mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
b9b9f59990
Summary: This is patch is part of a series to introduce an Alignment type. See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html See this patch for the introduction of the type: https://reviews.llvm.org/D64790 Reviewers: courbet Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D68329 llvm-svn: 373580
933 lines
31 KiB
C++
933 lines
31 KiB
C++
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some functions that are useful for math stuff.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
|
|
#define LLVM_SUPPORT_MATHEXTRAS_H
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/SwapByteOrder.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#ifdef __ANDROID_NDK__
|
|
#include <android/api-level.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
// Declare these intrinsics manually rather including intrin.h. It's very
|
|
// expensive, and MathExtras.h is popular.
|
|
// #include <intrin.h>
|
|
extern "C" {
|
|
unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
|
|
unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
|
|
unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
|
|
unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
|
|
}
|
|
#endif
|
|
|
|
namespace llvm {
|
|
/// The behavior an operation has on an input of 0.
|
|
enum ZeroBehavior {
|
|
/// The returned value is undefined.
|
|
ZB_Undefined,
|
|
/// The returned value is numeric_limits<T>::max()
|
|
ZB_Max,
|
|
/// The returned value is numeric_limits<T>::digits
|
|
ZB_Width
|
|
};
|
|
|
|
namespace detail {
|
|
template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
|
|
static unsigned count(T Val, ZeroBehavior) {
|
|
if (!Val)
|
|
return std::numeric_limits<T>::digits;
|
|
if (Val & 0x1)
|
|
return 0;
|
|
|
|
// Bisection method.
|
|
unsigned ZeroBits = 0;
|
|
T Shift = std::numeric_limits<T>::digits >> 1;
|
|
T Mask = std::numeric_limits<T>::max() >> Shift;
|
|
while (Shift) {
|
|
if ((Val & Mask) == 0) {
|
|
Val >>= Shift;
|
|
ZeroBits |= Shift;
|
|
}
|
|
Shift >>= 1;
|
|
Mask >>= Shift;
|
|
}
|
|
return ZeroBits;
|
|
}
|
|
};
|
|
|
|
#if defined(__GNUC__) || defined(_MSC_VER)
|
|
template <typename T> struct TrailingZerosCounter<T, 4> {
|
|
static unsigned count(T Val, ZeroBehavior ZB) {
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
return 32;
|
|
|
|
#if __has_builtin(__builtin_ctz) || defined(__GNUC__)
|
|
return __builtin_ctz(Val);
|
|
#elif defined(_MSC_VER)
|
|
unsigned long Index;
|
|
_BitScanForward(&Index, Val);
|
|
return Index;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#if !defined(_MSC_VER) || defined(_M_X64)
|
|
template <typename T> struct TrailingZerosCounter<T, 8> {
|
|
static unsigned count(T Val, ZeroBehavior ZB) {
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
return 64;
|
|
|
|
#if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
|
|
return __builtin_ctzll(Val);
|
|
#elif defined(_MSC_VER)
|
|
unsigned long Index;
|
|
_BitScanForward64(&Index, Val);
|
|
return Index;
|
|
#endif
|
|
}
|
|
};
|
|
#endif
|
|
#endif
|
|
} // namespace detail
|
|
|
|
/// Count number of 0's from the least significant bit to the most
|
|
/// stopping at the first 1.
|
|
///
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
|
|
/// valid arguments.
|
|
template <typename T>
|
|
unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
!std::numeric_limits<T>::is_signed,
|
|
"Only unsigned integral types are allowed.");
|
|
return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
|
|
}
|
|
|
|
namespace detail {
|
|
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
|
|
static unsigned count(T Val, ZeroBehavior) {
|
|
if (!Val)
|
|
return std::numeric_limits<T>::digits;
|
|
|
|
// Bisection method.
