|
};
|
|
|
|
class AsmVariantInfo {
|
|
public:
|
|
StringRef RegisterPrefix;
|
|
StringRef TokenizingCharacters;
|
|
StringRef SeparatorCharacters;
|
|
StringRef BreakCharacters;
|
|
StringRef Name;
|
|
int AsmVariantNo;
|
|
};
|
|
|
|
/// MatchableInfo - Helper class for storing the necessary information for an
|
|
/// instruction or alias which is capable of being matched.
|
|
struct MatchableInfo {
|
|
struct AsmOperand {
|
|
/// Token - This is the token that the operand came from.
|
|
StringRef Token;
|
|
|
|
/// The unique class instance this operand should match.
|
|
ClassInfo *Class;
|
|
|
|
/// The operand name this is, if anything.
|
|
StringRef SrcOpName;
|
|
|
|
/// The operand name this is, before renaming for tied operands.
|
|
StringRef OrigSrcOpName;
|
|
|
|
/// The suboperand index within SrcOpName, or -1 for the entire operand.
|
|
int SubOpIdx;
|
|
|
|
/// Whether the token is "isolated", i.e., it is preceded and followed
|
|
/// by separators.
|
|
bool IsIsolatedToken;
|
|
|
|
/// Register record if this token is singleton register.
|
|
Record *SingletonReg;
|
|
|
|
explicit AsmOperand(bool IsIsolatedToken, StringRef T)
|
|
: Token(T), Class(nullptr), SubOpIdx(-1),
|
|
IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
|
|
};
|
|
|
|
/// ResOperand - This represents a single operand in the result instruction
|
|
/// generated by the match. In cases (like addressing modes) where a single
|
|
/// assembler operand expands to multiple MCOperands, this represents the
|
|
/// single assembler operand, not the MCOperand.
|
|
struct ResOperand {
|
|
enum {
|
|
/// RenderAsmOperand - This represents an operand result that is
|
|
/// generated by calling the render method on the assembly operand. The
|
|
/// corresponding AsmOperand is specified by AsmOperandNum.
|
|
RenderAsmOperand,
|
|
|
|
/// TiedOperand - This represents a result operand that is a duplicate of
|
|
/// a previous result operand.
|
|
TiedOperand,
|
|
|
|
/// ImmOperand - This represents an immediate value that is dumped into
|
|
/// the operand.
|
|
ImmOperand,
|
|
|
|
/// RegOperand - This represents a fixed register that is dumped in.
|
|
RegOperand
|
|
} Kind;
|
|
|
|
/// Tuple containing the index of the (earlier) result operand that should
|
|
/// be copied from, as well as the indices of the corresponding (parsed)
|
|
/// operands in the asm string.
|
|
struct TiedOperandsTuple {
|
|
unsigned ResOpnd;
|
|
unsigned SrcOpnd1Idx;
|
|
unsigned SrcOpnd2Idx;
|
|
};
|
|
|
|
union {
|
|
/// This is the operand # in the AsmOperands list that this should be
|
|
/// copied from.
|
|
unsigned AsmOperandNum;
|
|
|
|
/// Description of tied operands.
|
|
TiedOperandsTuple TiedOperands;
|
|
|
|
/// ImmVal - This is the immediate value added to the instruction.
|
|
int64_t ImmVal;
|
|
|
|
/// Register - This is the register record.
|
|
Record *Register;
|
|
};
|
|
|
|
/// MINumOperands - The number of MCInst operands populated by this
|
|
/// operand.
|
|
unsigned MINumOperands;
|
|
|
|
static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
|
|
ResOperand X;
|
|
X.Kind = RenderAsmOperand;
|
|
X.AsmOperandNum = AsmOpNum;
|
|
X.MINumOperands = NumOperands;
|
|
return X;
|
|
}
|
|
|
|
static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
|
|
unsigned SrcOperand2) {
|
|
ResOperand X;
|
|
X.Kind = TiedOperand;
|
|
X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
|
|
X.MINumOperands = 1;
|
|
return X;
|
|
}
|
|
|
|
static ResOperand getImmOp(int64_t Val) {
|
|
ResOperand X;
|
|
X.Kind = ImmOperand;
|
|
X.ImmVal = Val;
|
|
X.MINumOperands = 1;
|
|
return X;
|
|
}
|
|
|
|
static ResOperand getRegOp(Record *Reg) {
|
|
ResOperand X;
|
|
X.Kind = RegOperand;
|
|
X.Register = Reg;
|
|
X.MINumOperands = 1;
|
|
return X;
|
|
}
|
|
};
|
|
|
|
/// AsmVariantID - Target's assembly syntax variant no.
|
|
int AsmVariantID;
|
|
|
|
/// AsmString - The assembly string for this instruction (with variants
|
|
/// removed), e.g. "movsx $src, $dst".
|
|
std::string AsmString;
|
|
|
|
/// TheDef - This is the definition of the instruction or InstAlias that this
|
|
/// matchable came from.
|
|
Record *const TheDef;
|
|
|
|
/// DefRec - This is the definition that it came from.
|
|
PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
|
|
|
|
const CodeGenInstruction *getResultInst() const {
|
|
if (DefRec.is<const CodeGenInstruction*>())
|
|
return DefRec.get<const CodeGenInstruction*>();
|
|
return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
|
|
}
|
|
|
|
/// ResOperands - This is the operand list that should be built for the result
|
|
/// MCInst.
|
|
SmallVector<ResOperand, 8> ResOperands;
|
|
|
|
/// Mnemonic - This is the first token of the matched instruction, its
|
|
/// mnemonic.
|
|
StringRef Mnemonic;
|
|
|
|
/// AsmOperands - The textual operands that this instruction matches,
|
|
/// annotated with a class and where in the OperandList they were defined.
|
|
/// This directly corresponds to the tokenized AsmString after the mnemonic is
|
|
/// removed.
|
|
SmallVector<AsmOperand, 8> AsmOperands;
|
|
|
|
/// Predicates - The required subtarget features to match this instruction.
|
|
SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
|
|
|
|
/// ConversionFnKind - The enum value which is passed to the generated
|
|
/// convertToMCInst to convert parsed operands into an MCInst for this
|
|
/// function.
|
|
std::string ConversionFnKind;
|
|
|
|
/// If this instruction is deprecated in some form.
|
|
bool HasDeprecation;
|
|
|
|
/// If this is an alias, this is use to determine whether or not to using
|
|
/// the conversion function defined by the instruction's AsmMatchConverter
|
|
/// or to use the function generated by the alias.
|
|
bool UseInstAsmMatchConverter;
|
|
|
|
MatchableInfo(const CodeGenInstruction &CGI)
|
|
: AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
|
|
UseInstAsmMatchConverter(true) {
|
|
}
|
|
|
|
MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
|
|
: AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
|
|
DefRec(Alias.release()),
|
|
UseInstAsmMatchConverter(
|
|
TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
|
|
}
|
|
|
|
// Could remove this and the dtor if PointerUnion supported unique_ptr
|
|
// elements with a dynamic failure/assertion (like the one below) in the case
|
|
// where it was copied while being in an owning state.
|
|
MatchableInfo(const MatchableInfo &RHS)
|
|
: AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
|
|
TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
|
|
Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
|
|
RequiredFeatures(RHS.RequiredFeatures),
|
|
ConversionFnKind(RHS.ConversionFnKind),
|
|
HasDeprecation(RHS.HasDeprecation),
|
|
UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
|
|
assert(!DefRec.is<const CodeGenInstAlias *>());
|
|
}
|
|
|
|
~MatchableInfo() {
|
|
delete DefRec.dyn_cast<const CodeGenInstAlias*>();
|
|
}
|
|
|
|
// Two-operand aliases clone from the main matchable, but mark the second
|
|
// operand as a tied operand of the first for purposes of the assembler.
|
|
void formTwoOperandAlias(StringRef Constraint);
|
|
|
|
void initialize(const AsmMatcherInfo &Info,
|
|
SmallPtrSetImpl<Record*> &SingletonRegisters,
|
|
AsmVariantInfo const &Variant,
|
|
bool HasMnemonicFirst);
|
|
|
|
/// validate - Return true if this matchable is a valid thing to match against
|
|
/// and perform a bunch of validity checking.
|
|
bool validate(StringRef CommentDelimiter, bool IsAlias) const;
|
|
|
|
/// findAsmOperand - Find the AsmOperand with the specified name and
|
|
/// suboperand index.
|
|
int findAsmOperand(StringRef N, int SubOpIdx) const {
|
|
auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
|
|
return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
|
|
});
|
|
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
|
|
}
|
|
|
|
/// findAsmOperandNamed - Find the first AsmOperand with the specified name.
|
|
/// This does not check the suboperand index.
|
|
int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
|
|
auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
|
|
[&](const AsmOperand &Op) { return Op.SrcOpName == N; });
|
|
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
|
|
}
|
|
|
|
int findAsmOperandOriginallyNamed(StringRef N) const {
|
|
auto I =
|
|
find_if(AsmOperands,
|
|
[&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
|
|
return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
|
|
}
|
|
|
|
void buildInstructionResultOperands();
|
|
void buildAliasResultOperands(bool AliasConstraintsAreChecked);
|
|
|
|
/// operator< - Compare two matchables.
|
|
bool operator<(const MatchableInfo &RHS) const {
|
|
// The primary comparator is the instruction mnemonic.
|
|
if (int Cmp = Mnemonic.compare_lower(RHS.Mnemonic))
|
|
return Cmp == -1;
|
|
|
|
if (AsmOperands.size() != RHS.AsmOperands.size())
|
|
return AsmOperands.size() < RHS.AsmOperands.size();
|
|
|
|
// Compare lexicographically by operand. The matcher validates that other
|
|
// orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
|
|
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
|
|
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
|
|
return true;
|
|
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
|
|
return false;
|
|
}
|
|
|
|
// Give matches that require more features higher precedence. This is useful
|
|
// because we cannot define AssemblerPredicates with the negation of
|
|
// processor features. For example, ARM v6 "nop" may be either a HINT or
|
|
// MOV. With v6, we want to match HINT. The assembler has no way to
|
|
// predicate MOV under "NoV6", but HINT will always match first because it
|
|
// requires V6 while MOV does not.
|
|
if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
|
|
return RequiredFeatures.size() > RHS.RequiredFeatures.size();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// couldMatchAmbiguouslyWith - Check whether this matchable could
|
|
/// ambiguously match the same set of operands as \p RHS (without being a
|
|
/// strictly superior match).
|
|
bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
|
|
// The primary comparator is the instruction mnemonic.
|
|
if (Mnemonic != RHS.Mnemonic)
|
|
return false;
|
|
|
|
// Different variants can't conflict.
|
|
if (AsmVariantID != RHS.AsmVariantID)
|
|
return false;
|
|
|
|
// The number of operands is unambiguous.
|
|
if (AsmOperands.size() != RHS.AsmOperands.size())
|
|
return false;
|
|
|
|
// Otherwise, make sure the ordering of the two instructions is unambiguous
|
|
// by checking that either (a) a token or operand kind discriminates them,
|
|
// or (b) the ordering among equivalent kinds is consistent.
|
|
|
|
// Tokens and operand kinds are unambiguous (assuming a correct target
|
|
// specific parser).
|
|
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
|
|
if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
|
|
AsmOperands[i].Class->Kind == ClassInfo::Token)
|
|
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
|
|
*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
|
|
return false;
|
|
|
|
// Otherwise, this operand could commute if all operands are equivalent, or
|
|
// there is a pair of operands that compare less than and a pair that
|
|
// compare greater than.
|
|
bool HasLT = false, HasGT = false;
|
|
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
|
|
if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
|
|
HasLT = true;
|
|
if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
|
|
HasGT = true;
|
|
}
|
|
|
|
return HasLT == HasGT;
|
|
}
|
|
|
|
void dump() const;
|
|
|
|
private:
|
|
void tokenizeAsmString(AsmMatcherInfo const &Info,
|
|
AsmVariantInfo const &Variant);
|
|
void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
|
|
};
|
|
|
|
struct OperandMatchEntry {
|
|
unsigned OperandMask;
|
|
const MatchableInfo* MI;
|
|
ClassInfo *CI;
|
|
|
|
static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
|
|
unsigned opMask) {
|
|
OperandMatchEntry X;
|
|
X.OperandMask = opMask;
|
|
X.CI = ci;
|
|
X.MI = mi;
|
|
return X;
|
|
}
|
|
};
|
|
|
|
class AsmMatcherInfo {
|
|
public:
|
|
/// Tracked Records
|
|
RecordKeeper &Records;
|
|
|
|
/// The tablegen AsmParser record.
|
|
Record *AsmParser;
|
|
|
|
/// Target - The target information.
|
|
CodeGenTarget &Target;
|
|
|
|
/// The classes which are needed for matching.
|
|
std::forward_list<ClassInfo> Classes;
|
|
|
|
/// The information on the matchables to match.
|
|
std::vector<std::unique_ptr<MatchableInfo>> Matchables;
|
|
|
|
/// Info for custom matching operands by user defined methods.
|
|
std::vector<OperandMatchEntry> OperandMatchInfo;
|
|
|
|
/// Map of Register records to their class information.
|
|
typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
|
|
RegisterClassesTy RegisterClasses;
|
|
|
|
/// Map of Predicate records to their subtarget information.
|
|
std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
|
|
|
|
/// Map of AsmOperandClass records to their class information.
|
|
std::map<Record*, ClassInfo*> AsmOperandClasses;
|
|
|
|
/// Map of RegisterClass records to their class information.
|
|
std::map<Record*, ClassInfo*> RegisterClassClasses;
|
|
|
|
private:
|
|
/// Map of token to class information which has already been constructed.
|
|
std::map<std::string, ClassInfo*> TokenClasses;
|
|
|
|
private:
|
|
/// getTokenClass - Lookup or create the class for the given token.
|
|
ClassInfo *getTokenClass(StringRef Token);
|
|
|
|
/// getOperandClass - Lookup or create the class for the given operand.
|
|
ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
|
|
int SubOpIdx);
|
|
ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
|
|
|
|
/// buildRegisterClasses - Build the ClassInfo* instances for register
|
|
/// classes.
|
|
void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
|
|
|
|
/// buildOperandClasses - Build the ClassInfo* instances for user defined
|
|
/// operand classes.
|
|
void buildOperandClasses();
|
|
|
|
void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
|
|
unsigned AsmOpIdx);
|
|
void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
|
|
MatchableInfo::AsmOperand &Op);
|
|
|
|
public:
|
|
AsmMatcherInfo(Record *AsmParser,
|
|
CodeGenTarget &Target,
|
|
RecordKeeper &Records);
|
|
|
|
/// Construct the various tables used during matching.
|
|
void buildInfo();
|
|
|
|
/// buildOperandMatchInfo - Build the necessary information to handle user
|
|
/// defined operand parsing methods.
|
|
void buildOperandMatchInfo();
|
|
|
|
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
|
|
/// given operand.
|
|
const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
|
|
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
|
|
const auto &I = SubtargetFeatures.find(Def);
|
|
return I == SubtargetFeatures.end() ? nullptr : &I->second;
|
|
}
|
|
|
|
RecordKeeper &getRecords() const {
|
|
return Records;
|
|
}
|
|
|
|
bool hasOptionalOperands() const {
|
|
return any_of(Classes,
|
|
[](const ClassInfo &Class) { return Class.IsOptional; });
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void MatchableInfo::dump() const {
|
|
errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
|
|
|
|
errs() << " variant: " << AsmVariantID << "\n";
|
|
|
|
for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
|
|
const AsmOperand &Op = AsmOperands[i];
|
|
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
|
|
errs() << '\"' << Op.Token << "\"\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static std::pair<StringRef, StringRef>
|
|
parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
|
|
// Split via the '='.
|
|
std::pair<StringRef, StringRef> Ops = S.split('=');
|
|
if (Ops.second == "")
|
|
PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
|
|
// Trim whitespace and the leading '$' on the operand names.
|
|
size_t start = Ops.first.find_first_of('$');
|
|
if (start == std::string::npos)
|
|
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
|
|
Ops.first = Ops.first.slice(start + 1, std::string::npos);
|
|
size_t end = Ops.first.find_last_of(" \t");
|
|
Ops.first = Ops.first.slice(0, end);
|
|
// Now the second operand.
