1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
Chris Lattner f5a5ed1a59 Implement varargs support for LLI!
llvm-svn: 6043
2003-05-08 16:52:43 +00:00

785 lines
26 KiB
C++

//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
// External functions in LLI are implemented by dlopen'ing the lli executable
// and using dlsym to look op the functions that we want to invoke. If a
// function is found, then the arguments are mangled and passed in to the
// function call.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Target/TargetData.h"
#include <map>
#include <dlfcn.h>
#include <link.h>
#include <math.h>
#include <stdio.h>
using std::vector;
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
static std::map<const Function *, ExFunc> Functions;
static std::map<std::string, ExFunc> FuncNames;
static Interpreter *TheInterpreter;
// getCurrentExecutablePath() - Return the directory that the lli executable
// lives in.
//
std::string Interpreter::getCurrentExecutablePath() const {
Dl_info Info;
if (dladdr(&TheInterpreter, &Info) == 0) return "";
std::string LinkAddr(Info.dli_fname);
unsigned SlashPos = LinkAddr.rfind('/');
if (SlashPos != std::string::npos)
LinkAddr.resize(SlashPos); // Trim the executable name off...
return LinkAddr;
}
static char getTypeID(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return 'V';
case Type::BoolTyID: return 'o';
case Type::UByteTyID: return 'B';
case Type::SByteTyID: return 'b';
case Type::UShortTyID: return 'S';
case Type::ShortTyID: return 's';
case Type::UIntTyID: return 'I';
case Type::IntTyID: return 'i';
case Type::ULongTyID: return 'L';
case Type::LongTyID: return 'l';
case Type::FloatTyID: return 'F';
case Type::DoubleTyID: return 'D';
case Type::PointerTyID: return 'P';
case Type::FunctionTyID: return 'M';
case Type::StructTyID: return 'T';
case Type::ArrayTyID: return 'A';
case Type::OpaqueTyID: return 'O';
default: return 'U';
}
}
static ExFunc lookupFunction(const Function *M) {
// Function not found, look it up... start by figuring out what the
// composite function name should be.
std::string ExtName = "lle_";
const FunctionType *MT = M->getFunctionType();
for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
ExtName += getTypeID(Ty);
ExtName += "_" + M->getName();
//std::cout << "Tried: '" << ExtName << "'\n";
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
if (FnPtr == 0)
FnPtr = FuncNames["lle_X_"+M->getName()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
if (FnPtr != 0)
Functions.insert(std::make_pair(M, FnPtr)); // Cache for later
return FnPtr;
}
GenericValue Interpreter::callExternalFunction(Function *M,
const vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the function is in our cache... this should just be a
// defered annotation!
std::map<const Function *, ExFunc>::iterator FI = Functions.find(M);
ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second;
if (Fn == 0) {
std::cout << "Tried to execute an unknown external function: "
<< M->getType()->getDescription() << " " << M->getName() << "\n";
return GenericValue();
}
// TODO: FIXME when types are not const!
GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()),
ArgVals);
return Result;
}
//===----------------------------------------------------------------------===//
// Functions "exported" to the running application...
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
// void putchar(sbyte)
GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
std::cout << Args[0].SByteVal;
return GenericValue();
}
// int putchar(int)
GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
std::cout << ((char)Args[0].IntVal) << std::flush;
return Args[0];
}
// void putchar(ubyte)
GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
std::cout << Args[0].SByteVal << std::flush;
return Args[0];
}
// void __main()
GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) {
return GenericValue();
}
// void exit(int)
GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
std::cerr << "***PROGRAM ABORTED***!\n";
GenericValue GV;
GV.IntVal = 1;
TheInterpreter->exitCalled(GV);
return GenericValue();
}
// void *malloc(uint)
GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1 && "Malloc expects one argument!");
return PTOGV(malloc(Args[0].UIntVal));
}
// void *calloc(uint, uint)
GenericValue lle_X_calloc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2 && "calloc expects two arguments!");
return PTOGV(calloc(Args[0].UIntVal, Args[1].UIntVal));
}
// void free(void *)
GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
free(GVTOP(Args[0]));
return GenericValue();
}
// int atoi(char *)
GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = atoi((char*)GVTOP(Args[0]));
return GV;
}
// double pow(double, double)
GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
return GV;
}
// double exp(double)
GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = exp(Args[0].DoubleVal);
return GV;
}
// double sqrt(double)
GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = sqrt(Args[0].DoubleVal);
return GV;
}
// double log(double)
GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = log(Args[0].DoubleVal);
return GV;
}
// int isnan(double value);
GenericValue lle_X_isnan(FunctionType *F, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = isnan(Args[0].DoubleVal);
return GV;
}
// double floor(double)
GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = floor(Args[0].DoubleVal);
return GV;
}
// double drand48()
GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 0);
GenericValue GV;
GV.DoubleVal = drand48();
return GV;
}
// long lrand48()
GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 0);
GenericValue GV;
GV.IntVal = lrand48();
return GV;
}
// void srand48(long)
GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand48(Args[0].IntVal);
return GenericValue();
}
// void srand(uint)
GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand(Args[0].UIntVal);
return GenericValue();
}
// int puts(const char*)
GenericValue lle_X_puts(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = puts((char*)GVTOP(Args[0]));
return GV;
}
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
// output useful.
GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
char *OutputBuffer = (char *)GVTOP(Args[0]);
const char *FmtStr = (const char *)GVTOP(Args[1]);
unsigned ArgNo = 2;
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
GenericValue GV; GV.IntVal = strlen(FmtStr);
while (1) {
switch (*FmtStr) {
case 0: return GV; // Null terminator...
default: // Normal nonspecial character
sprintf(OutputBuffer++, "%c", *FmtStr++);
break;
case '\\': { // Handle escape codes
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
FmtStr += 2; OutputBuffer += 2;
break;
}
case '%': { // Handle format specifiers
char FmtBuf[100] = "", Buffer[1000] = "";
char *FB = FmtBuf;
*FB++ = *FmtStr++;
char Last = *FB++ = *FmtStr++;
unsigned HowLong = 0;
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
Last != 'p' && Last != 's' && Last != '%') {
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
Last = *FB++ = *FmtStr++;
}
*FB = 0;
switch (Last) {
case '%':
sprintf(Buffer, FmtBuf); break;
case 'c':
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
case 'd': case 'i':
case 'u': case 'o':
case 'x': case 'X':
if (HowLong >= 1) {
if (HowLong == 1 && TheInterpreter->getModule().has64BitPointers() &&
sizeof(long) < sizeof(long long)) {
// Make sure we use %lld with a 64 bit argument because we might be
// compiling LLI on a 32 bit compiler.
unsigned Size = strlen(FmtBuf);
FmtBuf[Size] = FmtBuf[Size-1];
FmtBuf[Size+1] = 0;
FmtBuf[Size-1] = 'l';
}
sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
} else
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
case 'e': case 'E': case 'g': case 'G': case 'f':
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
case 's':
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
default: std::cout << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
strcpy(OutputBuffer, Buffer);
OutputBuffer += strlen(Buffer);
}
break;
}
}
}
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
char Buffer[10000];
vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(M, NewArgs);
std::cout << Buffer;
return GV;
}
static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
void *Arg2, void *Arg3, void *Arg4, void *Arg5,
void *Arg6, void *Arg7, void *Arg8) {
void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
// Loop over the format string, munging read values as appropriate (performs
// byteswaps as neccesary).
unsigned ArgNo = 0;
while (*Fmt) {
if (*Fmt++ == '%') {
// Read any flag characters that may be present...
bool Suppress = false;
bool Half = false;
bool Long = false;
bool LongLong = false; // long long or long double
while (1) {
switch (*Fmt++) {
case '*': Suppress = true; break;
case 'a': /*Allocate = true;*/ break; // We don't need to track this
case 'h': Half = true; break;
case 'l': Long = true; break;
case 'q':
case 'L': LongLong = true; break;
default:
if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
goto Out;
}
}
Out:
// Read the conversion character
if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
unsigned Size = 0;
const Type *Ty = 0;
switch (Fmt[-1]) {
case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
case 'd':
if (Long || LongLong) {
Size = 8; Ty = Type::ULongTy;
} else if (Half) {
Size = 4; Ty = Type::UShortTy;
} else {
Size = 4; Ty = Type::UIntTy;
}
break;
case 'e': case 'g': case 'E':
case 'f':
if (Long || LongLong) {
Size = 8; Ty = Type::DoubleTy;
} else {
Size = 4; Ty = Type::FloatTy;
}
break;
case 's': case 'c': case '[': // No byteswap needed
Size = 1;
Ty = Type::SByteTy;
break;
default: break;
}
if (Size) {
GenericValue GV;
void *Arg = Args[ArgNo++];
memcpy(&GV, Arg, Size);
TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
}
}
}
}
}
// int sscanf(const char *format, ...);
GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9], 0);
return GV;
}
// int scanf(const char *format, ...);
GenericValue lle_X_scanf(FunctionType *M, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = scanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
return GV;
}
// int clock(void) - Profiling implementation
GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
extern int clock(void);
GenericValue GV; GV.IntVal = clock();
return GV;
}
//===----------------------------------------------------------------------===//
// String Functions...