|
|
unsigned ZeroBits = 0;
|
|
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
|
|
T Tmp = Val >> Shift;
|
|
if (Tmp)
|
|
Val = Tmp;
|
|
else
|
|
ZeroBits |= Shift;
|
|
}
|
|
return ZeroBits;
|
|
}
|
|
};
|
|
|
|
#if defined(__GNUC__) || defined(_MSC_VER)
|
|
template <typename T> struct LeadingZerosCounter<T, 4> {
|
|
static unsigned count(T Val, ZeroBehavior ZB) {
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
return 32;
|
|
|
|
#if __has_builtin(__builtin_clz) || defined(__GNUC__)
|
|
return __builtin_clz(Val);
|
|
#elif defined(_MSC_VER)
|
|
unsigned long Index;
|
|
_BitScanReverse(&Index, Val);
|
|
return Index ^ 31;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#if !defined(_MSC_VER) || defined(_M_X64)
|
|
template <typename T> struct LeadingZerosCounter<T, 8> {
|
|
static unsigned count(T Val, ZeroBehavior ZB) {
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
return 64;
|
|
|
|
#if __has_builtin(__builtin_clzll) || defined(__GNUC__)
|
|
return __builtin_clzll(Val);
|
|
#elif defined(_MSC_VER)
|
|
unsigned long Index;
|
|
_BitScanReverse64(&Index, Val);
|
|
return Index ^ 63;
|
|
#endif
|
|
}
|
|
};
|
|
#endif
|
|
#endif
|
|
} // namespace detail
|
|
|
|
/// Count number of 0's from the most significant bit to the least
|
|
/// stopping at the first 1.
|
|
///
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
|
|
/// valid arguments.
|
|
template <typename T>
|
|
unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
!std::numeric_limits<T>::is_signed,
|
|
"Only unsigned integral types are allowed.");
|
|
return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
|
|
}
|
|
|
|
/// Get the index of the first set bit starting from the least
|
|
/// significant bit.
|
|
///
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
|
|
/// valid arguments.
|
|
template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
|
|
if (ZB == ZB_Max && Val == 0)
|
|
return std::numeric_limits<T>::max();
|
|
|
|
return countTrailingZeros(Val, ZB_Undefined);
|
|
}
|
|
|
|
/// Create a bitmask with the N right-most bits set to 1, and all other
|
|
/// bits set to 0. Only unsigned types are allowed.
|
|
template <typename T> T maskTrailingOnes(unsigned N) {
|
|
static_assert(std::is_unsigned<T>::value, "Invalid type!");
|
|
const unsigned Bits = CHAR_BIT * sizeof(T);
|
|
assert(N <= Bits && "Invalid bit index");
|
|
return N == 0 ? 0 : (T(-1) >> (Bits - N));
|
|
}
|
|
|
|
/// Create a bitmask with the N left-most bits set to 1, and all other
|
|
/// bits set to 0. Only unsigned types are allowed.
|
|
template <typename T> T maskLeadingOnes(unsigned N) {
|
|
return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
|
|
}
|
|
|
|
/// Create a bitmask with the N right-most bits set to 0, and all other
|
|
/// bits set to 1. Only unsigned types are allowed.
|
|
template <typename T> T maskTrailingZeros(unsigned N) {
|
|
return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
|
|
}
|
|
|
|
/// Create a bitmask with the N left-most bits set to 0, and all other
|
|
/// bits set to 1. Only unsigned types are allowed.
|
|
template <typename T> T maskLeadingZeros(unsigned N) {
|
|
return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
|
|
}
|
|
|
|
/// Get the index of the last set bit starting from the least
|
|
/// significant bit.
|
|
///
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
|
|
/// valid arguments.
|
|
template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
|
|
if (ZB == ZB_Max && Val == 0)
|
|
return std::numeric_limits<T>::max();
|
|
|
|
// Use ^ instead of - because both gcc and llvm can remove the associated ^
|
|
// in the __builtin_clz intrinsic on x86.
|
|
return countLeadingZeros(Val, ZB_Undefined) ^
|
|
(std::numeric_limits<T>::digits - 1);
|
|
}
|
|
|
|
/// Macro compressed bit reversal table for 256 bits.
|
|
///
|
|
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
|
|
static const unsigned char BitReverseTable256[256] = {
|
|
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
|
|
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
|
|
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
|
|
R6(0), R6(2), R6(1), R6(3)
|
|
#undef R2
|
|
#undef R4
|
|
#undef R6
|
|
};
|
|
|
|
/// Reverse the bits in \p Val.