|
|
start = Ops.second.find_first_of('$');
|
|
if (start == std::string::npos)
|
|
PrintFatalError(Loc, "expected '$' prefix on asm operand name");
|
|
Ops.second = Ops.second.slice(start + 1, std::string::npos);
|
|
end = Ops.second.find_last_of(" \t");
|
|
Ops.first = Ops.first.slice(0, end);
|
|
return Ops;
|
|
}
|
|
|
|
void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
|
|
// Figure out which operands are aliased and mark them as tied.
|
|
std::pair<StringRef, StringRef> Ops =
|
|
parseTwoOperandConstraint(Constraint, TheDef->getLoc());
|
|
|
|
// Find the AsmOperands that refer to the operands we're aliasing.
|
|
int SrcAsmOperand = findAsmOperandNamed(Ops.first);
|
|
int DstAsmOperand = findAsmOperandNamed(Ops.second);
|
|
if (SrcAsmOperand == -1)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"unknown source two-operand alias operand '" + Ops.first +
|
|
"'.");
|
|
if (DstAsmOperand == -1)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"unknown destination two-operand alias operand '" +
|
|
Ops.second + "'.");
|
|
|
|
// Find the ResOperand that refers to the operand we're aliasing away
|
|
// and update it to refer to the combined operand instead.
|
|
for (ResOperand &Op : ResOperands) {
|
|
if (Op.Kind == ResOperand::RenderAsmOperand &&
|
|
Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
|
|
Op.AsmOperandNum = DstAsmOperand;
|
|
break;
|
|
}
|
|
}
|
|
// Remove the AsmOperand for the alias operand.
|
|
AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
|
|
// Adjust the ResOperand references to any AsmOperands that followed
|
|
// the one we just deleted.
|
|
for (ResOperand &Op : ResOperands) {
|
|
switch(Op.Kind) {
|
|
default:
|
|
// Nothing to do for operands that don't reference AsmOperands.
|
|
break;
|
|
case ResOperand::RenderAsmOperand:
|
|
if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
|
|
--Op.AsmOperandNum;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// extractSingletonRegisterForAsmOperand - Extract singleton register,
|
|
/// if present, from specified token.
|
|
static void
|
|
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
|
|
const AsmMatcherInfo &Info,
|
|
StringRef RegisterPrefix) {
|
|
StringRef Tok = Op.Token;
|
|
|
|
// If this token is not an isolated token, i.e., it isn't separated from
|
|
// other tokens (e.g. with whitespace), don't interpret it as a register name.
|
|
if (!Op.IsIsolatedToken)
|
|
return;
|
|
|
|
if (RegisterPrefix.empty()) {
|
|
std::string LoweredTok = Tok.lower();
|
|
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
|
|
Op.SingletonReg = Reg->TheDef;
|
|
return;
|
|
}
|
|
|
|
if (!Tok.startswith(RegisterPrefix))
|
|
return;
|
|
|
|
StringRef RegName = Tok.substr(RegisterPrefix.size());
|
|
if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
|
|
Op.SingletonReg = Reg->TheDef;
|
|
|
|
// If there is no register prefix (i.e. "%" in "%eax"), then this may
|
|
// be some random non-register token, just ignore it.
|
|
}
|
|
|
|
void MatchableInfo::initialize(const AsmMatcherInfo &Info,
|
|
SmallPtrSetImpl<Record*> &SingletonRegisters,
|
|
AsmVariantInfo const &Variant,
|
|
bool HasMnemonicFirst) {
|
|
AsmVariantID = Variant.AsmVariantNo;
|
|
AsmString =
|
|
CodeGenInstruction::FlattenAsmStringVariants(AsmString,
|
|
Variant.AsmVariantNo);
|
|
|
|
tokenizeAsmString(Info, Variant);
|
|
|
|
// The first token of the instruction is the mnemonic, which must be a
|
|
// simple string, not a $foo variable or a singleton register.
|
|
if (AsmOperands.empty())
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"Instruction '" + TheDef->getName() + "' has no tokens");
|
|
|
|
assert(!AsmOperands[0].Token.empty());
|
|
if (HasMnemonicFirst) {
|
|
Mnemonic = AsmOperands[0].Token;
|
|
if (Mnemonic[0] == '$')
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"Invalid instruction mnemonic '" + Mnemonic + "'!");
|
|
|
|
// Remove the first operand, it is tracked in the mnemonic field.
|
|
AsmOperands.erase(AsmOperands.begin());
|
|
} else if (AsmOperands[0].Token[0] != '$')
|
|
Mnemonic = AsmOperands[0].Token;
|
|
|
|
// Compute the require features.
|
|
for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
|
|
if (const SubtargetFeatureInfo *Feature =
|
|
Info.getSubtargetFeature(Predicate))
|
|
RequiredFeatures.push_back(Feature);
|
|
|
|
// Collect singleton registers, if used.
|
|
for (MatchableInfo::AsmOperand &Op : AsmOperands) {
|
|
extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
|
|
if (Record *Reg = Op.SingletonReg)
|
|
SingletonRegisters.insert(Reg);
|
|
}
|
|
|
|
const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
|
|
if (!DepMask)
|
|
DepMask = TheDef->getValue("ComplexDeprecationPredicate");
|
|
|
|
HasDeprecation =
|
|
DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
|
|
}
|
|
|
|
/// Append an AsmOperand for the given substring of AsmString.
|
|
void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
|
|
AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
|
|
}
|
|
|
|
/// tokenizeAsmString - Tokenize a simplified assembly string.
|
|
void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
|
|
AsmVariantInfo const &Variant) {
|
|
StringRef String = AsmString;
|
|
size_t Prev = 0;
|
|
bool InTok = false;
|
|
bool IsIsolatedToken = true;
|
|
for (size_t i = 0, e = String.size(); i != e; ++i) {
|
|
char Char = String[i];
|
|
if (Variant.BreakCharacters.find(Char) != std::string::npos) {
|
|
if (InTok) {
|
|
addAsmOperand(String.slice(Prev, i), false);
|
|
Prev = i;
|
|
IsIsolatedToken = false;
|
|
}
|
|
InTok = true;
|
|
continue;
|
|
}
|
|
if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
|
|
if (InTok) {
|
|
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
|
|
InTok = false;
|
|
IsIsolatedToken = false;
|
|
}
|
|
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
|
|
Prev = i + 1;
|
|
IsIsolatedToken = true;
|
|
continue;
|
|
}
|
|
if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
|
|
if (InTok) {
|
|
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
|
|
InTok = false;
|
|
}
|
|
Prev = i + 1;
|
|
IsIsolatedToken = true;
|
|
continue;
|
|
}
|
|
|
|
switch (Char) {
|
|
case '\\':
|
|
if (InTok) {
|
|
addAsmOperand(String.slice(Prev, i), false);
|
|
InTok = false;
|
|
IsIsolatedToken = false;
|
|
}
|
|
++i;
|
|
assert(i != String.size() && "Invalid quoted character");
|
|
addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
|
|
Prev = i + 1;
|
|
IsIsolatedToken = false;
|
|
break;
|
|
|
|
case '$': {
|
|
if (InTok) {
|
|
addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
|
|
InTok = false;
|
|
IsIsolatedToken = false;
|
|
}
|
|
|
|
// If this isn't "${", start new identifier looking like "$xxx"
|
|
if (i + 1 == String.size() || String[i + 1] != '{') {
|
|
Prev = i;
|
|
break;
|
|
}
|
|
|
|
size_t EndPos = String.find('}', i);
|
|
assert(EndPos != StringRef::npos &&
|
|
"Missing brace in operand reference!");
|
|
addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
|
|
Prev = EndPos + 1;
|
|
i = EndPos;
|
|
IsIsolatedToken = false;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
InTok = true;
|
|
break;
|
|
}
|
|
}
|
|
if (InTok && Prev != String.size())
|
|
addAsmOperand(String.substr(Prev), IsIsolatedToken);
|
|
}
|
|
|
|
bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
|
|
// Reject matchables with no .s string.
|
|
if (AsmString.empty())
|
|
PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
|
|
|
|
// Reject any matchables with a newline in them, they should be marked
|
|
// isCodeGenOnly if they are pseudo instructions.
|
|
if (AsmString.find('\n') != std::string::npos)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"multiline instruction is not valid for the asmparser, "
|
|
"mark it isCodeGenOnly");
|
|
|
|
// Remove comments from the asm string. We know that the asmstring only
|
|
// has one line.
|
|
if (!CommentDelimiter.empty() &&
|
|
StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"asmstring for instruction has comment character in it, "
|
|
"mark it isCodeGenOnly");
|
|
|
|
// Reject matchables with operand modifiers, these aren't something we can
|
|
// handle, the target should be refactored to use operands instead of
|
|
// modifiers.
|
|
//
|
|
// Also, check for instructions which reference the operand multiple times,
|
|
// if they don't define a custom AsmMatcher: this implies a constraint that
|
|
// the built-in matching code would not honor.
|
|
std::set<std::string> OperandNames;
|
|
for (const AsmOperand &Op : AsmOperands) {
|
|
StringRef Tok = Op.Token;
|
|
if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"matchable with operand modifier '" + Tok +
|
|
"' not supported by asm matcher. Mark isCodeGenOnly!");
|
|
// Verify that any operand is only mentioned once.
|
|
// We reject aliases and ignore instructions for now.
|
|
if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
|
|
Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
|
|
LLVM_DEBUG({
|
|
errs() << "warning: '" << TheDef->getName() << "': "
|
|
<< "ignoring instruction with tied operand '"
|
|
<< Tok << "'\n";
|
|
});
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static std::string getEnumNameForToken(StringRef Str) {
|
|
std::string Res;
|
|
|
|
for (char C : Str) {
|
|
switch (C) {
|
|
case '*': Res += "_STAR_"; break;
|
|
case '%': Res += "_PCT_"; break;
|
|
case ':': Res += "_COLON_"; break;
|
|
case '!': Res += "_EXCLAIM_"; break;
|
|
case '.': Res += "_DOT_"; break;
|
|
case '<': Res += "_LT_"; break;
|
|
case '>': Res += "_GT_"; break;
|
|
case '-': Res += "_MINUS_"; break;
|
|
case '#': Res += "_HASH_"; break;
|
|
default:
|
|
if (isAlnum(C))
|
|
Res += C;
|
|
else
|
|
Res += "_" + utostr((unsigned)C) + "_";
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
|
|
ClassInfo *&Entry = TokenClasses[std::string(Token)];
|
|
|
|
if (!Entry) {
|
|
Classes.emplace_front();
|
|
Entry = &Classes.front();
|
|
Entry->Kind = ClassInfo::Token;
|
|
Entry->ClassName = "Token";
|
|
Entry->Name = "MCK_" + getEnumNameForToken(Token);
|
|
Entry->ValueName = std::string(Token);
|
|
Entry->PredicateMethod = "<invalid>";
|
|
Entry->RenderMethod = "<invalid>";
|
|
Entry->ParserMethod = "";
|
|
Entry->DiagnosticType = "";
|
|
Entry->IsOptional = false;
|
|
Entry->DefaultMethod = "<invalid>";
|
|
}
|
|
|
|
return Entry;
|
|
}
|
|
|
|
ClassInfo *
|
|
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
|
|
int SubOpIdx) {
|
|
Record *Rec = OI.Rec;
|
|
if (SubOpIdx != -1)
|
|
Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
|
|
return getOperandClass(Rec, SubOpIdx);
|
|
}
|
|
|
|
ClassInfo *
|
|
AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
|
|
if (Rec->isSubClassOf("RegisterOperand")) {
|
|
// RegisterOperand may have an associated ParserMatchClass. If it does,
|
|
// use it, else just fall back to the underlying register class.
|
|
const RecordVal *R = Rec->getValue("ParserMatchClass");
|
|
if (!R || !R->getValue())
|
|
PrintFatalError(Rec->getLoc(),
|
|
"Record `" + Rec->getName() +
|
|
"' does not have a ParserMatchClass!\n");
|
|
|
|
if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
|
|
Record *MatchClass = DI->getDef();
|
|
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
|
|
return CI;
|
|
}
|
|
|
|
// No custom match class. Just use the register class.
|
|
Record *ClassRec = Rec->getValueAsDef("RegClass");
|
|
if (!ClassRec)
|
|
PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
|
|
"' has no associated register class!\n");
|
|
if (ClassInfo *CI = RegisterClassClasses[ClassRec])
|
|
return CI;
|
|
PrintFatalError(Rec->getLoc(), "register class has no class info!");
|
|
}
|
|
|
|
if (Rec->isSubClassOf("RegisterClass")) {
|
|
if (ClassInfo *CI = RegisterClassClasses[Rec])
|
|
return CI;
|
|
PrintFatalError(Rec->getLoc(), "register class has no class info!");
|
|
}
|
|
|
|
if (!Rec->isSubClassOf("Operand"))
|
|
PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
|
|
"' does not derive from class Operand!\n");
|
|
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
|
|
if (ClassInfo *CI = AsmOperandClasses[MatchClass])
|
|
return CI;
|
|
|
|
PrintFatalError(Rec->getLoc(), "operand has no match class!");
|
|
}
|
|
|
|
struct LessRegisterSet {
|
|
bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
|
|
// std::set<T> defines its own compariso "operator<", but it
|
|
// performs a lexicographical comparison by T's innate comparison
|
|
// for some reason. We don't want non-deterministic pointer
|
|
// comparisons so use this instead.
|
|
return std::lexicographical_compare(LHS.begin(), LHS.end(),
|
|
RHS.begin(), RHS.end(),
|
|
LessRecordByID());
|
|
}
|
|
};
|
|
|
|
void AsmMatcherInfo::
|
|
buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
|
|
const auto &Registers = Target.getRegBank().getRegisters();
|
|
auto &RegClassList = Target.getRegBank().getRegClasses();
|
|
|
|
typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
|
|
|
|
// The register sets used for matching.
|
|
RegisterSetSet RegisterSets;
|
|
|
|
// Gather the defined sets.
|
|
for (const CodeGenRegisterClass &RC : RegClassList)
|
|
RegisterSets.insert(
|
|
RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
|
|
|
|
// Add any required singleton sets.
|
|
for (Record *Rec : SingletonRegisters) {
|
|
RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
|
|
}
|
|
|
|
// Introduce derived sets where necessary (when a register does not determine
|
|
// a unique register set class), and build the mapping of registers to the set
|
|
// they should classify to.
|
|
std::map<Record*, RegisterSet> RegisterMap;
|
|
for (const CodeGenRegister &CGR : Registers) {
|
|
// Compute the intersection of all sets containing this register.
|
|
RegisterSet ContainingSet;
|
|
|
|
for (const RegisterSet &RS : RegisterSets) {
|
|
if (!RS.count(CGR.TheDef))
|
|
continue;
|
|
|
|
if (ContainingSet.empty()) {
|
|
ContainingSet = RS;
|
|
continue;
|
|
}
|
|
|
|
RegisterSet Tmp;
|
|
std::swap(Tmp, ContainingSet);
|
|
std::insert_iterator<RegisterSet> II(ContainingSet,
|
|
ContainingSet.begin());
|
|
std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
|
|
LessRecordByID());
|
|
}
|
|
|
|
if (!ContainingSet.empty()) {
|
|
RegisterSets.insert(ContainingSet);
|
|
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
|
|
}
|
|
}
|
|
|
|
// Construct the register classes.
|
|
std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
|
|
unsigned Index = 0;
|
|
for (const RegisterSet &RS : RegisterSets) {
|
|
Classes.emplace_front();
|
|
ClassInfo *CI = &Classes.front();
|
|
CI->Kind = ClassInfo::RegisterClass0 + Index;
|
|
CI->ClassName = "Reg" + utostr(Index);
|
|
CI->Name = "MCK_Reg" + utostr(Index);
|
|
CI->ValueName = "";
|
|
CI->PredicateMethod = ""; // unused
|
|
CI->RenderMethod = "addRegOperands";
|
|
CI->Registers = RS;
|
|
// FIXME: diagnostic type.
|
|
CI->DiagnosticType = "";
|
|
CI->IsOptional = false;
|
|
CI->DefaultMethod = ""; // unused
|
|
RegisterSetClasses.insert(std::make_pair(RS, CI));
|
|
++Index;
|
|
}
|
|
|
|
// Find the superclasses; we could compute only the subgroup lattice edges,
|
|
// but there isn't really a point.
|
|
for (const RegisterSet &RS : RegisterSets) {
|
|
ClassInfo *CI = RegisterSetClasses[RS];
|
|
for (const RegisterSet &RS2 : RegisterSets)
|
|
if (RS != RS2 &&
|
|
std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
|
|
LessRecordByID()))
|
|
CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
|
|
}
|
|
|
|
// Name the register classes which correspond to a user defined RegisterClass.
