1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Analysis/PostDominators.cpp
Reid Spencer 560366562b For PR780:
1. Fix the macros in IncludeFile.h to put everything in the llvm namespace
2. Replace the previous explicit mechanism in all the .h and .cpp files
   with the macros in IncludeFile.h
This gets us a consistent mechanism throughout LLVM for ensuring linkage.
Next step is to make sure its used in enough places.

llvm-svn: 28715
2006-06-07 22:00:26 +00:00

364 lines
13 KiB
C++

//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the post-dominator construction algorithms.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include <iostream>
using namespace llvm;
//===----------------------------------------------------------------------===//
// ImmediatePostDominators Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<ImmediatePostDominators>
D("postidom", "Immediate Post-Dominators Construction", true);
unsigned ImmediatePostDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
unsigned N) {
VInfo.Semi = ++N;
VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
//Info[V].Ancestor = 0; // Ancestor[n] = 0
//Child[V] = 0; // Child[v] = 0
VInfo.Size = 1; // Size[v] = 1
// For PostDominators, we want to walk predecessors rather than successors
// as we do in forward Dominators.
for (pred_iterator PI = pred_begin(V), PE = pred_end(V); PI != PE; ++PI) {
InfoRec &SuccVInfo = Info[*PI];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = V;
N = DFSPass(*PI, SuccVInfo, N);
}
}
return N;
}
void ImmediatePostDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
BasicBlock *VAncestor = VInfo.Ancestor;
InfoRec &VAInfo = Info[VAncestor];
if (VAInfo.Ancestor == 0)
return;
Compress(VAncestor, VAInfo);
BasicBlock *VAncestorLabel = VAInfo.Label;
BasicBlock *VLabel = VInfo.Label;
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Ancestor = VAInfo.Ancestor;
}
BasicBlock *ImmediatePostDominators::Eval(BasicBlock *V) {
InfoRec &VInfo = Info[V];
// Higher-complexity but faster implementation
if (VInfo.Ancestor == 0)
return V;
Compress(V, VInfo);
return VInfo.Label;
}
void ImmediatePostDominators::Link(BasicBlock *V, BasicBlock *W,
InfoRec &WInfo) {
// Higher-complexity but faster implementation
WInfo.Ancestor = V;
}
bool ImmediatePostDominators::runOnFunction(Function &F) {
IDoms.clear(); // Reset from the last time we were run...
Roots.clear();
// Step #0: Scan the function looking for the root nodes of the post-dominance
// relationships. These blocks, which have no successors, end with return and
// unwind instructions.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (succ_begin(I) == succ_end(I))
Roots.push_back(I);
Vertex.push_back(0);
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
unsigned N = 0;
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
N = DFSPass(Roots[i], Info[Roots[i]], N);
for (unsigned i = N; i >= 2; --i) {
BasicBlock *W = Vertex[i];
InfoRec &WInfo = Info[W];
// Step #2: Calculate the semidominators of all vertices
for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
if (Info.count(*SI)) { // Only if this predecessor is reachable!
unsigned SemiU = Info[Eval(*SI)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
BasicBlock *WParent = WInfo.Parent;
Link(WParent, W, WInfo);
// Step #3: Implicitly define the immediate dominator of vertices
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
while (!WParentBucket.empty()) {
BasicBlock *V = WParentBucket.back();
WParentBucket.pop_back();
BasicBlock *U = Eval(V);
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
BasicBlock *W = Vertex[i];
BasicBlock *&WIDom = IDoms[W];
if (WIDom != Vertex[Info[W].Semi])
WIDom = IDoms[WIDom];
}
// Free temporary memory used to construct idom's
Info.clear();
std::vector<BasicBlock*>().swap(Vertex);
return false;
}
//===----------------------------------------------------------------------===//
// PostDominatorSet Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominatorSet>
B("postdomset", "Post-Dominator Set Construction", true);
// Postdominator set construction. This converts the specified function to only
// have a single exit node (return stmt), then calculates the post dominance
// sets for the function.
//
bool PostDominatorSet::runOnFunction(Function &F) {
// Scan the function looking for the root nodes of the post-dominance
// relationships. These blocks end with return and unwind instructions.
// While we are iterating over the function, we also initialize all of the
// domsets to empty.
Roots.clear();
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (succ_begin(I) == succ_end(I))
Roots.push_back(I);
// If there are no exit nodes for the function, postdomsets are all empty.
// This can happen if the function just contains an infinite loop, for
// example.
ImmediatePostDominators &IPD = getAnalysis<ImmediatePostDominators>();
Doms.clear(); // Reset from the last time we were run...
if (Roots.empty()) return false;
// If we have more than one root, we insert an artificial "null" exit, which
// has "virtual edges" to each of the real exit nodes.
//if (Roots.size() > 1)
// Doms[0].insert(0);
// Root nodes only dominate themselves.
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
Doms[Roots[i]].insert(Roots[i]);