|
|
template <typename T>
|
|
T reverseBits(T Val) {
|
|
unsigned char in[sizeof(Val)];
|
|
unsigned char out[sizeof(Val)];
|
|
std::memcpy(in, &Val, sizeof(Val));
|
|
for (unsigned i = 0; i < sizeof(Val); ++i)
|
|
out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
|
|
std::memcpy(&Val, out, sizeof(Val));
|
|
return Val;
|
|
}
|
|
|
|
// NOTE: The following support functions use the _32/_64 extensions instead of
|
|
// type overloading so that signed and unsigned integers can be used without
|
|
// ambiguity.
|
|
|
|
/// Return the high 32 bits of a 64 bit value.
|
|
constexpr inline uint32_t Hi_32(uint64_t Value) {
|
|
return static_cast<uint32_t>(Value >> 32);
|
|
}
|
|
|
|
/// Return the low 32 bits of a 64 bit value.
|
|
constexpr inline uint32_t Lo_32(uint64_t Value) {
|
|
return static_cast<uint32_t>(Value);
|
|
}
|
|
|
|
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
|
|
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
|
|
return ((uint64_t)High << 32) | (uint64_t)Low;
|
|
}
|
|
|
|
/// Checks if an integer fits into the given bit width.
|
|
template <unsigned N> constexpr inline bool isInt(int64_t x) {
|
|
return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
|
|
}
|
|
// Template specializations to get better code for common cases.
|
|
template <> constexpr inline bool isInt<8>(int64_t x) {
|
|
return static_cast<int8_t>(x) == x;
|
|
}
|
|
template <> constexpr inline bool isInt<16>(int64_t x) {
|
|
return static_cast<int16_t>(x) == x;
|
|
}
|
|
template <> constexpr inline bool isInt<32>(int64_t x) {
|
|
return static_cast<int32_t>(x) == x;
|
|
}
|
|
|
|
/// Checks if a signed integer is an N bit number shifted left by S.
|
|
template <unsigned N, unsigned S>
|
|
constexpr inline bool isShiftedInt(int64_t x) {
|
|
static_assert(
|
|
N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
|
|
static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
|
|
return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
|
|
}
|
|
|
|
/// Checks if an unsigned integer fits into the given bit width.
|
|
///
|
|
/// This is written as two functions rather than as simply
|
|
///
|
|
/// return N >= 64 || X < (UINT64_C(1) << N);
|
|
///
|
|
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
|
|
/// left too many places.
|
|
template <unsigned N>
|
|
constexpr inline typename std::enable_if<(N < 64), bool>::type
|
|
isUInt(uint64_t X) {
|
|
static_assert(N > 0, "isUInt<0> doesn't make sense");
|
|
return X < (UINT64_C(1) << (N));
|
|
}
|
|
template <unsigned N>
|
|
constexpr inline typename std::enable_if<N >= 64, bool>::type
|
|
isUInt(uint64_t X) {
|
|
return true;
|
|
}
|
|
|
|
// Template specializations to get better code for common cases.
|
|
template <> constexpr inline bool isUInt<8>(uint64_t x) {
|
|
return static_cast<uint8_t>(x) == x;
|
|
}
|
|
template <> constexpr inline bool isUInt<16>(uint64_t x) {
|
|
return static_cast<uint16_t>(x) == x;
|
|
}
|
|
template <> constexpr inline bool isUInt<32>(uint64_t x) {
|
|
return static_cast<uint32_t>(x) == x;
|
|
}
|
|
|
|
/// Checks if a unsigned integer is an N bit number shifted left by S.
|
|
template <unsigned N, unsigned S>
|
|
constexpr inline bool isShiftedUInt(uint64_t x) {
|
|
static_assert(
|
|
N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
|
|
static_assert(N + S <= 64,
|
|
"isShiftedUInt<N, S> with N + S > 64 is too wide.");
|
|
// Per the two static_asserts above, S must be strictly less than 64. So
|
|
// 1 << S is not undefined behavior.
|
|
return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
|
|
}
|
|
|
|
/// Gets the maximum value for a N-bit unsigned integer.
|
|
inline uint64_t maxUIntN(uint64_t N) {
|
|
assert(N > 0 && N <= 64 && "integer width out of range");
|
|
|
|
// uint64_t(1) << 64 is undefined behavior, so we can't do
|
|
// (uint64_t(1) << N) - 1
|
|
// without checking first that N != 64. But this works and doesn't have a
|
|
// branch.