|
|
for (const CodeGenRegisterClass &RC : RegClassList) {
|
|
// Def will be NULL for non-user defined register classes.
|
|
Record *Def = RC.getDef();
|
|
if (!Def)
|
|
continue;
|
|
ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
|
|
RC.getOrder().end())];
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = RC.getName();
|
|
CI->Name = "MCK_" + RC.getName();
|
|
CI->ValueName = RC.getName();
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + RC.getName();
|
|
|
|
Init *DiagnosticType = Def->getValueInit("DiagnosticType");
|
|
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
|
|
CI->DiagnosticType = std::string(SI->getValue());
|
|
|
|
Init *DiagnosticString = Def->getValueInit("DiagnosticString");
|
|
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
|
|
CI->DiagnosticString = std::string(SI->getValue());
|
|
|
|
// If we have a diagnostic string but the diagnostic type is not specified
|
|
// explicitly, create an anonymous diagnostic type.
|
|
if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
|
|
CI->DiagnosticType = RC.getName();
|
|
|
|
RegisterClassClasses.insert(std::make_pair(Def, CI));
|
|
}
|
|
|
|
// Populate the map for individual registers.
|
|
for (auto &It : RegisterMap)
|
|
RegisterClasses[It.first] = RegisterSetClasses[It.second];
|
|
|
|
// Name the register classes which correspond to singleton registers.
|
|
for (Record *Rec : SingletonRegisters) {
|
|
ClassInfo *CI = RegisterClasses[Rec];
|
|
assert(CI && "Missing singleton register class info!");
|
|
|
|
if (CI->ValueName.empty()) {
|
|
CI->ClassName = std::string(Rec->getName());
|
|
CI->Name = "MCK_" + Rec->getName().str();
|
|
CI->ValueName = std::string(Rec->getName());
|
|
} else
|
|
CI->ValueName = CI->ValueName + "," + Rec->getName().str();
|
|
}
|
|
}
|
|
|
|
void AsmMatcherInfo::buildOperandClasses() {
|
|
std::vector<Record*> AsmOperands =
|
|
Records.getAllDerivedDefinitions("AsmOperandClass");
|
|
|
|
// Pre-populate AsmOperandClasses map.
|
|
for (Record *Rec : AsmOperands) {
|
|
Classes.emplace_front();
|
|
AsmOperandClasses[Rec] = &Classes.front();
|
|
}
|
|
|
|
unsigned Index = 0;
|
|
for (Record *Rec : AsmOperands) {
|
|
ClassInfo *CI = AsmOperandClasses[Rec];
|
|
CI->Kind = ClassInfo::UserClass0 + Index;
|
|
|
|
ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
|
|
for (Init *I : Supers->getValues()) {
|
|
DefInit *DI = dyn_cast<DefInit>(I);
|
|
if (!DI) {
|
|
PrintError(Rec->getLoc(), "Invalid super class reference!");
|
|
continue;
|
|
}
|
|
|
|
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
|
|
if (!SC)
|
|
PrintError(Rec->getLoc(), "Invalid super class reference!");
|
|
else
|
|
CI->SuperClasses.push_back(SC);
|
|
}
|
|
CI->ClassName = std::string(Rec->getValueAsString("Name"));
|
|
CI->Name = "MCK_" + CI->ClassName;
|
|
CI->ValueName = std::string(Rec->getName());
|
|
|
|
// Get or construct the predicate method name.
|
|
Init *PMName = Rec->getValueInit("PredicateMethod");
|
|
if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
|
|
CI->PredicateMethod = std::string(SI->getValue());
|
|
} else {
|
|
assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
|
|
CI->PredicateMethod = "is" + CI->ClassName;
|
|
}
|
|
|
|
// Get or construct the render method name.
|
|
Init *RMName = Rec->getValueInit("RenderMethod");
|
|
if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
|
|
CI->RenderMethod = std::string(SI->getValue());
|
|
} else {
|
|
assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
|
|
CI->RenderMethod = "add" + CI->ClassName + "Operands";
|
|
}
|
|
|
|
// Get the parse method name or leave it as empty.
|
|
Init *PRMName = Rec->getValueInit("ParserMethod");
|
|
if (StringInit *SI = dyn_cast<StringInit>(PRMName))
|
|
CI->ParserMethod = std::string(SI->getValue());
|
|
|
|
// Get the diagnostic type and string or leave them as empty.
|
|
Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
|
|
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
|
|
CI->DiagnosticType = std::string(SI->getValue());
|
|
Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
|
|
if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
|
|
CI->DiagnosticString = std::string(SI->getValue());
|
|
// If we have a DiagnosticString, we need a DiagnosticType for use within
|
|
// the matcher.
|
|
if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
|
|
CI->DiagnosticType = CI->ClassName;
|
|
|
|
Init *IsOptional = Rec->getValueInit("IsOptional");
|
|
if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
|
|
CI->IsOptional = BI->getValue();
|
|
|
|
// Get or construct the default method name.
|
|
Init *DMName = Rec->getValueInit("DefaultMethod");
|
|
if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
|
|
CI->DefaultMethod = std::string(SI->getValue());
|
|
} else {
|
|
assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
|
|
CI->DefaultMethod = "default" + CI->ClassName + "Operands";
|
|
}
|
|
|
|
++Index;
|
|
}
|
|
}
|
|
|
|
AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
|
|
CodeGenTarget &target,
|
|
RecordKeeper &records)
|
|
: Records(records), AsmParser(asmParser), Target(target) {
|
|
}
|
|
|
|
/// buildOperandMatchInfo - Build the necessary information to handle user
|
|
/// defined operand parsing methods.
|
|
void AsmMatcherInfo::buildOperandMatchInfo() {
|
|
|
|
/// Map containing a mask with all operands indices that can be found for
|
|
/// that class inside a instruction.
|
|
typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
|
|
OpClassMaskTy OpClassMask;
|
|
|
|
for (const auto &MI : Matchables) {
|
|
OpClassMask.clear();
|
|
|
|
// Keep track of all operands of this instructions which belong to the
|
|
// same class.
|
|
for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
|
|
const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
|
|
if (Op.Class->ParserMethod.empty())
|
|
continue;
|
|
unsigned &OperandMask = OpClassMask[Op.Class];
|
|
OperandMask |= (1 << i);
|
|
}
|
|
|
|
// Generate operand match info for each mnemonic/operand class pair.
|
|
for (const auto &OCM : OpClassMask) {
|
|
unsigned OpMask = OCM.second;
|
|
ClassInfo *CI = OCM.first;
|
|
OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
|
|
OpMask));
|
|
}
|
|
}
|
|
}
|
|
|
|
void AsmMatcherInfo::buildInfo() {
|
|
// Build information about all of the AssemblerPredicates.
|
|
const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
|
|
&SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
|
|
SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
|
|
SubtargetFeaturePairs.end());
|
|
#ifndef NDEBUG
|
|
for (const auto &Pair : SubtargetFeatures)
|
|
LLVM_DEBUG(Pair.second.dump());
|
|
#endif // NDEBUG
|
|
|
|
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
|
|
bool ReportMultipleNearMisses =
|
|
AsmParser->getValueAsBit("ReportMultipleNearMisses");
|
|
|
|
// Parse the instructions; we need to do this first so that we can gather the
|
|
// singleton register classes.
|
|
SmallPtrSet<Record*, 16> SingletonRegisters;
|
|
unsigned VariantCount = Target.getAsmParserVariantCount();
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
StringRef CommentDelimiter =
|
|
AsmVariant->getValueAsString("CommentDelimiter");
|
|
AsmVariantInfo Variant;
|
|
Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
|
|
Variant.TokenizingCharacters =
|
|
AsmVariant->getValueAsString("TokenizingCharacters");
|
|
Variant.SeparatorCharacters =
|
|
AsmVariant->getValueAsString("SeparatorCharacters");
|
|
Variant.BreakCharacters =
|
|
AsmVariant->getValueAsString("BreakCharacters");
|
|
Variant.Name = AsmVariant->getValueAsString("Name");
|
|
Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
|
|
for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
|
|
|
|
// If the tblgen -match-prefix option is specified (for tblgen hackers),
|
|
// filter the set of instructions we consider.
|
|
if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
|
|
continue;
|
|
|
|
// Ignore "codegen only" instructions.
|
|
if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
|
|
continue;
|
|
|
|
// Ignore instructions for different instructions
|
|
StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
|
|
if (!V.empty() && V != Variant.Name)
|
|
continue;
|
|
|
|
auto II = std::make_unique<MatchableInfo>(*CGI);
|
|
|
|
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
|
|
|
|
// Ignore instructions which shouldn't be matched and diagnose invalid
|
|
// instruction definitions with an error.
|
|
if (!II->validate(CommentDelimiter, false))
|
|
continue;
|
|
|
|
Matchables.push_back(std::move(II));
|
|
}
|
|
|
|
// Parse all of the InstAlias definitions and stick them in the list of
|
|
// matchables.
|
|
std::vector<Record*> AllInstAliases =
|
|
Records.getAllDerivedDefinitions("InstAlias");
|
|
for (Record *InstAlias : AllInstAliases) {
|
|
auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
|
|
|
|
// If the tblgen -match-prefix option is specified (for tblgen hackers),
|
|
// filter the set of instruction aliases we consider, based on the target
|
|
// instruction.
|
|
if (!StringRef(Alias->ResultInst->TheDef->getName())
|
|
.startswith( MatchPrefix))
|
|
continue;
|
|
|
|
StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
|
|
if (!V.empty() && V != Variant.Name)
|
|
continue;
|
|
|
|
auto II = std::make_unique<MatchableInfo>(std::move(Alias));
|
|
|
|
II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
|
|
|
|
// Validate the alias definitions.
|
|
II->validate(CommentDelimiter, true);
|
|
|
|
Matchables.push_back(std::move(II));
|
|
}
|
|
}
|
|
|
|
// Build info for the register classes.
|
|
buildRegisterClasses(SingletonRegisters);
|
|
|
|
// Build info for the user defined assembly operand classes.
|
|
buildOperandClasses();
|
|
|
|
// Build the information about matchables, now that we have fully formed
|
|
// classes.
|
|
std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
|
|
for (auto &II : Matchables) {
|
|
// Parse the tokens after the mnemonic.
|
|
// Note: buildInstructionOperandReference may insert new AsmOperands, so
|
|
// don't precompute the loop bound.
|
|
for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
|
|
MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
|
|
StringRef Token = Op.Token;
|
|
|
|
// Check for singleton registers.
|
|
if (Record *RegRecord = Op.SingletonReg) {
|
|
Op.Class = RegisterClasses[RegRecord];
|
|
assert(Op.Class && Op.Class->Registers.size() == 1 &&
|
|
"Unexpected class for singleton register");
|
|
continue;
|
|
}
|
|
|
|
// Check for simple tokens.
|
|
if (Token[0] != '$') {
|
|
Op.Class = getTokenClass(Token);
|
|
continue;
|
|
}
|
|
|
|
if (Token.size() > 1 && isdigit(Token[1])) {
|
|
Op.Class = getTokenClass(Token);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is an operand reference.
|
|
StringRef OperandName;
|
|
if (Token[1] == '{')
|
|
OperandName = Token.substr(2, Token.size() - 3);
|
|
else
|
|
OperandName = Token.substr(1);
|
|
|
|
if (II->DefRec.is<const CodeGenInstruction*>())
|
|
buildInstructionOperandReference(II.get(), OperandName, i);
|
|
else
|
|
buildAliasOperandReference(II.get(), OperandName, Op);
|
|
}
|
|
|
|
if (II->DefRec.is<const CodeGenInstruction*>()) {
|
|
II->buildInstructionResultOperands();
|
|
// If the instruction has a two-operand alias, build up the
|
|
// matchable here. We'll add them in bulk at the end to avoid
|
|
// confusing this loop.
|
|
StringRef Constraint =
|
|
II->TheDef->getValueAsString("TwoOperandAliasConstraint");
|
|
if (Constraint != "") {
|
|
// Start by making a copy of the original matchable.
|
|
auto AliasII = std::make_unique<MatchableInfo>(*II);
|
|
|
|
// Adjust it to be a two-operand alias.
|
|
AliasII->formTwoOperandAlias(Constraint);
|
|
|
|
// Add the alias to the matchables list.
|
|
NewMatchables.push_back(std::move(AliasII));
|
|
}
|
|
} else
|
|
// FIXME: The tied operands checking is not yet integrated with the
|
|
// framework for reporting multiple near misses. To prevent invalid
|
|
// formats from being matched with an alias if a tied-operands check
|
|
// would otherwise have disallowed it, we just disallow such constructs
|
|
// in TableGen completely.
|
|
II->buildAliasResultOperands(!ReportMultipleNearMisses);
|
|
}
|
|
if (!NewMatchables.empty())
|
|
Matchables.insert(Matchables.end(),
|
|
std::make_move_iterator(NewMatchables.begin()),
|
|
std::make_move_iterator(NewMatchables.end()));
|
|
|
|
// Process token alias definitions and set up the associated superclass
|
|
// information.
|
|
std::vector<Record*> AllTokenAliases =
|
|
Records.getAllDerivedDefinitions("TokenAlias");
|
|
for (Record *Rec : AllTokenAliases) {
|
|
ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
|
|
ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
|
|
if (FromClass == ToClass)
|
|
PrintFatalError(Rec->getLoc(),
|
|
"error: Destination value identical to source value.");
|
|
FromClass->SuperClasses.push_back(ToClass);
|
|
}
|
|
|
|
// Reorder classes so that classes precede super classes.
|
|
Classes.sort();
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
// Verify that the table is sorted and operator < works transitively.
|
|
for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
|
|
for (auto J = I; J != E; ++J) {
|
|
assert(!(*J < *I));
|
|
assert(I == J || !J->isSubsetOf(*I));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// buildInstructionOperandReference - The specified operand is a reference to a
|
|
/// named operand such as $src. Resolve the Class and OperandInfo pointers.
|
|
void AsmMatcherInfo::
|
|
buildInstructionOperandReference(MatchableInfo *II,
|
|
StringRef OperandName,
|
|
unsigned AsmOpIdx) {
|
|
const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
|
|
const CGIOperandList &Operands = CGI.Operands;
|
|
MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
|
|
|
|
// Map this token to an operand.
|
|
unsigned Idx;
|
|
if (!Operands.hasOperandNamed(OperandName, Idx))
|
|
PrintFatalError(II->TheDef->getLoc(),
|
|
"error: unable to find operand: '" + OperandName + "'");
|
|
|
|
// If the instruction operand has multiple suboperands, but the parser
|
|
// match class for the asm operand is still the default "ImmAsmOperand",
|
|
// then handle each suboperand separately.
|
|
if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
|
|
Record *Rec = Operands[Idx].Rec;
|
|
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
|
|
Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
|
|
if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
|
|
// Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
|
|
StringRef Token = Op->Token; // save this in case Op gets moved
|
|
for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
|
|
MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
|
|
NewAsmOp.SubOpIdx = SI;
|
|
II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
|
|
}
|
|
// Replace Op with first suboperand.
|
|
Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
|
|
Op->SubOpIdx = 0;
|
|
}
|
|
}
|
|
|
|
// Set up the operand class.
|
|
Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
|
|
Op->OrigSrcOpName = OperandName;
|
|
|
|
// If the named operand is tied, canonicalize it to the untied operand.
|
|
// For example, something like:
|
|
// (outs GPR:$dst), (ins GPR:$src)
|
|
// with an asmstring of
|
|
// "inc $src"
|
|
// we want to canonicalize to:
|
|
// "inc $dst"
|
|
// so that we know how to provide the $dst operand when filling in the result.
|
|
int OITied = -1;
|
|
if (Operands[Idx].MINumOperands == 1)
|
|
OITied = Operands[Idx].getTiedRegister();
|
|
if (OITied != -1) {
|
|
// The tied operand index is an MIOperand index, find the operand that
|
|
// contains it.
|
|
std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
|
|
OperandName = Operands[Idx.first].Name;
|
|
Op->SubOpIdx = Idx.second;
|
|
}
|
|
|
|
Op->SrcOpName = OperandName;
|
|
}
|
|
|
|
/// buildAliasOperandReference - When parsing an operand reference out of the
|
|
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
|
|
/// operand reference is by looking it up in the result pattern definition.