// Loop over all of the blocks in the function, calculating dominator sets for
// each function.
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (BasicBlock *IPDom = IPD[I]) { // Get idom if block is reachable
DomSetType &DS = Doms[I];
assert(DS.empty() && "PostDomset already filled in for this block?");
DS.insert(I); // Blocks always dominate themselves
// Insert all dominators into the set...
while (IPDom) {
// If we have already computed the dominator sets for our immediate post
// dominator, just use it instead of walking all the way up to the root.
DomSetType &IPDS = Doms[IPDom];
if (!IPDS.empty()) {
DS.insert(IPDS.begin(), IPDS.end());
break;
} else {
DS.insert(IPDom);
IPDom = IPD[IPDom];
}
}
} else {
// Ensure that every basic block has at least an empty set of nodes. This
// is important for the case when there is unreachable blocks.
Doms[I];
}
return false;
}
//===----------------------------------------------------------------------===//
// PostDominatorTree Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominatorTree>
F("postdomtree", "Post-Dominator Tree Construction", true);
DominatorTreeBase::Node *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
Node *&BBNode = Nodes[BB];
if (BBNode) return BBNode;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate postdominator.
BasicBlock *IPDom = getAnalysis<ImmediatePostDominators>()[BB];
Node *IPDomNode = getNodeForBlock(IPDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
return BBNode = IPDomNode->addChild(new Node(BB, IPDomNode));
}
void PostDominatorTree::calculate(const ImmediatePostDominators &IPD) {
if (Roots.empty()) return;
// Add a node for the root. This node might be the actual root, if there is
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
// which postdominates all real exits if there are multiple exit blocks.
BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
Nodes[Root] = RootNode = new Node(Root, 0);
Function *F = Roots[0]->getParent();
// Loop over all of the reachable blocks in the function...
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (BasicBlock *ImmPostDom = IPD.get(I)) { // Reachable block.
Node *&BBNode = Nodes[I];
if (!BBNode) { // Haven't calculated this node yet?
// Get or calculate the node for the immediate dominator
Node *IPDomNode = getNodeForBlock(ImmPostDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
BBNode = IPDomNode->addChild(new Node(I, IPDomNode));
}
}
}
//===----------------------------------------------------------------------===//
// PostETForest Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostETForest>
G("postetforest", "Post-ET-Forest Construction", true);
ETNode *PostETForest::getNodeForBlock(BasicBlock *BB) {
ETNode *&BBNode = Nodes[BB];
if (BBNode) return BBNode;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
BasicBlock *IDom = getAnalysis<ImmediatePostDominators>()[BB];
// If we are unreachable, we may not have an immediate dominator.
if (!IDom)
return BBNode = new ETNode(BB);
else {
ETNode *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
BBNode = new ETNode(BB);
BBNode->setFather(IDomNode);
return BBNode;
}
}
void PostETForest::calculate(const ImmediatePostDominators &ID) {
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
Nodes[Roots[i]] = new ETNode(Roots[i]); // Add a node for the root
// Iterate over all nodes in inverse depth first order.
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
E = idf_end(Roots[i]); I != E; ++I) {
BasicBlock *BB = *I;
ETNode *&BBNode = Nodes[BB];
if (!BBNode) {
ETNode *IDomNode = NULL;
if (ID.get(BB))
IDomNode = getNodeForBlock(ID.get(BB));
// Add a new ETNode for this BasicBlock, and set it's parent
// to it's immediate dominator.
BBNode = new ETNode(BB);
if (IDomNode)
BBNode->setFather(IDomNode);
}
}
int dfsnum = 0;
// Iterate over all nodes in depth first order...
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
for (idf_iterator<BasicBlock*> I = idf_begin(Roots[i]),
E = idf_end(Roots[i]); I != E; ++I) {
if (!getNodeForBlock(*I)->hasFather())
getNodeForBlock(*I)->assignDFSNumber(dfsnum);
}
DFSInfoValid = true;
}
//===----------------------------------------------------------------------===//
// PostDominanceFrontier Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<PostDominanceFrontier>
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
const DominanceFrontier::DomSetType &
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
BasicBlock *BB = Node->getBlock();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
if (getRoots().empty()) return S;
if (BB)
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
SI != SE; ++SI)
// Does Node immediately dominate this predecessor?
if (DT[*SI]->getIDom() != Node)
S.insert(*SI);
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
//
for (PostDominatorTree::Node::const_iterator
NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
DominatorTree::Node *IDominee = *NI;
const DomSetType &ChildDF = calculate(DT, IDominee);
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
for (; CDFI != CDFE; ++CDFI) {
if (!Node->properlyDominates(DT[*CDFI]))
S.insert(*CDFI);
}
}
return S;
}
// Ensure that this .cpp file gets linked when PostDominators.h is used.
DEFINING_FILE_FOR(PostDominanceFrontier)