|
|
return UINT64_MAX >> (64 - N);
|
|
}
|
|
|
|
/// Gets the minimum value for a N-bit signed integer.
|
|
inline int64_t minIntN(int64_t N) {
|
|
assert(N > 0 && N <= 64 && "integer width out of range");
|
|
|
|
return -(UINT64_C(1)<<(N-1));
|
|
}
|
|
|
|
/// Gets the maximum value for a N-bit signed integer.
|
|
inline int64_t maxIntN(int64_t N) {
|
|
assert(N > 0 && N <= 64 && "integer width out of range");
|
|
|
|
// This relies on two's complement wraparound when N == 64, so we convert to
|
|
// int64_t only at the very end to avoid UB.
|
|
return (UINT64_C(1) << (N - 1)) - 1;
|
|
}
|
|
|
|
/// Checks if an unsigned integer fits into the given (dynamic) bit width.
|
|
inline bool isUIntN(unsigned N, uint64_t x) {
|
|
return N >= 64 || x <= maxUIntN(N);
|
|
}
|
|
|
|
/// Checks if an signed integer fits into the given (dynamic) bit width.
|
|
inline bool isIntN(unsigned N, int64_t x) {
|
|
return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
|
|
}
|
|
|
|
/// Return true if the argument is a non-empty sequence of ones starting at the
|
|
/// least significant bit with the remainder zero (32 bit version).
|
|
/// Ex. isMask_32(0x0000FFFFU) == true.
|
|
constexpr inline bool isMask_32(uint32_t Value) {
|
|
return Value && ((Value + 1) & Value) == 0;
|
|
}
|
|
|
|
/// Return true if the argument is a non-empty sequence of ones starting at the
|
|
/// least significant bit with the remainder zero (64 bit version).
|
|
constexpr inline bool isMask_64(uint64_t Value) {
|
|
return Value && ((Value + 1) & Value) == 0;
|
|
}
|
|
|
|
/// Return true if the argument contains a non-empty sequence of ones with the
|
|
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
|
|
constexpr inline bool isShiftedMask_32(uint32_t Value) {
|
|
return Value && isMask_32((Value - 1) | Value);
|
|
}
|
|
|
|
/// Return true if the argument contains a non-empty sequence of ones with the
|
|
/// remainder zero (64 bit version.)
|
|
constexpr inline bool isShiftedMask_64(uint64_t Value) {
|
|
return Value && isMask_64((Value - 1) | Value);
|
|
}
|
|
|
|
/// Return true if the argument is a power of two > 0.
|
|
/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
|
|
constexpr inline bool isPowerOf2_32(uint32_t Value) {
|
|
return Value && !(Value & (Value - 1));
|
|
}
|
|
|
|
/// Return true if the argument is a power of two > 0 (64 bit edition.)
|
|
constexpr inline bool isPowerOf2_64(uint64_t Value) {
|
|
return Value && !(Value & (Value - 1));
|
|
}
|
|
|
|
/// Return a byte-swapped representation of the 16-bit argument.
|
|
inline uint16_t ByteSwap_16(uint16_t Value) {
|
|
return sys::SwapByteOrder_16(Value);
|
|
}
|
|
|
|
/// Return a byte-swapped representation of the 32-bit argument.
|
|
inline uint32_t ByteSwap_32(uint32_t Value) {
|
|
return sys::SwapByteOrder_32(Value);
|
|
}
|
|
|
|
/// Return a byte-swapped representation of the 64-bit argument.
|
|
inline uint64_t ByteSwap_64(uint64_t Value) {
|
|
return sys::SwapByteOrder_64(Value);
|
|
}
|
|
|
|
/// Count the number of ones from the most significant bit to the first
|
|
/// zero bit.
|
|
///
|
|
/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
|
|
/// ZB_Undefined are valid arguments.
|
|
template <typename T>
|
|
unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
!std::numeric_limits<T>::is_signed,
|
|
"Only unsigned integral types are allowed.");
|
|
return countLeadingZeros<T>(~Value, ZB);
|
|
}
|
|
|
|
/// Count the number of ones from the least significant bit to the first
|
|
/// zero bit.