|
|
void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
|
|
StringRef OperandName,
|
|
MatchableInfo::AsmOperand &Op) {
|
|
const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
|
|
|
|
// Set up the operand class.
|
|
for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
|
|
if (CGA.ResultOperands[i].isRecord() &&
|
|
CGA.ResultOperands[i].getName() == OperandName) {
|
|
// It's safe to go with the first one we find, because CodeGenInstAlias
|
|
// validates that all operands with the same name have the same record.
|
|
Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
|
|
// Use the match class from the Alias definition, not the
|
|
// destination instruction, as we may have an immediate that's
|
|
// being munged by the match class.
|
|
Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
|
|
Op.SubOpIdx);
|
|
Op.SrcOpName = OperandName;
|
|
Op.OrigSrcOpName = OperandName;
|
|
return;
|
|
}
|
|
|
|
PrintFatalError(II->TheDef->getLoc(),
|
|
"error: unable to find operand: '" + OperandName + "'");
|
|
}
|
|
|
|
void MatchableInfo::buildInstructionResultOperands() {
|
|
const CodeGenInstruction *ResultInst = getResultInst();
|
|
|
|
// Loop over all operands of the result instruction, determining how to
|
|
// populate them.
|
|
for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
|
|
// If this is a tied operand, just copy from the previously handled operand.
|
|
int TiedOp = -1;
|
|
if (OpInfo.MINumOperands == 1)
|
|
TiedOp = OpInfo.getTiedRegister();
|
|
if (TiedOp != -1) {
|
|
int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
|
|
if (TiedSrcOperand != -1 &&
|
|
ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
|
|
ResOperands.push_back(ResOperand::getTiedOp(
|
|
TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
|
|
else
|
|
ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
|
|
continue;
|
|
}
|
|
|
|
int SrcOperand = findAsmOperandNamed(OpInfo.Name);
|
|
if (OpInfo.Name.empty() || SrcOperand == -1) {
|
|
// This may happen for operands that are tied to a suboperand of a
|
|
// complex operand. Simply use a dummy value here; nobody should
|
|
// use this operand slot.
|
|
// FIXME: The long term goal is for the MCOperand list to not contain
|
|
// tied operands at all.
|
|
ResOperands.push_back(ResOperand::getImmOp(0));
|
|
continue;
|
|
}
|
|
|
|
// Check if the one AsmOperand populates the entire operand.
|
|
unsigned NumOperands = OpInfo.MINumOperands;
|
|
if (AsmOperands[SrcOperand].SubOpIdx == -1) {
|
|
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
|
|
continue;
|
|
}
|
|
|
|
// Add a separate ResOperand for each suboperand.
|
|
for (unsigned AI = 0; AI < NumOperands; ++AI) {
|
|
assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
|
|
AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
|
|
"unexpected AsmOperands for suboperands");
|
|
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
|
|
const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
|
|
const CodeGenInstruction *ResultInst = getResultInst();
|
|
|
|
// Map of: $reg -> #lastref
|
|
// where $reg is the name of the operand in the asm string
|
|
// where #lastref is the last processed index where $reg was referenced in
|
|
// the asm string.
|
|
SmallDenseMap<StringRef, int> OperandRefs;
|
|
|
|
// Loop over all operands of the result instruction, determining how to
|
|
// populate them.
|
|
unsigned AliasOpNo = 0;
|
|
unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
|
|
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
|
|
const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
|
|
|
|
// If this is a tied operand, just copy from the previously handled operand.
|
|
int TiedOp = -1;
|
|
if (OpInfo->MINumOperands == 1)
|
|
TiedOp = OpInfo->getTiedRegister();
|
|
if (TiedOp != -1) {
|
|
unsigned SrcOp1 = 0;
|
|
unsigned SrcOp2 = 0;
|
|
|
|
// If an operand has been specified twice in the asm string,
|
|
// add the two source operand's indices to the TiedOp so that
|
|
// at runtime the 'tied' constraint is checked.
|
|
if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
|
|
SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
|
|
|
|
// Find the next operand (similarly named operand) in the string.
|
|
StringRef Name = AsmOperands[SrcOp1].SrcOpName;
|
|
auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
|
|
SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
|
|
|
|
// Not updating the record in OperandRefs will cause TableGen
|
|
// to fail with an error at the end of this function.
|
|
if (AliasConstraintsAreChecked)
|
|
Insert.first->second = SrcOp2;
|
|
|
|
// In case it only has one reference in the asm string,
|
|
// it doesn't need to be checked for tied constraints.
|
|
SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
|
|
}
|
|
|
|
// If the alias operand is of a different operand class, we only want
|
|
// to benefit from the tied-operands check and just match the operand
|
|
// as a normal, but not copy the original (TiedOp) to the result
|
|
// instruction. We do this by passing -1 as the tied operand to copy.
|
|
if (ResultInst->Operands[i].Rec->getName() !=
|
|
ResultInst->Operands[TiedOp].Rec->getName()) {
|
|
SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
|
|
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
|
|
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
|
|
SrcOp2 = findAsmOperand(Name, SubIdx);
|
|
ResOperands.push_back(
|
|
ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
|
|
} else {
|
|
ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Handle all the suboperands for this operand.
|
|
const std::string &OpName = OpInfo->Name;
|
|
for ( ; AliasOpNo < LastOpNo &&
|
|
CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
|
|
int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
|
|
|
|
// Find out what operand from the asmparser that this MCInst operand
|
|
// comes from.
|
|
switch (CGA.ResultOperands[AliasOpNo].Kind) {
|
|
case CodeGenInstAlias::ResultOperand::K_Record: {
|
|
StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
|
|
int SrcOperand = findAsmOperand(Name, SubIdx);
|
|
if (SrcOperand == -1)
|
|
PrintFatalError(TheDef->getLoc(), "Instruction '" +
|
|
TheDef->getName() + "' has operand '" + OpName +
|
|
"' that doesn't appear in asm string!");
|
|
|
|
// Add it to the operand references. If it is added a second time, the
|
|
// record won't be updated and it will fail later on.
|
|
OperandRefs.try_emplace(Name, SrcOperand);
|
|
|
|
unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
|
|
ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
|
|
NumOperands));
|
|
break;
|
|
}
|
|
case CodeGenInstAlias::ResultOperand::K_Imm: {
|
|
int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
|
|
ResOperands.push_back(ResOperand::getImmOp(ImmVal));
|
|
break;
|
|
}
|
|
case CodeGenInstAlias::ResultOperand::K_Reg: {
|
|
Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
|
|
ResOperands.push_back(ResOperand::getRegOp(Reg));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that operands are not repeated more times than is supported.
|
|
for (auto &T : OperandRefs) {
|
|
if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
|
|
PrintFatalError(TheDef->getLoc(),
|
|
"Operand '" + T.first + "' can never be matched");
|
|
}
|
|
}
|
|
|
|
static unsigned
|
|
getConverterOperandID(const std::string &Name,
|
|
SmallSetVector<CachedHashString, 16> &Table,
|
|
bool &IsNew) {
|
|
IsNew = Table.insert(CachedHashString(Name));
|
|
|
|
unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
|
|
|
|
assert(ID < Table.size());
|
|
|
|
return ID;
|
|
}
|
|
|
|
static unsigned
|
|
emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
|
|
std::vector<std::unique_ptr<MatchableInfo>> &Infos,
|
|
bool HasMnemonicFirst, bool HasOptionalOperands,
|
|
raw_ostream &OS) {
|
|
SmallSetVector<CachedHashString, 16> OperandConversionKinds;
|
|
SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
|
|
std::vector<std::vector<uint8_t> > ConversionTable;
|
|
size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
|
|
|
|
// TargetOperandClass - This is the target's operand class, like X86Operand.
|
|
std::string TargetOperandClass = Target.getName().str() + "Operand";
|
|
|
|
// Write the convert function to a separate stream, so we can drop it after
|
|
// the enum. We'll build up the conversion handlers for the individual
|
|
// operand types opportunistically as we encounter them.
|
|
std::string ConvertFnBody;
|
|
raw_string_ostream CvtOS(ConvertFnBody);
|
|
// Start the unified conversion function.
|
|
if (HasOptionalOperands) {
|
|
CvtOS << "void " << Target.getName() << ClassName << "::\n"
|
|
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const OperandVector &Operands,\n"
|
|
<< " const SmallBitVector &OptionalOperandsMask) {\n";
|
|
} else {
|
|
CvtOS << "void " << Target.getName() << ClassName << "::\n"
|
|
<< "convertToMCInst(unsigned Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const OperandVector &Operands) {\n";
|
|
}
|
|
CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
|
|
CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n";
|
|
if (HasOptionalOperands) {
|
|
size_t MaxNumOperands = 0;
|
|
for (const auto &MI : Infos) {
|
|
MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
|
|
}
|
|
CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1)
|
|
<< "] = { 0 };\n";
|
|
CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
|
|
<< ");\n";
|
|
CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
|
|
<< "; ++i) {\n";
|
|
CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n";
|
|
CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
|
|
CvtOS << " }\n";
|
|
}
|
|
CvtOS << " unsigned OpIdx;\n";
|
|
CvtOS << " Inst.setOpcode(Opcode);\n";
|
|
CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
|
|
if (HasOptionalOperands) {
|
|
CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
|
|
} else {
|
|
CvtOS << " OpIdx = *(p + 1);\n";
|
|
}
|
|
CvtOS << " switch (*p) {\n";
|
|
CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n";
|
|
CvtOS << " case CVT_Reg:\n";
|
|
CvtOS << " static_cast<" << TargetOperandClass
|
|
<< " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
|
|
CvtOS << " break;\n";
|
|
CvtOS << " case CVT_Tied: {\n";
|
|
CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
|
|
CvtOS << " std::begin(TiedAsmOperandTable)) &&\n";
|
|
CvtOS << " \"Tied operand not found\");\n";
|
|
CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
|
|
CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n";
|
|
CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
|
|
CvtOS << " break;\n";
|
|
CvtOS << " }\n";
|
|
|
|
std::string OperandFnBody;
|
|
raw_string_ostream OpOS(OperandFnBody);
|
|
// Start the operand number lookup function.
|
|
OpOS << "void " << Target.getName() << ClassName << "::\n"
|
|
<< "convertToMapAndConstraints(unsigned Kind,\n";
|
|
OpOS.indent(27);
|
|
OpOS << "const OperandVector &Operands) {\n"
|
|
<< " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
|
|
<< " unsigned NumMCOperands = 0;\n"
|
|
<< " const uint8_t *Converter = ConversionTable[Kind];\n"
|
|
<< " for (const uint8_t *p = Converter; *p; p += 2) {\n"
|
|
<< " switch (*p) {\n"
|
|
<< " default: llvm_unreachable(\"invalid conversion entry!\");\n"
|
|
<< " case CVT_Reg:\n"
|
|
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
|
|
<< " Operands[*(p + 1)]->setConstraint(\"r\");\n"
|
|
<< " ++NumMCOperands;\n"
|
|
<< " break;\n"
|
|
<< " case CVT_Tied:\n"
|
|
<< " ++NumMCOperands;\n"
|
|
<< " break;\n";
|
|
|
|
// Pre-populate the operand conversion kinds with the standard always
|
|
// available entries.
|
|
OperandConversionKinds.insert(CachedHashString("CVT_Done"));
|
|
OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
|
|
OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
|
|
enum { CVT_Done, CVT_Reg, CVT_Tied };
|
|
|
|
// Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
|
|
std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
|
|
TiedOperandsEnumMap;
|
|
|
|
for (auto &II : Infos) {
|
|
// Check if we have a custom match function.
|
|
StringRef AsmMatchConverter =
|
|
II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
|
|
if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
|
|
std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
|
|
II->ConversionFnKind = Signature;
|
|
|
|
// Check if we have already generated this signature.
|
|
if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
|
|
continue;
|
|
|
|
// Remember this converter for the kind enum.
|
|
unsigned KindID = OperandConversionKinds.size();
|
|
OperandConversionKinds.insert(
|
|
CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
|
|
|
|
// Add the converter row for this instruction.
|
|
ConversionTable.emplace_back();
|
|
ConversionTable.back().push_back(KindID);
|
|
ConversionTable.back().push_back(CVT_Done);
|
|
|
|
// Add the handler to the conversion driver function.
|
|
CvtOS << " case CVT_"
|
|
<< getEnumNameForToken(AsmMatchConverter) << ":\n"
|
|
<< " " << AsmMatchConverter << "(Inst, Operands);\n"
|
|
<< " break;\n";
|
|
|
|
// FIXME: Handle the operand number lookup for custom match functions.
|
|
continue;
|
|
}
|
|
|
|
// Build the conversion function signature.
|
|
std::string Signature = "Convert";
|
|
|
|
std::vector<uint8_t> ConversionRow;
|
|
|
|
// Compute the convert enum and the case body.
|
|
MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
|
|
|
|
for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
|
|
const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
|
|
|
|
// Generate code to populate each result operand.
|
|
switch (OpInfo.Kind) {
|
|
case MatchableInfo::ResOperand::RenderAsmOperand: {
|
|
// This comes from something we parsed.
|
|
const MatchableInfo::AsmOperand &Op =
|
|
II->AsmOperands[OpInfo.AsmOperandNum];
|
|
|
|
// Registers are always converted the same, don't duplicate the
|
|
// conversion function based on them.
|
|
Signature += "__";
|
|
std::string Class;
|
|
Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
|
|
Signature += Class;
|
|
Signature += utostr(OpInfo.MINumOperands);
|
|
Signature += "_" + itostr(OpInfo.AsmOperandNum);
|
|
|
|
// Add the conversion kind, if necessary, and get the associated ID
|
|
// the index of its entry in the vector).
|
|
std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
|
|
Op.Class->RenderMethod);
|
|
if (Op.Class->IsOptional) {
|
|
// For optional operands we must also care about DefaultMethod
|
|
assert(HasOptionalOperands);
|
|
Name += "_" + Op.Class->DefaultMethod;
|
|
}
|
|
Name = getEnumNameForToken(Name);
|
|
|
|
bool IsNewConverter = false;
|
|
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
|
|
IsNewConverter);
|
|
|
|
// Add the operand entry to the instruction kind conversion row.
|
|
ConversionRow.push_back(ID);
|
|
ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
|
|
|
|
if (!IsNewConverter)
|
|
break;
|
|
|
|
// This is a new operand kind. Add a handler for it to the
|
|
// converter driver.
|
|
CvtOS << " case " << Name << ":\n";
|
|
if (Op.Class->IsOptional) {
|
|
// If optional operand is not present in actual instruction then we
|
|
// should call its DefaultMethod before RenderMethod
|
|
assert(HasOptionalOperands);
|
|
CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
|
|
<< " " << Op.Class->DefaultMethod << "()"
|
|
<< "->" << Op.Class->RenderMethod << "(Inst, "
|
|
<< OpInfo.MINumOperands << ");\n"
|
|
<< " } else {\n"
|
|
<< " static_cast<" << TargetOperandClass
|
|
<< " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
|
|
<< "(Inst, " << OpInfo.MINumOperands << ");\n"
|
|
<< " }\n";
|
|
} else {
|
|
CvtOS << " static_cast<" << TargetOperandClass
|
|
<< " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
|
|
<< "(Inst, " << OpInfo.MINumOperands << ");\n";
|
|
}
|
|
CvtOS << " break;\n";
|
|
|
|
// Add a handler for the operand number lookup.
|
|
OpOS << " case " << Name << ":\n"
|
|
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
|
|
|
|
if (Op.Class->isRegisterClass())
|
|
OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
|
|
else
|
|
OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
|
|
OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
|
|
<< " break;\n";
|
|
break;
|
|
}
|
|
case MatchableInfo::ResOperand::TiedOperand: {
|
|
// If this operand is tied to a previous one, just copy the MCInst
|
|
// operand from the earlier one.We can only tie single MCOperand values.
|
|
assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
|
|
uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
|
|
uint8_t SrcOp1 =
|
|
OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
|
|
uint8_t SrcOp2 =
|
|
OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
|
|
assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
|
|
"Tied operand precedes its target!");
|
|
auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
|
|
utostr(SrcOp1) + '_' + utostr(SrcOp2);
|
|
Signature += "__" + TiedTupleName;
|
|
ConversionRow.push_back(CVT_Tied);
|
|
ConversionRow.push_back(TiedOp);
|
|
ConversionRow.push_back(SrcOp1);
|
|
ConversionRow.push_back(SrcOp2);
|
|
|
|
// Also create an 'enum' for this combination of tied operands.