|
|
///
|
|
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
|
|
/// Only unsigned integral types are allowed.
|
|
///
|
|
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
|
|
/// ZB_Undefined are valid arguments.
|
|
template <typename T>
|
|
unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
!std::numeric_limits<T>::is_signed,
|
|
"Only unsigned integral types are allowed.");
|
|
return countTrailingZeros<T>(~Value, ZB);
|
|
}
|
|
|
|
namespace detail {
|
|
template <typename T, std::size_t SizeOfT> struct PopulationCounter {
|
|
static unsigned count(T Value) {
|
|
// Generic version, forward to 32 bits.
|
|
static_assert(SizeOfT <= 4, "Not implemented!");
|
|
#if defined(__GNUC__)
|
|
return __builtin_popcount(Value);
|
|
#else
|
|
uint32_t v = Value;
|
|
v = v - ((v >> 1) & 0x55555555);
|
|
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
|
|
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T> struct PopulationCounter<T, 8> {
|
|
static unsigned count(T Value) {
|
|
#if defined(__GNUC__)
|
|
return __builtin_popcountll(Value);
|
|
#else
|
|
uint64_t v = Value;
|
|
v = v - ((v >> 1) & 0x5555555555555555ULL);
|
|
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
|
|
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
|
|
return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
|
|
#endif
|
|
}
|
|
};
|
|
} // namespace detail
|
|
|
|
/// Count the number of set bits in a value.
|
|
/// Ex. countPopulation(0xF000F000) = 8
|
|
/// Returns 0 if the word is zero.
|
|
template <typename T>
|
|
inline unsigned countPopulation(T Value) {
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
!std::numeric_limits<T>::is_signed,
|
|
"Only unsigned integral types are allowed.");
|
|
return detail::PopulationCounter<T, sizeof(T)>::count(Value);
|
|
}
|
|
|
|
/// Return the log base 2 of the specified value.
|
|
inline double Log2(double Value) {
|
|
#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
|
|
return __builtin_log(Value) / __builtin_log(2.0);
|
|
#else
|
|
return log2(Value);
|
|
#endif
|
|
}
|
|
|
|
/// Return the compile time log base 2 of the specified Value.
|
|
/// `kValue` has to be a power of two.
|
|
template <uint64_t kValue> static constexpr inline uint8_t CTLog2() {
|
|
static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
|
|
"Value is not a valid power of 2");
|
|
return 1 + CTLog2<kValue / 2>();
|
|
}
|
|
template <> constexpr inline uint8_t CTLog2<1>() { return 0; }
|
|
|
|
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
|
|
/// (32 bit edition.)
|
|
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
|
|
inline unsigned Log2_32(uint32_t Value) {
|
|
return 31 - countLeadingZeros(Value);
|
|
}
|
|
|
|
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
|
|
/// (64 bit edition.)
|
|
inline unsigned Log2_64(uint64_t Value) {
|
|
return 63 - countLeadingZeros(Value);
|
|
}
|
|
|
|
/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
|
|
/// (32 bit edition).
|
|
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
|
|
inline unsigned Log2_32_Ceil(uint32_t Value) {
|
|
return 32 - countLeadingZeros(Value - 1);
|
|
}
|
|
|
|
/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
|
|
/// (64 bit edition.)
|
|
inline unsigned Log2_64_Ceil(uint64_t Value) {
|
|
return 64 - countLeadingZeros(Value - 1);
|
|
}
|
|
|
|
/// Return the greatest common divisor of the values using Euclid's algorithm.
|
|
template <typename T>
|
|
inline T greatestCommonDivisor(T A, T B) {
|
|
while (B) {
|
|
T Tmp = B;
|
|
B = A % B;
|
|
A = Tmp;
|
|
}
|
|
return A;
|
|
}
|
|
|
|
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
|
|
return greatestCommonDivisor<uint64_t>(A, B);
|
|
}
|
|
|
|
/// This function takes a 64-bit integer and returns the bit equivalent double.
|
|
inline double BitsToDouble(uint64_t Bits) {
|
|
double D;
|
|
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
|
|
memcpy(&D, &Bits, sizeof(Bits));
|
|
return D;
|
|
}
|
|
|
|
/// This function takes a 32-bit integer and returns the bit equivalent float.
|
|
inline float BitsToFloat(uint32_t Bits) {
|
|
float F;
|
|
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
|
|
memcpy(&F, &Bits, sizeof(Bits));
|
|
return F;
|
|
}
|
|
|
|
/// This function takes a double and returns the bit equivalent 64-bit integer.
|
|
/// Note that copying doubles around changes the bits of NaNs on some hosts,
|
|
/// notably x86, so this routine cannot be used if these bits are needed.
|
|
inline uint64_t DoubleToBits(double Double) {
|
|
uint64_t Bits;
|
|
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
|
|
memcpy(&Bits, &Double, sizeof(Double));
|
|
return Bits;
|
|
}
|
|
|
|
/// This function takes a float and returns the bit equivalent 32-bit integer.
|
|
/// Note that copying floats around changes the bits of NaNs on some hosts,
|
|
/// notably x86, so this routine cannot be used if these bits are needed.
|
|
inline uint32_t FloatToBits(float Float) {
|
|
uint32_t Bits;
|
|
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
|
|
memcpy(&Bits, &Float, sizeof(Float));
|
|
return Bits;
|
|
}
|
|
|
|
/// A and B are either alignments or offsets. Return the minimum alignment that
|
|
/// may be assumed after adding the two together.
|
|
constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
|
|
// The largest power of 2 that divides both A and B.
|
|
//
|
|
// Replace "-Value" by "1+~Value" in the following commented code to avoid
|
|
// MSVC warning C4146
|
|
// return (A | B) & -(A | B);
|
|
return (A | B) & (1 + ~(A | B));
|
|
}
|
|
|
|
/// Aligns \c Addr to \c Alignment bytes, rounding up.
|
|
///
|
|
/// Alignment should be a power of two. This method rounds up, so
|
|
/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
|
|
inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
|
|
assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
|
|
"Alignment is not a power of two!");
|
|
|
|
assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
|
|
|
|
return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
|
|
}
|
|
|
|
/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
|
|
/// bytes, rounding up.
|
|
inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
|
|
return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
|
|
}
|
|
|
|
/// Returns the next power of two (in 64-bits) that is strictly greater than A.
|
|
/// Returns zero on overflow.
|
|
inline uint64_t NextPowerOf2(uint64_t A) {
|
|
A |= (A >> 1);
|
|
A |= (A >> 2);
|
|
A |= (A >> 4);
|
|
A |= (A >> 8);
|
|
A |= (A >> 16);
|
|
A |= (A >> 32);
|
|
return A + 1;
|
|
}
|
|
|
|
/// Returns the power of two which is less than or equal to the given value.
|
|
/// Essentially, it is a floor operation across the domain of powers of two.
|
|
inline uint64_t PowerOf2Floor(uint64_t A) {
|
|
if (!A) return 0;
|
|
return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
|
|
}
|
|
|
|
/// Returns the power of two which is greater than or equal to the given value.
|
|
/// Essentially, it is a ceil operation across the domain of powers of two.
|
|
inline uint64_t PowerOf2Ceil(uint64_t A) {
|
|
if (!A)
|
|
return 0;
|
|
return NextPowerOf2(A - 1);
|
|
}
|
|
|
|
/// Returns the next integer (mod 2**64) that is greater than or equal to
|
|
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
|
|
///
|
|
/// If non-zero \p Skew is specified, the return value will be a minimal
|
|
/// integer that is greater than or equal to \p Value and equal to
|
|
/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
|
|
/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
|
|
///
|
|
/// Examples:
|
|
/// \code
|
|
/// alignTo(5, 8) = 8
|
|
/// alignTo(17, 8) = 24
|
|
/// alignTo(~0LL, 8) = 0
|
|
/// alignTo(321, 255) = 510
|
|
///
|
|
/// alignTo(5, 8, 7) = 7
|
|
/// alignTo(17, 8, 1) = 17
|
|
/// alignTo(~0LL, 8, 3) = 3
|
|
/// alignTo(321, 255, 42) = 552
|
|
/// \endcode
|
|
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
|
|
assert(Align != 0u && "Align can't be 0.");
|
|
Skew %= Align;
|
|
return (Value + Align - 1 - Skew) / Align * Align + Skew;
|
|
}
|
|
|
|
/// Returns the next integer (mod 2**64) that is greater than or equal to
|
|
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
|
|
template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
|
|
static_assert(Align != 0u, "Align must be non-zero");
|
|
return (Value + Align - 1) / Align * Align;
|
|
}
|
|
|
|
/// Returns the integer ceil(Numerator / Denominator).