|
|
auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
|
|
TiedOperandsEnumMap.emplace(Key, TiedTupleName);
|
|
break;
|
|
}
|
|
case MatchableInfo::ResOperand::ImmOperand: {
|
|
int64_t Val = OpInfo.ImmVal;
|
|
std::string Ty = "imm_" + itostr(Val);
|
|
Ty = getEnumNameForToken(Ty);
|
|
Signature += "__" + Ty;
|
|
|
|
std::string Name = "CVT_" + Ty;
|
|
bool IsNewConverter = false;
|
|
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
|
|
IsNewConverter);
|
|
// Add the operand entry to the instruction kind conversion row.
|
|
ConversionRow.push_back(ID);
|
|
ConversionRow.push_back(0);
|
|
|
|
if (!IsNewConverter)
|
|
break;
|
|
|
|
CvtOS << " case " << Name << ":\n"
|
|
<< " Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
|
|
<< " break;\n";
|
|
|
|
OpOS << " case " << Name << ":\n"
|
|
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
|
|
<< " Operands[*(p + 1)]->setConstraint(\"\");\n"
|
|
<< " ++NumMCOperands;\n"
|
|
<< " break;\n";
|
|
break;
|
|
}
|
|
case MatchableInfo::ResOperand::RegOperand: {
|
|
std::string Reg, Name;
|
|
if (!OpInfo.Register) {
|
|
Name = "reg0";
|
|
Reg = "0";
|
|
} else {
|
|
Reg = getQualifiedName(OpInfo.Register);
|
|
Name = "reg" + OpInfo.Register->getName().str();
|
|
}
|
|
Signature += "__" + Name;
|
|
Name = "CVT_" + Name;
|
|
bool IsNewConverter = false;
|
|
unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
|
|
IsNewConverter);
|
|
// Add the operand entry to the instruction kind conversion row.
|
|
ConversionRow.push_back(ID);
|
|
ConversionRow.push_back(0);
|
|
|
|
if (!IsNewConverter)
|
|
break;
|
|
CvtOS << " case " << Name << ":\n"
|
|
<< " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
|
|
<< " break;\n";
|
|
|
|
OpOS << " case " << Name << ":\n"
|
|
<< " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
|
|
<< " Operands[*(p + 1)]->setConstraint(\"m\");\n"
|
|
<< " ++NumMCOperands;\n"
|
|
<< " break;\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were no operands, add to the signature to that effect
|
|
if (Signature == "Convert")
|
|
Signature += "_NoOperands";
|
|
|
|
II->ConversionFnKind = Signature;
|
|
|
|
// Save the signature. If we already have it, don't add a new row
|
|
// to the table.
|
|
if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
|
|
continue;
|
|
|
|
// Add the row to the table.
|
|
ConversionTable.push_back(std::move(ConversionRow));
|
|
}
|
|
|
|
// Finish up the converter driver function.
|
|
CvtOS << " }\n }\n}\n\n";
|
|
|
|
// Finish up the operand number lookup function.
|
|
OpOS << " }\n }\n}\n\n";
|
|
|
|
// Output a static table for tied operands.
|
|
if (TiedOperandsEnumMap.size()) {
|
|
// The number of tied operand combinations will be small in practice,
|
|
// but just add the assert to be sure.
|
|
assert(TiedOperandsEnumMap.size() <= 254 &&
|
|
"Too many tied-operand combinations to reference with "
|
|
"an 8bit offset from the conversion table, where index "
|
|
"'255' is reserved as operand not to be copied.");
|
|
|
|
OS << "enum {\n";
|
|
for (auto &KV : TiedOperandsEnumMap) {
|
|
OS << " " << KV.second << ",\n";
|
|
}
|
|
OS << "};\n\n";
|
|
|
|
OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
|
|
for (auto &KV : TiedOperandsEnumMap) {
|
|
OS << " /* " << KV.second << " */ { "
|
|
<< utostr(std::get<0>(KV.first)) << ", "
|
|
<< utostr(std::get<1>(KV.first)) << ", "
|
|
<< utostr(std::get<2>(KV.first)) << " },\n";
|
|
}
|
|
OS << "};\n\n";
|
|
} else
|
|
OS << "static const uint8_t TiedAsmOperandTable[][3] = "
|
|
"{ /* empty */ {0, 0, 0} };\n\n";
|
|
|
|
OS << "namespace {\n";
|
|
|
|
// Output the operand conversion kind enum.
|
|
OS << "enum OperatorConversionKind {\n";
|
|
for (const auto &Converter : OperandConversionKinds)
|
|
OS << " " << Converter << ",\n";
|
|
OS << " CVT_NUM_CONVERTERS\n";
|
|
OS << "};\n\n";
|
|
|
|
// Output the instruction conversion kind enum.
|
|
OS << "enum InstructionConversionKind {\n";
|
|
for (const auto &Signature : InstructionConversionKinds)
|
|
OS << " " << Signature << ",\n";
|
|
OS << " CVT_NUM_SIGNATURES\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << "} // end anonymous namespace\n\n";
|
|
|
|
// Output the conversion table.
|
|
OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
|
|
<< MaxRowLength << "] = {\n";
|
|
|
|
for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
|
|
assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
|
|
OS << " // " << InstructionConversionKinds[Row] << "\n";
|
|
OS << " { ";
|
|
for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
|
|
OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
|
|
if (OperandConversionKinds[ConversionTable[Row][i]] !=
|
|
CachedHashString("CVT_Tied")) {
|
|
OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
|
|
continue;
|
|
}
|
|
|
|
// For a tied operand, emit a reference to the TiedAsmOperandTable
|
|
// that contains the operand to copy, and the parsed operands to
|
|
// check for their tied constraints.
|
|
auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
|
|
(uint8_t)ConversionTable[Row][i + 2],
|
|
(uint8_t)ConversionTable[Row][i + 3]);
|
|
auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
|
|
assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
|
|
"No record for tied operand pair");
|
|
OS << TiedOpndEnum->second << ", ";
|
|
i += 2;
|
|
}
|
|
OS << "CVT_Done },\n";
|
|
}
|
|
|
|
OS << "};\n\n";
|
|
|
|
// Spit out the conversion driver function.
|
|
OS << CvtOS.str();
|
|
|
|
// Spit out the operand number lookup function.
|
|
OS << OpOS.str();
|
|
|
|
return ConversionTable.size();
|
|
}
|
|
|
|
/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
|
|
static void emitMatchClassEnumeration(CodeGenTarget &Target,
|
|
std::forward_list<ClassInfo> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "namespace {\n\n";
|
|
|
|
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
|
|
<< "/// instruction matching.\n";
|
|
OS << "enum MatchClassKind {\n";
|
|
OS << " InvalidMatchClass = 0,\n";
|
|
OS << " OptionalMatchClass = 1,\n";
|
|
ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
|
|
StringRef LastName = "OptionalMatchClass";
|
|
for (const auto &CI : Infos) {
|
|
if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
|
|
OS << " MCK_LAST_TOKEN = " << LastName << ",\n";
|
|
} else if (LastKind < ClassInfo::UserClass0 &&
|
|
CI.Kind >= ClassInfo::UserClass0) {
|
|
OS << " MCK_LAST_REGISTER = " << LastName << ",\n";
|
|
}
|
|
LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
|
|
LastName = CI.Name;
|
|
|
|
OS << " " << CI.Name << ", // ";
|
|
if (CI.Kind == ClassInfo::Token) {
|
|
OS << "'" << CI.ValueName << "'\n";
|
|
} else if (CI.isRegisterClass()) {
|
|
if (!CI.ValueName.empty())
|
|
OS << "register class '" << CI.ValueName << "'\n";
|
|
else
|
|
OS << "derived register class\n";
|
|
} else {
|
|
OS << "user defined class '" << CI.ValueName << "'\n";
|
|
}
|
|
}
|
|
OS << " NumMatchClassKinds\n";
|
|
OS << "};\n\n";
|
|
|
|
OS << "} // end anonymous namespace\n\n";
|
|
}
|
|
|
|
/// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
|
|
/// used when an assembly operand does not match the expected operand class.
|
|
static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
|
|
// If the target does not use DiagnosticString for any operands, don't emit
|
|
// an unused function.
|
|
if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
|
|
return CI.DiagnosticString.empty();
|
|
}))
|
|
return;
|
|
|
|
OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
|
|
<< "AsmParser::" << Info.Target.getName()
|
|
<< "MatchResultTy MatchResult) {\n";
|
|
OS << " switch (MatchResult) {\n";
|
|
|
|
for (const auto &CI: Info.Classes) {
|
|
if (!CI.DiagnosticString.empty()) {
|
|
assert(!CI.DiagnosticType.empty() &&
|
|
"DiagnosticString set without DiagnosticType");
|
|
OS << " case " << Info.Target.getName()
|
|
<< "AsmParser::Match_" << CI.DiagnosticType << ":\n";
|
|
OS << " return \"" << CI.DiagnosticString << "\";\n";
|
|
}
|
|
}
|
|
|
|
OS << " default:\n";
|
|
OS << " return nullptr;\n";
|
|
|
|
OS << " }\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
|
|
OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
|
|
"RegisterClass) {\n";
|
|
if (none_of(Info.Classes, [](const ClassInfo &CI) {
|
|
return CI.isRegisterClass() && !CI.DiagnosticType.empty();
|
|
})) {
|
|
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
|
|
} else {
|
|
OS << " switch (RegisterClass) {\n";
|
|
for (const auto &CI: Info.Classes) {
|
|
if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
|
|
OS << " case " << CI.Name << ":\n";
|
|
OS << " return " << Info.Target.getName() << "AsmParser::Match_"
|
|
<< CI.DiagnosticType << ";\n";
|
|
}
|
|
}
|
|
|
|
OS << " default:\n";
|
|
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
|
|
|
|
OS << " }\n";
|
|
}
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// emitValidateOperandClass - Emit the function to validate an operand class.
|
|
static void emitValidateOperandClass(AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
|
|
<< "MatchClassKind Kind) {\n";
|
|
OS << " " << Info.Target.getName() << "Operand &Operand = ("
|
|
<< Info.Target.getName() << "Operand &)GOp;\n";
|
|
|
|
// The InvalidMatchClass is not to match any operand.
|
|
OS << " if (Kind == InvalidMatchClass)\n";
|
|
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
|
|
|
|
// Check for Token operands first.
|
|
// FIXME: Use a more specific diagnostic type.
|
|
OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
|
|
OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
|
|
<< " MCTargetAsmParser::Match_Success :\n"
|
|
<< " MCTargetAsmParser::Match_InvalidOperand;\n\n";
|
|
|
|
// Check the user classes. We don't care what order since we're only
|
|
// actually matching against one of them.
|
|
OS << " switch (Kind) {\n"
|
|
" default: break;\n";
|
|
for (const auto &CI : Info.Classes) {
|
|
if (!CI.isUserClass())
|
|
continue;
|
|
|
|
OS << " // '" << CI.ClassName << "' class\n";
|
|
OS << " case " << CI.Name << ": {\n";
|
|
OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod
|
|
<< "());\n";
|
|
OS << " if (DP.isMatch())\n";
|
|
OS << " return MCTargetAsmParser::Match_Success;\n";
|
|
if (!CI.DiagnosticType.empty()) {
|
|
OS << " if (DP.isNearMatch())\n";
|
|
OS << " return " << Info.Target.getName() << "AsmParser::Match_"
|
|
<< CI.DiagnosticType << ";\n";
|
|
OS << " break;\n";
|
|
}
|
|
else
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
}
|
|
OS << " } // end switch (Kind)\n\n";
|
|
|
|
// Check for register operands, including sub-classes.
|
|
OS << " if (Operand.isReg()) {\n";
|
|
OS << " MatchClassKind OpKind;\n";
|
|
OS << " switch (Operand.getReg()) {\n";
|
|
OS << " default: OpKind = InvalidMatchClass; break;\n";
|
|
for (const auto &RC : Info.RegisterClasses)
|
|
OS << " case " << RC.first->getValueAsString("Namespace") << "::"
|
|
<< RC.first->getName() << ": OpKind = " << RC.second->Name
|
|
<< "; break;\n";
|
|
OS << " }\n";
|
|
OS << " return isSubclass(OpKind, Kind) ? "
|
|
<< "(unsigned)MCTargetAsmParser::Match_Success :\n "
|
|
<< " getDiagKindFromRegisterClass(Kind);\n }\n\n";
|
|
|
|
// Expected operand is a register, but actual is not.
|
|
OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
|
|
OS << " return getDiagKindFromRegisterClass(Kind);\n\n";
|
|
|
|
// Generic fallthrough match failure case for operands that don't have
|
|
// specialized diagnostic types.
|
|
OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// emitIsSubclass - Emit the subclass predicate function.
|
|
static void emitIsSubclass(CodeGenTarget &Target,
|
|
std::forward_list<ClassInfo> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
|
|
OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
|
|
OS << " if (A == B)\n";
|
|
OS << " return true;\n\n";
|
|
|
|
bool EmittedSwitch = false;
|
|
for (const auto &A : Infos) {
|
|
std::vector<StringRef> SuperClasses;
|
|
if (A.IsOptional)
|
|
SuperClasses.push_back("OptionalMatchClass");
|
|
for (const auto &B : Infos) {
|
|
if (&A != &B && A.isSubsetOf(B))
|
|
SuperClasses.push_back(B.Name);
|
|
}
|
|
|
|
if (SuperClasses.empty())
|
|
continue;
|
|
|
|
// If this is the first SuperClass, emit the switch header.
|
|
if (!EmittedSwitch) {
|
|
OS << " switch (A) {\n";
|
|
OS << " default:\n";
|
|
OS << " return false;\n";
|
|
EmittedSwitch = true;
|
|
}
|
|
|
|
OS << "\n case " << A.Name << ":\n";
|
|
|
|
if (SuperClasses.size() == 1) {
|
|
OS << " return B == " << SuperClasses.back() << ";\n";
|
|
continue;
|
|
}
|
|
|
|
if (!SuperClasses.empty()) {
|
|
OS << " switch (B) {\n";
|
|
OS << " default: return false;\n";
|
|
for (StringRef SC : SuperClasses)
|
|
OS << " case " << SC << ": return true;\n";
|
|
OS << " }\n";
|
|
} else {
|
|
// No case statement to emit
|
|
OS << " return false;\n";
|
|
}
|
|
}
|
|
|
|
// If there were case statements emitted into the string stream write the
|
|
// default.
|
|
if (EmittedSwitch)
|
|
OS << " }\n";
|
|
else
|
|
OS << " return false;\n";
|
|
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// emitMatchTokenString - Emit the function to match a token string to the
|
|
/// appropriate match class value.
|
|
static void emitMatchTokenString(CodeGenTarget &Target,
|
|
std::forward_list<ClassInfo> &Infos,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringMatcher::StringPair> Matches;
|
|
for (const auto &CI : Infos) {
|
|
if (CI.Kind == ClassInfo::Token)
|
|
Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
|
|
}
|
|
|
|
OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
|
|
|
|
StringMatcher("Name", Matches, OS).Emit();
|
|
|
|
OS << " return InvalidMatchClass;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// emitMatchRegisterName - Emit the function to match a string to the target
|
|
/// specific register enum.
|
|
static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringMatcher::StringPair> Matches;
|
|
const auto &Regs = Target.getRegBank().getRegisters();
|
|
for (const CodeGenRegister &Reg : Regs) {
|
|
if (Reg.TheDef->getValueAsString("AsmName").empty())
|
|
continue;
|
|
|
|
Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
|
|
"return " + utostr(Reg.EnumValue) + ";");
|
|
}
|
|
|
|
OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
|
|
|
|
bool IgnoreDuplicates =
|
|
AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
|
|
StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
|
|
|
|
OS << " return 0;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// Emit the function to match a string to the target
|
|
/// specific register enum.
|
|
static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
|
|
raw_ostream &OS) {
|
|
// Construct the match list.
|
|
std::vector<StringMatcher::StringPair> Matches;
|
|
const auto &Regs = Target.getRegBank().getRegisters();
|
|
for (const CodeGenRegister &Reg : Regs) {
|
|
|
|
auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
|
|
|
|
for (auto AltName : AltNames) {
|
|
AltName = StringRef(AltName).trim();
|
|
|
|
// don't handle empty alternative names
|
|
if (AltName.empty())
|
|
continue;
|
|
|
|
Matches.emplace_back(std::string(AltName),
|
|
"return " + utostr(Reg.EnumValue) + ";");
|
|
}
|
|
}
|
|
|
|
OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
|
|
|
|
bool IgnoreDuplicates =
|
|
AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
|
|
StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
|
|
|
|
OS << " return 0;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
|
|
static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
|
|
// Get the set of diagnostic types from all of the operand classes.