|
|
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
|
|
return alignTo(Numerator, Denominator) / Denominator;
|
|
}
|
|
|
|
/// Returns the largest uint64_t less than or equal to \p Value and is
|
|
/// \p Skew mod \p Align. \p Align must be non-zero
|
|
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
|
|
assert(Align != 0u && "Align can't be 0.");
|
|
Skew %= Align;
|
|
return (Value - Skew) / Align * Align + Skew;
|
|
}
|
|
|
|
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
|
|
/// Requires 0 < B <= 32.
|
|
template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
|
|
static_assert(B > 0, "Bit width can't be 0.");
|
|
static_assert(B <= 32, "Bit width out of range.");
|
|
return int32_t(X << (32 - B)) >> (32 - B);
|
|
}
|
|
|
|
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
|
|
/// Requires 0 < B < 32.
|
|
inline int32_t SignExtend32(uint32_t X, unsigned B) {
|
|
assert(B > 0 && "Bit width can't be 0.");
|
|
assert(B <= 32 && "Bit width out of range.");
|
|
return int32_t(X << (32 - B)) >> (32 - B);
|
|
}
|
|
|
|
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
|
|
/// Requires 0 < B < 64.
|
|
template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
|
|
static_assert(B > 0, "Bit width can't be 0.");
|
|
static_assert(B <= 64, "Bit width out of range.");
|
|
return int64_t(x << (64 - B)) >> (64 - B);
|
|
}
|
|
|
|
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
|
|
/// Requires 0 < B < 64.
|
|
inline int64_t SignExtend64(uint64_t X, unsigned B) {
|
|
assert(B > 0 && "Bit width can't be 0.");
|
|
assert(B <= 64 && "Bit width out of range.");
|
|
return int64_t(X << (64 - B)) >> (64 - B);
|
|
}
|
|
|
|
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
|
|
/// value of the result.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_unsigned<T>::value, T>::type
|
|
AbsoluteDifference(T X, T Y) {
|
|
return std::max(X, Y) - std::min(X, Y);
|
|
}
|
|
|
|
/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
|
|
/// maximum representable value of T on overflow. ResultOverflowed indicates if
|
|
/// the result is larger than the maximum representable value of type T.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_unsigned<T>::value, T>::type
|
|
SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
|
|
bool Dummy;
|
|
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
|
|
// Hacker's Delight, p. 29
|
|
T Z = X + Y;
|
|
Overflowed = (Z < X || Z < Y);
|
|
if (Overflowed)
|
|
return std::numeric_limits<T>::max();
|
|
else
|
|
return Z;
|
|
}
|
|
|
|
/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
|
|
/// maximum representable value of T on overflow. ResultOverflowed indicates if
|
|
/// the result is larger than the maximum representable value of type T.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_unsigned<T>::value, T>::type
|
|
SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
|
|
bool Dummy;
|
|
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
|
|
|
|
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that
|
|
// because it fails for uint16_t (where multiplication can have undefined
|
|
// behavior due to promotion to int), and requires a division in addition
|
|
// to the multiplication.
|
|
|
|
Overflowed = false;
|
|
|
|
// Log2(Z) would be either Log2Z or Log2Z + 1.
|
|
// Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
|
|
// will necessarily be less than Log2Max as desired.
|
|
int Log2Z = Log2_64(X) + Log2_64(Y);
|
|
const T Max = std::numeric_limits<T>::max();
|
|
int Log2Max = Log2_64(Max);
|
|
if (Log2Z < Log2Max) {
|
|
return X * Y;
|
|
}
|
|
if (Log2Z > Log2Max) {
|
|
Overflowed = true;
|
|
return Max;
|
|
}
|
|
|
|
// We're going to use the top bit, and maybe overflow one
|
|
// bit past it. Multiply all but the bottom bit then add
|
|
// that on at the end.