|
|
std::set<StringRef> Types;
|
|
for (const auto &OpClassEntry : Info.AsmOperandClasses) {
|
|
if (!OpClassEntry.second->DiagnosticType.empty())
|
|
Types.insert(OpClassEntry.second->DiagnosticType);
|
|
}
|
|
for (const auto &OpClassEntry : Info.RegisterClassClasses) {
|
|
if (!OpClassEntry.second->DiagnosticType.empty())
|
|
Types.insert(OpClassEntry.second->DiagnosticType);
|
|
}
|
|
|
|
if (Types.empty()) return;
|
|
|
|
// Now emit the enum entries.
|
|
for (StringRef Type : Types)
|
|
OS << " Match_" << Type << ",\n";
|
|
OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
|
|
}
|
|
|
|
/// emitGetSubtargetFeatureName - Emit the helper function to get the
|
|
/// user-level name for a subtarget feature.
|
|
static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
|
|
OS << "// User-level names for subtarget features that participate in\n"
|
|
<< "// instruction matching.\n"
|
|
<< "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
|
|
if (!Info.SubtargetFeatures.empty()) {
|
|
OS << " switch(Val) {\n";
|
|
for (const auto &SF : Info.SubtargetFeatures) {
|
|
const SubtargetFeatureInfo &SFI = SF.second;
|
|
// FIXME: Totally just a placeholder name to get the algorithm working.
|
|
OS << " case " << SFI.getEnumBitName() << ": return \""
|
|
<< SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
|
|
}
|
|
OS << " default: return \"(unknown)\";\n";
|
|
OS << " }\n";
|
|
} else {
|
|
// Nothing to emit, so skip the switch
|
|
OS << " return \"(unknown)\";\n";
|
|
}
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
static std::string GetAliasRequiredFeatures(Record *R,
|
|
const AsmMatcherInfo &Info) {
|
|
std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
|
|
std::string Result;
|
|
|
|
if (ReqFeatures.empty())
|
|
return Result;
|
|
|
|
for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
|
|
const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
|
|
|
|
if (!F)
|
|
PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
|
|
"' is not marked as an AssemblerPredicate!");
|
|
|
|
if (i)
|
|
Result += " && ";
|
|
|
|
Result += "Features.test(" + F->getEnumBitName() + ')';
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
|
|
std::vector<Record*> &Aliases,
|
|
unsigned Indent = 0,
|
|
StringRef AsmParserVariantName = StringRef()){
|
|
// Keep track of all the aliases from a mnemonic. Use an std::map so that the
|
|
// iteration order of the map is stable.
|
|
std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
|
|
|
|
for (Record *R : Aliases) {
|
|
// FIXME: Allow AssemblerVariantName to be a comma separated list.
|
|
StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
|
|
if (AsmVariantName != AsmParserVariantName)
|
|
continue;
|
|
AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()]
|
|
.push_back(R);
|
|
}
|
|
if (AliasesFromMnemonic.empty())
|
|
return;
|
|
|
|
// Process each alias a "from" mnemonic at a time, building the code executed
|
|
// by the string remapper.
|
|
std::vector<StringMatcher::StringPair> Cases;
|
|
for (const auto &AliasEntry : AliasesFromMnemonic) {
|
|
const std::vector<Record*> &ToVec = AliasEntry.second;
|
|
|
|
// Loop through each alias and emit code that handles each case. If there
|
|
// are two instructions without predicates, emit an error. If there is one,
|
|
// emit it last.
|
|
std::string MatchCode;
|
|
int AliasWithNoPredicate = -1;
|
|
|
|
for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
|
|
Record *R = ToVec[i];
|
|
std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
|
|
|
|
// If this unconditionally matches, remember it for later and diagnose
|
|
// duplicates.
|
|
if (FeatureMask.empty()) {
|
|
if (AliasWithNoPredicate != -1) {
|
|
// We can't have two aliases from the same mnemonic with no predicate.
|
|
PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
|
|
"two MnemonicAliases with the same 'from' mnemonic!");
|
|
PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
|
|
}
|
|
|
|
AliasWithNoPredicate = i;
|
|
continue;
|
|
}
|
|
if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
|
|
PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
|
|
|
|
if (!MatchCode.empty())
|
|
MatchCode += "else ";
|
|
MatchCode += "if (" + FeatureMask + ")\n";
|
|
MatchCode += " Mnemonic = \"";
|
|
MatchCode += R->getValueAsString("ToMnemonic").lower();
|
|
MatchCode += "\";\n";
|
|
}
|
|
|
|
if (AliasWithNoPredicate != -1) {
|
|
Record *R = ToVec[AliasWithNoPredicate];
|
|
if (!MatchCode.empty())
|
|
MatchCode += "else\n ";
|
|
MatchCode += "Mnemonic = \"";
|
|
MatchCode += R->getValueAsString("ToMnemonic").lower();
|
|
MatchCode += "\";\n";
|
|
}
|
|
|
|
MatchCode += "return;";
|
|
|
|
Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
|
|
}
|
|
StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
|
|
}
|
|
|
|
/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
|
|
/// emit a function for them and return true, otherwise return false.
|
|
static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
|
|
CodeGenTarget &Target) {
|
|
// Ignore aliases when match-prefix is set.
|
|
if (!MatchPrefix.empty())
|
|
return false;
|
|
|
|
std::vector<Record*> Aliases =
|
|
Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
|
|
if (Aliases.empty()) return false;
|
|
|
|
OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
|
|
"const FeatureBitset &Features, unsigned VariantID) {\n";
|
|
OS << " switch (VariantID) {\n";
|
|
unsigned VariantCount = Target.getAsmParserVariantCount();
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
|
|
OS << " case " << AsmParserVariantNo << ":\n";
|
|
emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
|
|
AsmParserVariantName);
|
|
OS << " break;\n";
|
|
}
|
|
OS << " }\n";
|
|
|
|
// Emit aliases that apply to all variants.
|
|
emitMnemonicAliasVariant(OS, Info, Aliases);
|
|
|
|
OS << "}\n\n";
|
|
|
|
return true;
|
|
}
|
|
|
|
static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
|
|
const AsmMatcherInfo &Info, StringRef ClassName,
|
|
StringToOffsetTable &StringTable,
|
|
unsigned MaxMnemonicIndex,
|
|
unsigned MaxFeaturesIndex,
|
|
bool HasMnemonicFirst) {
|
|
unsigned MaxMask = 0;
|
|
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
|
|
MaxMask |= OMI.OperandMask;
|
|
}
|
|
|
|
// Emit the static custom operand parsing table;
|
|
OS << "namespace {\n";
|
|
OS << " struct OperandMatchEntry {\n";
|
|
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
|
|
<< " Mnemonic;\n";
|
|
OS << " " << getMinimalTypeForRange(MaxMask)
|
|
<< " OperandMask;\n";
|
|
OS << " " << getMinimalTypeForRange(std::distance(
|
|
Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
|
|
OS << " " << getMinimalTypeForRange(MaxFeaturesIndex)
|
|
<< " RequiredFeaturesIdx;\n\n";
|
|
OS << " StringRef getMnemonic() const {\n";
|
|
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
|
|
OS << " MnemonicTable[Mnemonic]);\n";
|
|
OS << " }\n";
|
|
OS << " };\n\n";
|
|
|
|
OS << " // Predicate for searching for an opcode.\n";
|
|
OS << " struct LessOpcodeOperand {\n";
|
|
OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
|
|
OS << " return LHS.getMnemonic() < RHS;\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
|
|
OS << " return LHS < RHS.getMnemonic();\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(const OperandMatchEntry &LHS,";
|
|
OS << " const OperandMatchEntry &RHS) {\n";
|
|
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
|
|
OS << " }\n";
|
|
OS << " };\n";
|
|
|
|
OS << "} // end anonymous namespace\n\n";
|
|
|
|
OS << "static const OperandMatchEntry OperandMatchTable["
|
|
<< Info.OperandMatchInfo.size() << "] = {\n";
|
|
|
|
OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
|
|
for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
|
|
const MatchableInfo &II = *OMI.MI;
|
|
|
|
OS << " { ";
|
|
|
|
// Store a pascal-style length byte in the mnemonic.
|
|
std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
|
|
OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
|
|
<< " /* " << II.Mnemonic << " */, ";
|
|
|
|
OS << OMI.OperandMask;
|
|
OS << " /* ";
|
|
ListSeparator LS;
|
|
for (int i = 0, e = 31; i !=e; ++i)
|
|
if (OMI.OperandMask & (1 << i))
|
|
OS << LS << i;
|
|
OS << " */, ";
|
|
|
|
OS << OMI.CI->Name;
|
|
|
|
// Write the required features mask.
|
|
OS << ", AMFBS";
|
|
if (II.RequiredFeatures.empty())
|
|
OS << "_None";
|
|
else
|
|
for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
|
|
OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
|
|
|
|
OS << " },\n";
|
|
}
|
|
OS << "};\n\n";
|
|
|
|
// Emit the operand class switch to call the correct custom parser for
|
|
// the found operand class.
|
|
OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
|
|
<< "tryCustomParseOperand(OperandVector"
|
|
<< " &Operands,\n unsigned MCK) {\n\n"
|
|
<< " switch(MCK) {\n";
|
|
|
|
for (const auto &CI : Info.Classes) {
|
|
if (CI.ParserMethod.empty())
|
|
continue;
|
|
OS << " case " << CI.Name << ":\n"
|
|
<< " return " << CI.ParserMethod << "(Operands);\n";
|
|
}
|
|
|
|
OS << " default:\n";
|
|
OS << " return MatchOperand_NoMatch;\n";
|
|
OS << " }\n";
|
|
OS << " return MatchOperand_NoMatch;\n";
|
|
OS << "}\n\n";
|
|
|
|
// Emit the static custom operand parser. This code is very similar with
|
|
// the other matcher. Also use MatchResultTy here just in case we go for
|
|
// a better error handling.
|
|
OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
|
|
<< "MatchOperandParserImpl(OperandVector"
|
|
<< " &Operands,\n StringRef Mnemonic,\n"
|
|
<< " bool ParseForAllFeatures) {\n";
|
|
|
|
// Emit code to get the available features.
|
|
OS << " // Get the current feature set.\n";
|
|
OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
|
|
|
|
OS << " // Get the next operand index.\n";
|
|
OS << " unsigned NextOpNum = Operands.size()"
|
|
<< (HasMnemonicFirst ? " - 1" : "") << ";\n";
|
|
|
|
// Emit code to search the table.
|
|
OS << " // Search the table.\n";
|
|
if (HasMnemonicFirst) {
|
|
OS << " auto MnemonicRange =\n";
|
|
OS << " std::equal_range(std::begin(OperandMatchTable), "
|
|
"std::end(OperandMatchTable),\n";
|
|
OS << " Mnemonic, LessOpcodeOperand());\n\n";
|
|
} else {
|
|
OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
|
|
" std::end(OperandMatchTable));\n";
|
|
OS << " if (!Mnemonic.empty())\n";
|
|
OS << " MnemonicRange =\n";
|
|
OS << " std::equal_range(std::begin(OperandMatchTable), "
|
|
"std::end(OperandMatchTable),\n";
|
|
OS << " Mnemonic, LessOpcodeOperand());\n\n";
|
|
}
|
|
|
|
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
|
|
OS << " return MatchOperand_NoMatch;\n\n";
|
|
|
|
OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
|
|
<< " *ie = MnemonicRange.second; it != ie; ++it) {\n";
|
|
|
|
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
|
|
OS << " assert(Mnemonic == it->getMnemonic());\n\n";
|
|
|
|
// Emit check that the required features are available.
|
|
OS << " // check if the available features match\n";
|
|
OS << " const FeatureBitset &RequiredFeatures = "
|
|
"FeatureBitsets[it->RequiredFeaturesIdx];\n";
|
|
OS << " if (!ParseForAllFeatures && (AvailableFeatures & "
|
|
"RequiredFeatures) != RequiredFeatures)\n";
|
|
OS << " continue;\n\n";
|
|
|
|
// Emit check to ensure the operand number matches.
|
|
OS << " // check if the operand in question has a custom parser.\n";
|
|
OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
|
|
OS << " continue;\n\n";
|
|
|
|
// Emit call to the custom parser method
|
|
OS << " // call custom parse method to handle the operand\n";
|
|
OS << " OperandMatchResultTy Result = ";
|
|
OS << "tryCustomParseOperand(Operands, it->Class);\n";
|
|
OS << " if (Result != MatchOperand_NoMatch)\n";
|
|
OS << " return Result;\n";
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Okay, we had no match.\n";
|
|
OS << " return MatchOperand_NoMatch;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
|
|
AsmMatcherInfo &Info,
|
|
raw_ostream &OS) {
|
|
std::string AsmParserName =
|
|
std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
|
|
OS << "static bool ";
|
|
OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
|
|
<< AsmParserName << "&AsmParser,\n";
|
|
OS << " unsigned Kind,\n";
|
|
OS << " const OperandVector &Operands,\n";
|
|
OS << " uint64_t &ErrorInfo) {\n";
|
|
OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
|
|
OS << " const uint8_t *Converter = ConversionTable[Kind];\n";
|
|
OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n";
|
|
OS << " switch (*p) {\n";
|
|
OS << " case CVT_Tied: {\n";
|
|
OS << " unsigned OpIdx = *(p + 1);\n";
|
|
OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
|
|
OS << " std::begin(TiedAsmOperandTable)) &&\n";
|
|
OS << " \"Tied operand not found\");\n";
|
|
OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
|
|
OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
|
|
OS << " if (OpndNum1 != OpndNum2) {\n";
|
|
OS << " auto &SrcOp1 = Operands[OpndNum1];\n";
|
|
OS << " auto &SrcOp2 = Operands[OpndNum2];\n";
|
|
OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
|
|
OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
|
|
OS << " ErrorInfo = OpndNum2;\n";
|
|
OS << " return false;\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " default:\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " return true;\n";
|
|
OS << "}\n\n";
|
|
}
|
|
|
|
static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
|
|
unsigned VariantCount) {
|
|
OS << "static std::string " << Target.getName()
|
|
<< "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
|
|
<< " unsigned VariantID) {\n";
|
|
if (!VariantCount)
|
|
OS << " return \"\";";
|
|
else {
|
|
OS << " const unsigned MaxEditDist = 2;\n";
|
|
OS << " std::vector<StringRef> Candidates;\n";
|
|
OS << " StringRef Prev = \"\";\n\n";
|
|
|
|
OS << " // Find the appropriate table for this asm variant.\n";
|
|
OS << " const MatchEntry *Start, *End;\n";
|
|
OS << " switch (VariantID) {\n";
|
|
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
|
|
<< "); End = std::end(MatchTable" << VC << "); break;\n";
|
|
}
|
|
OS << " }\n\n";
|
|
OS << " for (auto I = Start; I < End; I++) {\n";
|
|
OS << " // Ignore unsupported instructions.\n";
|
|
OS << " const FeatureBitset &RequiredFeatures = "
|
|
"FeatureBitsets[I->RequiredFeaturesIdx];\n";
|
|
OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
|
|
OS << " continue;\n";
|
|
OS << "\n";
|
|
OS << " StringRef T = I->getMnemonic();\n";
|
|
OS << " // Avoid recomputing the edit distance for the same string.\n";
|
|
OS << " if (T.equals(Prev))\n";
|
|
OS << " continue;\n";
|
|
OS << "\n";
|
|
OS << " Prev = T;\n";
|
|
OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
|
|
OS << " if (Dist <= MaxEditDist)\n";
|
|
OS << " Candidates.push_back(T);\n";
|
|
OS << " }\n";
|
|
OS << "\n";
|
|
OS << " if (Candidates.empty())\n";
|
|
OS << " return \"\";\n";
|
|
OS << "\n";
|
|
OS << " std::string Res = \", did you mean: \";\n";
|
|
OS << " unsigned i = 0;\n";
|
|
OS << " for (; i < Candidates.size() - 1; i++)\n";
|
|
OS << " Res += Candidates[i].str() + \", \";\n";
|
|
OS << " return Res + Candidates[i].str() + \"?\";\n";
|
|
}
|
|
OS << "}\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
static void emitMnemonicChecker(raw_ostream &OS,
|
|
CodeGenTarget &Target,
|
|
unsigned VariantCount,
|
|
bool HasMnemonicFirst,
|
|
bool HasMnemonicAliases) {
|
|
OS << "static bool " << Target.getName()
|
|
<< "CheckMnemonic(StringRef Mnemonic,\n";
|
|
OS << " "
|
|
<< "const FeatureBitset &AvailableFeatures,\n";
|
|
OS << " "
|
|
<< "unsigned VariantID) {\n";
|
|
|
|
if (!VariantCount) {
|
|
OS << " return false;\n";
|
|
} else {
|
|
if (HasMnemonicAliases) {
|
|
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
|
|
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
|
|
OS << "\n\n";
|
|
}
|
|
OS << " // Find the appropriate table for this asm variant.\n";
|
|
OS << " const MatchEntry *Start, *End;\n";
|
|
OS << " switch (VariantID) {\n";
|
|
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
|
|
<< "); End = std::end(MatchTable" << VC << "); break;\n";
|
|
}
|
|
OS << " }\n\n";
|
|
|
|
OS << " // Search the table.\n";
|
|
if (HasMnemonicFirst) {
|
|
OS << " auto MnemonicRange = "
|
|
"std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
|
|
} else {
|
|
OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
|
|
OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
|
|
OS << " if (!Mnemonic.empty())\n";
|
|
OS << " MnemonicRange = "
|
|
<< "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
|
|
}
|
|
|
|
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
|
|
OS << " return false;\n\n";
|
|
|
|
OS << " for (const MatchEntry *it = MnemonicRange.first, "
|
|
<< "*ie = MnemonicRange.second;\n";
|
|
OS << " it != ie; ++it) {\n";
|
|
OS << " const FeatureBitset &RequiredFeatures =\n";
|
|
OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n";
|
|
OS << " if ((AvailableFeatures & RequiredFeatures) == ";
|
|
OS << "RequiredFeatures)\n";
|
|
OS << " return true;\n";
|
|
OS << " }\n";
|
|
OS << " return false;\n";
|
|
}
|
|
OS << "}\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
// Emit a function mapping match classes to strings, for debugging.
|
|
static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
|
|
raw_ostream &OS) {
|
|
OS << "#ifndef NDEBUG\n";
|
|
OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
|
|
OS << " switch (Kind) {\n";
|
|
|
|
OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n";
|
|
OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n";
|
|
for (const auto &CI : Infos) {
|
|
OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n";
|
|
}
|
|
OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
|
|
|
|
OS << " }\n";
|
|
OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n";
|
|
OS << "}\n\n";
|
|
OS << "#endif // NDEBUG\n";
|
|
}
|
|
|
|
static std::string
|
|
getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
|
|
std::string Name = "AMFBS";
|
|
for (const auto &Feature : FeatureBitset)
|
|
Name += ("_" + Feature->getName()).str();
|
|
return Name;
|
|
}
|
|
|
|
void AsmMatcherEmitter::run(raw_ostream &OS) {
|
|
CodeGenTarget Target(Records);
|
|
Record *AsmParser = Target.getAsmParser();
|
|
StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
|
|
|
|
// Compute the information on the instructions to match.
|
|
AsmMatcherInfo Info(AsmParser, Target, Records);
|
|
Info.buildInfo();
|
|
|
|
// Sort the instruction table using the partial order on classes. We use
|
|
// stable_sort to ensure that ambiguous instructions are still
|
|
// deterministically ordered.
|
|
llvm::stable_sort(
|
|
Info.Matchables,
|
|
[](const std::unique_ptr<MatchableInfo> &a,
|
|
const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
// Verify that the table is sorted and operator < works transitively.
|
|
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
|
|
++I) {
|
|
for (auto J = I; J != E; ++J) {
|
|
assert(!(**J < **I));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DEBUG_WITH_TYPE("instruction_info", {
|
|
for (const auto &MI : Info.Matchables)
|
|
MI->dump();
|
|
});
|
|
|
|
// Check for ambiguous matchables.
|
|
DEBUG_WITH_TYPE("ambiguous_instrs", {
|
|
unsigned NumAmbiguous = 0;
|
|
for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
|
|
++I) {
|
|
for (auto J = std::next(I); J != E; ++J) {
|
|
const MatchableInfo &A = **I;
|
|
const MatchableInfo &B = **J;
|
|
|
|
if (A.couldMatchAmbiguouslyWith(B)) {
|
|
errs() << "warning: ambiguous matchables:\n";
|
|
A.dump();
|
|
errs() << "\nis incomparable with:\n";
|
|
B.dump();
|
|
errs() << "\n\n";
|
|
++NumAmbiguous;
|
|
}
|
|
}
|
|
}
|
|
if (NumAmbiguous)
|
|
errs() << "warning: " << NumAmbiguous
|
|
<< " ambiguous matchables!\n";
|
|
});
|
|
|
|
// Compute the information on the custom operand parsing.
|
|
Info.buildOperandMatchInfo();
|
|
|
|
bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
|
|
bool HasOptionalOperands = Info.hasOptionalOperands();
|
|
bool ReportMultipleNearMisses =
|
|
AsmParser->getValueAsBit("ReportMultipleNearMisses");
|
|
|
|
// Write the output.
|
|
|
|
// Information for the class declaration.
|
|
OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
|
|
OS << "#undef GET_ASSEMBLER_HEADER\n";
|
|
OS << " // This should be included into the middle of the declaration of\n";
|
|
OS << " // your subclasses implementation of MCTargetAsmParser.\n";
|
|
OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
|
|
if (HasOptionalOperands) {
|
|
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const OperandVector &Operands,\n"
|
|
<< " const SmallBitVector &OptionalOperandsMask);\n";
|
|
} else {
|
|
OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
|
|
<< "unsigned Opcode,\n"
|
|
<< " const OperandVector &Operands);\n";
|
|
}
|
|
OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
|
|
OS << " const OperandVector &Operands) override;\n";
|
|
OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
|
|
<< " MCInst &Inst,\n";
|
|
if (ReportMultipleNearMisses)
|
|
OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
|
|
else
|
|
OS << " uint64_t &ErrorInfo,\n"
|
|
<< " FeatureBitset &MissingFeatures,\n";
|
|
OS << " bool matchingInlineAsm,\n"
|
|
<< " unsigned VariantID = 0);\n";
|
|
if (!ReportMultipleNearMisses)
|
|
OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
|
|
<< " MCInst &Inst,\n"
|
|
<< " uint64_t &ErrorInfo,\n"
|
|
<< " bool matchingInlineAsm,\n"
|
|
<< " unsigned VariantID = 0) {\n"
|
|
<< " FeatureBitset MissingFeatures;\n"
|
|
<< " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
|
|
<< " matchingInlineAsm, VariantID);\n"
|
|
<< " }\n\n";
|
|
|
|
|
|
if (!Info.OperandMatchInfo.empty()) {
|
|
OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
|
|
OS << " OperandVector &Operands,\n";
|
|
OS << " StringRef Mnemonic,\n";
|
|
OS << " bool ParseForAllFeatures = false);\n";
|
|
|
|
OS << " OperandMatchResultTy tryCustomParseOperand(\n";
|
|
OS << " OperandVector &Operands,\n";
|
|
OS << " unsigned MCK);\n\n";
|
|
}
|
|
|
|
OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
|
|
|
|
// Emit the operand match diagnostic enum names.
|
|
OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
|
|
OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
|
|
emitOperandDiagnosticTypes(Info, OS);
|
|
OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
|
|
|
|
OS << "\n#ifdef GET_REGISTER_MATCHER\n";
|
|
OS << "#undef GET_REGISTER_MATCHER\n\n";
|
|
|
|
// Emit the subtarget feature enumeration.
|
|
SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
|
|
Info.SubtargetFeatures, OS);
|
|
|
|
// Emit the function to match a register name to number.
|
|
// This should be omitted for Mips target
|
|
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
|
|
emitMatchRegisterName(Target, AsmParser, OS);
|
|
|
|
if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
|
|
emitMatchRegisterAltName(Target, AsmParser, OS);
|
|
|
|
OS << "#endif // GET_REGISTER_MATCHER\n\n";
|
|
|
|
OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
|
|
OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
|
|
|
|
// Generate the helper function to get the names for subtarget features.
|
|
emitGetSubtargetFeatureName(Info, OS);
|
|
|
|
OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
|
|
|
|
OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
|
|
OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
|
|
|
|
// Generate the function that remaps for mnemonic aliases.
|
|
bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
|
|
|
|
// Generate the convertToMCInst function to convert operands into an MCInst.
|
|
// Also, generate the convertToMapAndConstraints function for MS-style inline
|
|
// assembly. The latter doesn't actually generate a MCInst.
|
|
unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
|
|
HasMnemonicFirst,
|
|
HasOptionalOperands, OS);
|
|
|
|
// Emit the enumeration for classes which participate in matching.
|
|
emitMatchClassEnumeration(Target, Info.Classes, OS);
|
|
|
|
// Emit a function to get the user-visible string to describe an operand
|
|
// match failure in diagnostics.
|
|
emitOperandMatchErrorDiagStrings(Info, OS);
|
|
|
|
// Emit a function to map register classes to operand match failure codes.
|
|
emitRegisterMatchErrorFunc(Info, OS);
|
|
|
|
// Emit the routine to match token strings to their match class.
|
|
emitMatchTokenString(Target, Info.Classes, OS);
|
|
|
|
// Emit the subclass predicate routine.
|
|
emitIsSubclass(Target, Info.Classes, OS);
|
|
|
|
// Emit the routine to validate an operand against a match class.
|
|
emitValidateOperandClass(Info, OS);
|
|
|
|
emitMatchClassKindNames(Info.Classes, OS);
|
|
|
|
// Emit the available features compute function.
|
|
SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
|
|
Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
|
|
Info.SubtargetFeatures, OS);
|
|
|
|
if (!ReportMultipleNearMisses)
|
|
emitAsmTiedOperandConstraints(Target, Info, OS);
|
|
|
|
StringToOffsetTable StringTable;
|
|
|
|
size_t MaxNumOperands = 0;
|
|
unsigned MaxMnemonicIndex = 0;
|
|
bool HasDeprecation = false;
|
|
for (const auto &MI : Info.Matchables) {
|
|
MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
|
|
HasDeprecation |= MI->HasDeprecation;
|
|
|
|
// Store a pascal-style length byte in the mnemonic.
|
|
std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
|
|
MaxMnemonicIndex = std::max(MaxMnemonicIndex,
|
|
StringTable.GetOrAddStringOffset(LenMnemonic, false));
|
|
}
|
|
|
|
OS << "static const char *const MnemonicTable =\n";
|
|
StringTable.EmitString(OS);
|
|
OS << ";\n\n";
|
|
|
|
std::vector<std::vector<Record *>> FeatureBitsets;
|
|
for (const auto &MI : Info.Matchables) {
|
|
if (MI->RequiredFeatures.empty())
|
|
continue;
|
|
FeatureBitsets.emplace_back();
|
|
for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
|
|
FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
|
|
}
|
|
|
|
llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
|
|
const std::vector<Record *> &B) {
|
|
if (A.size() < B.size())
|
|
return true;
|
|
if (A.size() > B.size())
|
|
return false;
|
|
for (auto Pair : zip(A, B)) {
|
|
if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
|
|
return true;
|
|
if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
|
|
return false;
|
|
}
|
|
return false;
|
|
});
|
|
FeatureBitsets.erase(
|
|
std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
|
|
FeatureBitsets.end());
|
|
OS << "// Feature bitsets.\n"
|
|
<< "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
|
|
<< " AMFBS_None,\n";
|
|
for (const auto &FeatureBitset : FeatureBitsets) {
|
|
if (FeatureBitset.empty())
|
|
continue;
|
|
OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
|
|
}
|
|
OS << "};\n\n"
|
|
<< "static constexpr FeatureBitset FeatureBitsets[] = {\n"
|
|
<< " {}, // AMFBS_None\n";
|
|
for (const auto &FeatureBitset : FeatureBitsets) {
|
|
if (FeatureBitset.empty())
|
|
continue;
|
|
OS << " {";
|
|
for (const auto &Feature : FeatureBitset) {
|
|
const auto &I = Info.SubtargetFeatures.find(Feature);
|
|
assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
|
|
OS << I->second.getEnumBitName() << ", ";
|
|
}
|
|
OS << "},\n";
|
|
}
|
|
OS << "};\n\n";
|
|
|
|
// Emit the static match table; unused classes get initialized to 0 which is
|
|
// guaranteed to be InvalidMatchClass.
|
|
//
|
|
// FIXME: We can reduce the size of this table very easily. First, we change
|
|
// it so that store the kinds in separate bit-fields for each index, which
|
|
// only needs to be the max width used for classes at that index (we also need
|
|
// to reject based on this during classification). If we then make sure to
|
|
// order the match kinds appropriately (putting mnemonics last), then we
|
|
// should only end up using a few bits for each class, especially the ones
|
|
// following the mnemonic.
|
|
OS << "namespace {\n";
|
|
OS << " struct MatchEntry {\n";
|
|
OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
|
|
<< " Mnemonic;\n";
|
|
OS << " uint16_t Opcode;\n";
|
|
OS << " " << getMinimalTypeForRange(NumConverters)
|
|
<< " ConvertFn;\n";
|
|
OS << " " << getMinimalTypeForRange(FeatureBitsets.size())
|
|
<< " RequiredFeaturesIdx;\n";
|
|
OS << " " << getMinimalTypeForRange(
|
|
std::distance(Info.Classes.begin(), Info.Classes.end()))
|
|
<< " Classes[" << MaxNumOperands << "];\n";
|
|
OS << " StringRef getMnemonic() const {\n";
|
|
OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
|
|
OS << " MnemonicTable[Mnemonic]);\n";
|
|
OS << " }\n";
|
|
OS << " };\n\n";
|
|
|
|
OS << " // Predicate for searching for an opcode.\n";
|
|
OS << " struct LessOpcode {\n";
|
|
OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
|
|
OS << " return LHS.getMnemonic() < RHS;\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
|
|
OS << " return LHS < RHS.getMnemonic();\n";
|
|
OS << " }\n";
|
|
OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
|
|
OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
|
|
OS << " }\n";
|
|
OS << " };\n";
|
|
|
|
OS << "} // end anonymous namespace\n\n";
|
|
|
|
unsigned VariantCount = Target.getAsmParserVariantCount();
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
|
|
OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
|
|
|
|
for (const auto &MI : Info.Matchables) {
|
|
if (MI->AsmVariantID != AsmVariantNo)
|
|
continue;
|
|
|
|
// Store a pascal-style length byte in the mnemonic.
|
|
std::string LenMnemonic =
|
|
char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
|
|
OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
|
|
<< " /* " << MI->Mnemonic << " */, "
|
|
<< Target.getInstNamespace() << "::"
|
|
<< MI->getResultInst()->TheDef->getName() << ", "
|
|
<< MI->ConversionFnKind << ", ";
|
|
|
|
// Write the required features mask.
|
|
OS << "AMFBS";
|
|
if (MI->RequiredFeatures.empty())
|
|
OS << "_None";
|
|
else
|
|
for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
|
|
OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
|
|
|
|
OS << ", { ";
|
|
ListSeparator LS;
|
|
for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
|
|
OS << LS << Op.Class->Name;
|
|
OS << " }, },\n";
|
|
}
|
|
|
|
OS << "};\n\n";
|
|
}
|
|
|
|
OS << "#include \"llvm/Support/Debug.h\"\n";
|
|
OS << "#include \"llvm/Support/Format.h\"\n\n";
|
|
|
|
// Finally, build the match function.
|
|
OS << "unsigned " << Target.getName() << ClassName << "::\n"
|
|
<< "MatchInstructionImpl(const OperandVector &Operands,\n";
|
|
OS << " MCInst &Inst,\n";
|
|
if (ReportMultipleNearMisses)
|
|
OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n";
|
|
else
|
|
OS << " uint64_t &ErrorInfo,\n"
|
|
<< " FeatureBitset &MissingFeatures,\n";
|
|
OS << " bool matchingInlineAsm, unsigned VariantID) {\n";
|
|
|
|
if (!ReportMultipleNearMisses) {
|
|
OS << " // Eliminate obvious mismatches.\n";
|
|
OS << " if (Operands.size() > "
|
|
<< (MaxNumOperands + HasMnemonicFirst) << ") {\n";
|
|
OS << " ErrorInfo = "
|
|
<< (MaxNumOperands + HasMnemonicFirst) << ";\n";
|
|
OS << " return Match_InvalidOperand;\n";
|
|
OS << " }\n\n";
|
|
}
|
|
|
|
// Emit code to get the available features.