|
|
T Z = (X >> 1) * Y;
|
|
if (Z & ~(Max >> 1)) {
|
|
Overflowed = true;
|
|
return Max;
|
|
}
|
|
Z <<= 1;
|
|
if (X & 1)
|
|
return SaturatingAdd(Z, Y, ResultOverflowed);
|
|
|
|
return Z;
|
|
}
|
|
|
|
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
|
|
/// the product. Clamp the result to the maximum representable value of T on
|
|
/// overflow. ResultOverflowed indicates if the result is larger than the
|
|
/// maximum representable value of type T.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_unsigned<T>::value, T>::type
|
|
SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
|
|
bool Dummy;
|
|
bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
|
|
|
|
T Product = SaturatingMultiply(X, Y, &Overflowed);
|
|
if (Overflowed)
|
|
return Product;
|
|
|
|
return SaturatingAdd(A, Product, &Overflowed);
|
|
}
|
|
|
|
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
|
|
extern const float huge_valf;
|
|
|
|
|
|
/// Add two signed integers, computing the two's complement truncated result,
|
|
/// returning true if overflow occured.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_signed<T>::value, T>::type
|
|
AddOverflow(T X, T Y, T &Result) {
|
|
#if __has_builtin(__builtin_add_overflow)
|
|
return __builtin_add_overflow(X, Y, &Result);
|
|
#else
|
|
// Perform the unsigned addition.
|
|
using U = typename std::make_unsigned<T>::type;
|
|
const U UX = static_cast<U>(X);
|
|
const U UY = static_cast<U>(Y);
|
|
const U UResult = UX + UY;
|
|
|
|
// Convert to signed.
|
|
Result = static_cast<T>(UResult);
|
|
|
|
// Adding two positive numbers should result in a positive number.
|
|
if (X > 0 && Y > 0)
|
|
return Result <= 0;
|
|
// Adding two negatives should result in a negative number.
|
|
if (X < 0 && Y < 0)
|
|
return Result >= 0;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/// Subtract two signed integers, computing the two's complement truncated
|
|
/// result, returning true if an overflow ocurred.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_signed<T>::value, T>::type
|
|
SubOverflow(T X, T Y, T &Result) {
|
|
#if __has_builtin(__builtin_sub_overflow)
|
|
return __builtin_sub_overflow(X, Y, &Result);
|
|
#else
|
|
// Perform the unsigned addition.
|
|
using U = typename std::make_unsigned<T>::type;
|
|
const U UX = static_cast<U>(X);
|
|
const U UY = static_cast<U>(Y);
|
|
const U UResult = UX - UY;
|
|
|
|
// Convert to signed.
|
|
Result = static_cast<T>(UResult);
|
|
|
|
// Subtracting a positive number from a negative results in a negative number.
|
|
if (X <= 0 && Y > 0)
|
|
return Result >= 0;
|
|
// Subtracting a negative number from a positive results in a positive number.
|
|
if (X >= 0 && Y < 0)
|
|
return Result <= 0;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
/// Multiply two signed integers, computing the two's complement truncated
|
|
/// result, returning true if an overflow ocurred.
|
|
template <typename T>
|
|
typename std::enable_if<std::is_signed<T>::value, T>::type
|
|
MulOverflow(T X, T Y, T &Result) {
|
|
// Perform the unsigned multiplication on absolute values.
|
|
using U = typename std::make_unsigned<T>::type;
|
|
const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
|
|
const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
|
|
const U UResult = UX * UY;
|
|
|
|
// Convert to signed.
|
|
const bool IsNegative = (X < 0) ^ (Y < 0);
|
|
Result = IsNegative ? (0 - UResult) : UResult;
|
|
|
|
// If any of the args was 0, result is 0 and no overflow occurs.
|
|
if (UX == 0 || UY == 0)
|
|
return false;
|
|
|
|
// UX and UY are in [1, 2^n], where n is the number of digits.
|
|
// Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
|
|
// positive) divided by an argument compares to the other.
|
|
if (IsNegative)
|
|
return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
|
|
else
|
|
return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|