|
|
OS << " // Get the current feature set.\n";
|
|
OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
|
|
|
|
OS << " // Get the instruction mnemonic, which is the first token.\n";
|
|
if (HasMnemonicFirst) {
|
|
OS << " StringRef Mnemonic = ((" << Target.getName()
|
|
<< "Operand &)*Operands[0]).getToken();\n\n";
|
|
} else {
|
|
OS << " StringRef Mnemonic;\n";
|
|
OS << " if (Operands[0]->isToken())\n";
|
|
OS << " Mnemonic = ((" << Target.getName()
|
|
<< "Operand &)*Operands[0]).getToken();\n\n";
|
|
}
|
|
|
|
if (HasMnemonicAliases) {
|
|
OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
|
|
OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
|
|
}
|
|
|
|
// Emit code to compute the class list for this operand vector.
|
|
if (!ReportMultipleNearMisses) {
|
|
OS << " // Some state to try to produce better error messages.\n";
|
|
OS << " bool HadMatchOtherThanFeatures = false;\n";
|
|
OS << " bool HadMatchOtherThanPredicate = false;\n";
|
|
OS << " unsigned RetCode = Match_InvalidOperand;\n";
|
|
OS << " MissingFeatures.set();\n";
|
|
OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
|
|
OS << " // wrong for all instances of the instruction.\n";
|
|
OS << " ErrorInfo = ~0ULL;\n";
|
|
}
|
|
|
|
if (HasOptionalOperands) {
|
|
OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
|
|
}
|
|
|
|
// Emit code to search the table.
|
|
OS << " // Find the appropriate table for this asm variant.\n";
|
|
OS << " const MatchEntry *Start, *End;\n";
|
|
OS << " switch (VariantID) {\n";
|
|
OS << " default: llvm_unreachable(\"invalid variant!\");\n";
|
|
for (unsigned VC = 0; VC != VariantCount; ++VC) {
|
|
Record *AsmVariant = Target.getAsmParserVariant(VC);
|
|
int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
|
|
OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
|
|
<< "); End = std::end(MatchTable" << VC << "); break;\n";
|
|
}
|
|
OS << " }\n";
|
|
|
|
OS << " // Search the table.\n";
|
|
if (HasMnemonicFirst) {
|
|
OS << " auto MnemonicRange = "
|
|
"std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
|
|
} else {
|
|
OS << " auto MnemonicRange = std::make_pair(Start, End);\n";
|
|
OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
|
|
OS << " if (!Mnemonic.empty())\n";
|
|
OS << " MnemonicRange = "
|
|
"std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
|
|
}
|
|
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
|
|
<< " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
|
|
<< " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
|
|
|
|
OS << " // Return a more specific error code if no mnemonics match.\n";
|
|
OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
|
|
OS << " return Match_MnemonicFail;\n\n";
|
|
|
|
OS << " for (const MatchEntry *it = MnemonicRange.first, "
|
|
<< "*ie = MnemonicRange.second;\n";
|
|
OS << " it != ie; ++it) {\n";
|
|
OS << " const FeatureBitset &RequiredFeatures = "
|
|
"FeatureBitsets[it->RequiredFeaturesIdx];\n";
|
|
OS << " bool HasRequiredFeatures =\n";
|
|
OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
|
|
OS << " << MII.getName(it->Opcode) << \"\\n\");\n";
|
|
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " // Some state to record ways in which this instruction did not match.\n";
|
|
OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
|
|
OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
|
|
OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
|
|
OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
|
|
OS << " bool MultipleInvalidOperands = false;\n";
|
|
}
|
|
|
|
if (HasMnemonicFirst) {
|
|
OS << " // equal_range guarantees that instruction mnemonic matches.\n";
|
|
OS << " assert(Mnemonic == it->getMnemonic());\n";
|
|
}
|
|
|
|
// Emit check that the subclasses match.
|
|
if (!ReportMultipleNearMisses)
|
|
OS << " bool OperandsValid = true;\n";
|
|
if (HasOptionalOperands) {
|
|
OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
|
|
}
|
|
OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
|
|
<< ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
|
|
<< "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
|
|
OS << " auto Formal = "
|
|
<< "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
|
|
OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n";
|
|
OS << " << \" against actual operand at index \" << ActualIdx);\n";
|
|
OS << " if (ActualIdx < Operands.size())\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
|
|
OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
|
|
OS << " else\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
|
|
OS << " if (ActualIdx >= Operands.size()) {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
|
|
"isSubclass(Formal, OptionalMatchClass);\n";
|
|
OS << " if (!ThisOperandValid) {\n";
|
|
OS << " if (!OperandNearMiss) {\n";
|
|
OS << " // Record info about match failure for later use.\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
|
|
OS << " OperandNearMiss =\n";
|
|
OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
|
|
OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
|
|
OS << " // If more than one operand is invalid, give up on this match entry.\n";
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
|
|
OS << " MultipleInvalidOperands = true;\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " } else {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " continue;\n";
|
|
} else {
|
|
OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
|
|
OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n";
|
|
if (HasOptionalOperands) {
|
|
OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
|
|
<< ");\n";
|
|
}
|
|
OS << " break;\n";
|
|
}
|
|
OS << " }\n";
|
|
OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
|
|
OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n";
|
|
OS << " if (Diag == Match_Success) {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
|
|
OS << " dbgs() << \"match success using generic matcher\\n\");\n";
|
|
OS << " ++ActualIdx;\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
OS << " // If the generic handler indicates an invalid operand\n";
|
|
OS << " // failure, check for a special case.\n";
|
|
OS << " if (Diag != Match_Success) {\n";
|
|
OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
|
|
OS << " if (TargetDiag == Match_Success) {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n";
|
|
OS << " dbgs() << \"match success using target matcher\\n\");\n";
|
|
OS << " ++ActualIdx;\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
OS << " // If the target matcher returned a specific error code use\n";
|
|
OS << " // that, else use the one from the generic matcher.\n";
|
|
OS << " if (TargetDiag != Match_InvalidOperand && "
|
|
"HasRequiredFeatures)\n";
|
|
OS << " Diag = TargetDiag;\n";
|
|
OS << " }\n";
|
|
OS << " // If current formal operand wasn't matched and it is optional\n"
|
|
<< " // then try to match next formal operand\n";
|
|
OS << " if (Diag == Match_InvalidOperand "
|
|
<< "&& isSubclass(Formal, OptionalMatchClass)) {\n";
|
|
if (HasOptionalOperands) {
|
|
OS << " OptionalOperandsMask.set(FormalIdx);\n";
|
|
}
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " if (!OperandNearMiss) {\n";
|
|
OS << " // If this is the first invalid operand we have seen, record some\n";
|
|
OS << " // information about it.\n";
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs()\n";
|
|
OS << " << \"operand match failed, recording near-miss with diag code \"\n";
|
|
OS << " << Diag << \"\\n\");\n";
|
|
OS << " OperandNearMiss =\n";
|
|
OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
|
|
OS << " ++ActualIdx;\n";
|
|
OS << " } else {\n";
|
|
OS << " // If more than one operand is invalid, give up on this match entry.\n";
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
|
|
OS << " MultipleInvalidOperands = true;\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
OS << " }\n\n";
|
|
} else {
|
|
OS << " // If this operand is broken for all of the instances of this\n";
|
|
OS << " // mnemonic, keep track of it so we can report loc info.\n";
|
|
OS << " // If we already had a match that only failed due to a\n";
|
|
OS << " // target predicate, that diagnostic is preferred.\n";
|
|
OS << " if (!HadMatchOtherThanPredicate &&\n";
|
|
OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
|
|
OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
|
|
"!= Match_InvalidOperand))\n";
|
|
OS << " RetCode = Diag;\n";
|
|
OS << " ErrorInfo = ActualIdx;\n";
|
|
OS << " }\n";
|
|
OS << " // Otherwise, just reject this instance of the mnemonic.\n";
|
|
OS << " OperandsValid = false;\n";
|
|
OS << " break;\n";
|
|
OS << " }\n\n";
|
|
}
|
|
|
|
if (ReportMultipleNearMisses)
|
|
OS << " if (MultipleInvalidOperands) {\n";
|
|
else
|
|
OS << " if (!OperandsValid) {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
|
|
OS << " \"operand mismatches, ignoring \"\n";
|
|
OS << " \"this opcode\\n\");\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
|
|
// Emit check that the required features are available.
|
|
OS << " if (!HasRequiredFeatures) {\n";
|
|
if (!ReportMultipleNearMisses)
|
|
OS << " HadMatchOtherThanFeatures = true;\n";
|
|
OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & "
|
|
"~AvailableFeatures;\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
|
|
OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
|
|
OS << " if (NewMissingFeatures[I])\n";
|
|
OS << " dbgs() << ' ' << I;\n";
|
|
OS << " dbgs() << \"\\n\");\n";
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
|
|
} else {
|
|
OS << " if (NewMissingFeatures.count() <=\n"
|
|
" MissingFeatures.count())\n";
|
|
OS << " MissingFeatures = NewMissingFeatures;\n";
|
|
OS << " continue;\n";
|
|
}
|
|
OS << " }\n";
|
|
OS << "\n";
|
|
OS << " Inst.clear();\n\n";
|
|
OS << " Inst.setOpcode(it->Opcode);\n";
|
|
// Verify the instruction with the target-specific match predicate function.
|
|
OS << " // We have a potential match but have not rendered the operands.\n"
|
|
<< " // Check the target predicate to handle any context sensitive\n"
|
|
" // constraints.\n"
|
|
<< " // For example, Ties that are referenced multiple times must be\n"
|
|
" // checked here to ensure the input is the same for each match\n"
|
|
" // constraints. If we leave it any later the ties will have been\n"
|
|
" // canonicalized\n"
|
|
<< " unsigned MatchResult;\n"
|
|
<< " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
|
|
"Operands)) != Match_Success) {\n"
|
|
<< " Inst.clear();\n";
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs() << \"Early target match predicate failed with diag code \"\n";
|
|
OS << " << MatchResult << \"\\n\");\n";
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
|
|
} else {
|
|
OS << " RetCode = MatchResult;\n"
|
|
<< " HadMatchOtherThanPredicate = true;\n"
|
|
<< " continue;\n";
|
|
}
|
|
OS << " }\n\n";
|
|
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " // If we did not successfully match the operands, then we can't convert to\n";
|
|
OS << " // an MCInst, so bail out on this instruction variant now.\n";
|
|
OS << " if (OperandNearMiss) {\n";
|
|
OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
|
|
OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs()\n";
|
|
OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
|
|
OS << " NearMisses->push_back(OperandNearMiss);\n";
|
|
OS << " } else {\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
|
|
OS << " \"types of mismatch, so not \"\n";
|
|
OS << " \"reporting near-miss\\n\");\n";
|
|
OS << " }\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n\n";
|
|
}
|
|
|
|
OS << " if (matchingInlineAsm) {\n";
|
|
OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
|
|
if (!ReportMultipleNearMisses) {
|
|
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
|
|
"Operands, ErrorInfo))\n";
|
|
OS << " return Match_InvalidTiedOperand;\n";
|
|
OS << "\n";
|
|
}
|
|
OS << " return Match_Success;\n";
|
|
OS << " }\n\n";
|
|
OS << " // We have selected a definite instruction, convert the parsed\n"
|
|
<< " // operands into the appropriate MCInst.\n";
|
|
if (HasOptionalOperands) {
|
|
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
|
|
<< " OptionalOperandsMask);\n";
|
|
} else {
|
|
OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
|
|
}
|
|
OS << "\n";
|
|
|
|
// Verify the instruction with the target-specific match predicate function.
|
|
OS << " // We have a potential match. Check the target predicate to\n"
|
|
<< " // handle any context sensitive constraints.\n"
|
|
<< " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
|
|
<< " Match_Success) {\n"
|
|
<< " DEBUG_WITH_TYPE(\"asm-matcher\",\n"
|
|
<< " dbgs() << \"Target match predicate failed with diag code \"\n"
|
|
<< " << MatchResult << \"\\n\");\n"
|
|
<< " Inst.clear();\n";
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
|
|
} else {
|
|
OS << " RetCode = MatchResult;\n"
|
|
<< " HadMatchOtherThanPredicate = true;\n"
|
|
<< " continue;\n";
|
|
}
|
|
OS << " }\n\n";
|
|
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
|
|
OS << " (int)(bool)FeaturesNearMiss +\n";
|
|
OS << " (int)(bool)EarlyPredicateNearMiss +\n";
|
|
OS << " (int)(bool)LatePredicateNearMiss);\n";
|
|
OS << " if (NumNearMisses == 1) {\n";
|
|
OS << " // We had exactly one type of near-miss, so add that to the list.\n";
|
|
OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
|
|
OS << " \"mismatch, so reporting a \"\n";
|
|
OS << " \"near-miss\\n\");\n";
|
|
OS << " if (NearMisses && FeaturesNearMiss)\n";
|
|
OS << " NearMisses->push_back(FeaturesNearMiss);\n";
|
|
OS << " else if (NearMisses && EarlyPredicateNearMiss)\n";
|
|
OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n";
|
|
OS << " else if (NearMisses && LatePredicateNearMiss)\n";
|
|
OS << " NearMisses->push_back(LatePredicateNearMiss);\n";
|
|
OS << "\n";
|
|
OS << " continue;\n";
|
|
OS << " } else if (NumNearMisses > 1) {\n";
|
|
OS << " // This instruction missed in more than one way, so ignore it.\n";
|
|
OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
|
|
OS << " \"types of mismatch, so not \"\n";
|
|
OS << " \"reporting near-miss\\n\");\n";
|
|
OS << " continue;\n";
|
|
OS << " }\n";
|
|
}
|
|
|
|
// Call the post-processing function, if used.
|
|
StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
|
|
if (!InsnCleanupFn.empty())
|
|
OS << " " << InsnCleanupFn << "(Inst);\n";
|
|
|
|
if (HasDeprecation) {
|
|
OS << " std::string Info;\n";
|
|
OS << " if (!getParser().getTargetParser().\n";
|
|
OS << " getTargetOptions().MCNoDeprecatedWarn &&\n";
|
|
OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
|
|
OS << " SMLoc Loc = ((" << Target.getName()
|
|
<< "Operand &)*Operands[0]).getStartLoc();\n";
|
|
OS << " getParser().Warning(Loc, Info, None);\n";
|
|
OS << " }\n";
|
|
}
|
|
|
|
if (!ReportMultipleNearMisses) {
|
|
OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
|
|
"Operands, ErrorInfo))\n";
|
|
OS << " return Match_InvalidTiedOperand;\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
OS << " DEBUG_WITH_TYPE(\n";
|
|
OS << " \"asm-matcher\",\n";
|
|
OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
|
|
OS << " return Match_Success;\n";
|
|
OS << " }\n\n";
|
|
|
|
if (ReportMultipleNearMisses) {
|
|
OS << " // No instruction variants matched exactly.\n";
|
|
OS << " return Match_NearMisses;\n";
|
|
} else {
|
|
OS << " // Okay, we had no match. Try to return a useful error code.\n";
|
|
OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
|
|
OS << " return RetCode;\n\n";
|
|
OS << " ErrorInfo = 0;\n";
|
|
OS << " return Match_MissingFeature;\n";
|
|
}
|
|
OS << "}\n\n";
|
|
|
|
if (!Info.OperandMatchInfo.empty())
|
|
emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
|
|
MaxMnemonicIndex, FeatureBitsets.size(),
|
|
HasMnemonicFirst);
|
|
|
|
OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
|
|
|
|
OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
|
|
OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
|
|
|
|
emitMnemonicSpellChecker(OS, Target, VariantCount);
|
|
|
|
OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
|
|
|
|
OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
|
|
OS << "#undef GET_MNEMONIC_CHECKER\n\n";
|
|
|
|
emitMnemonicChecker(OS, Target, VariantCount,
|
|
HasMnemonicFirst, HasMnemonicAliases);
|
|
|
|
OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
|
|
emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
|
|
AsmMatcherEmitter(RK).run(OS);
|
|
}
|
|
|
|
} // end namespace llvm
|