//===----------------------------------------------------------------------===//
// int strcmp(const char *S1, const char *S2);
GenericValue lle_X_strcmp(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue Ret;
Ret.IntVal = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]));
return Ret;
}
// char *strcat(char *Dest, const char *src);
GenericValue lle_X_strcat(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}
// char *strcpy(char *Dest, const char *src);
GenericValue lle_X_strcpy(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
}
// long strlen(const char *src);
GenericValue lle_X_strlen(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue Ret;
Ret.LongVal = strlen((char*)GVTOP(Args[0]));
return Ret;
}
// char *__strdup(const char *src);
GenericValue lle_X___strdup(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
return PTOGV(strdup((char*)GVTOP(Args[0])));
}
// void *memset(void *S, int C, size_t N)
GenericValue lle_X_memset(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
return PTOGV(memset(GVTOP(Args[0]), Args[1].IntVal, Args[2].UIntVal));
}
// void *memcpy(void *Dest, void *src, size_t Size);
GenericValue lle_X_memcpy(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
Args[2].UIntVal));
}
//===----------------------------------------------------------------------===//
// IO Functions...
//===----------------------------------------------------------------------===//
// getFILE - Turn a pointer in the host address space into a legit pointer in
// the interpreter address space. For the most part, this is an identity
// transformation, but if the program refers to stdio, stderr, stdin then they
// have pointers that are relative to the __iob array. If this is the case,
// change the FILE into the REAL stdio stream.
//
static FILE *getFILE(void *Ptr) {
static Module *LastMod = 0;
static PointerTy IOBBase = 0;
static unsigned FILESize;
if (LastMod != &TheInterpreter->getModule()) { // Module change or initialize?
Module *M = LastMod = &TheInterpreter->getModule();
// Check to see if the currently loaded module contains an __iob symbol...
GlobalVariable *IOB = 0;
SymbolTable &ST = M->getSymbolTable();
for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) {
SymbolTable::VarMap &M = I->second;
for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end();
J != E; ++J)
if (J->first == "__iob")
if ((IOB = dyn_cast<GlobalVariable>(J->second)))
break;
if (IOB) break;
}
#if 0 /// FIXME! __iob support for LLI
// If we found an __iob symbol now, find out what the actual address it's
// held in is...
if (IOB) {
// Get the address the array lives in...
GlobalAddress *Address =
(GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID);
IOBBase = (PointerTy)(GenericValue*)Address->Ptr;
// Figure out how big each element of the array is...
const ArrayType *AT =
dyn_cast<ArrayType>(IOB->getType()->getElementType());
if (AT)
FILESize = TD.getTypeSize(AT->getElementType());
else
FILESize = 16*8; // Default size
}
#endif
}
// Check to see if this is a reference to __iob...
if (IOBBase) {
unsigned FDNum = ((unsigned long)Ptr-IOBBase)/FILESize;
if (FDNum == 0)
return stdin;
else if (FDNum == 1)
return stdout;
else if (FDNum == 2)
return stderr;
}
return (FILE*)Ptr;
}
// FILE *fopen(const char *filename, const char *mode);
GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
return PTOGV(fopen((const char *)GVTOP(Args[0]),
(const char *)GVTOP(Args[1])));
}
// int fclose(FILE *F);
GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = fclose(getFILE(GVTOP(Args[0])));
return GV;
}
// int feof(FILE *stream);
GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = feof(getFILE(GVTOP(Args[0])));
return GV;
}
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
GenericValue GV;
GV.UIntVal = fread((void*)GVTOP(Args[0]), Args[1].UIntVal,
Args[2].UIntVal, getFILE(GVTOP(Args[3])));
return GV;
}
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
GenericValue GV;
GV.UIntVal = fwrite((void*)GVTOP(Args[0]), Args[1].UIntVal,
Args[2].UIntVal, getFILE(GVTOP(Args[3])));
return GV;
}
// char *fgets(char *s, int n, FILE *stream);
GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal,
getFILE(GVTOP(Args[2]))));
}
// FILE *freopen(const char *path, const char *mode, FILE *stream);
GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
getFILE(GVTOP(Args[2]))));
}
// int fflush(FILE *stream);
GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = fflush(getFILE(GVTOP(Args[0])));
return GV;
}
// int getc(FILE *stream);
GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = getc(getFILE(GVTOP(Args[0])));
return GV;
}
// int _IO_getc(FILE *stream);
GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
return lle_X_getc(F, Args);
}
// int fputc(int C, FILE *stream);
GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
return GV;
}
// int ungetc(int C, FILE *stream);
GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
return GV;
}
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
// useful.
GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() >= 2);
char Buffer[10000];
vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GenericValue GV = lle_X_sprintf(M, NewArgs);
fputs(Buffer, getFILE(GVTOP(Args[0])));
return GV;
}
//===----------------------------------------------------------------------===//
// LLVM Intrinsic Functions...
//===----------------------------------------------------------------------===//
// void llvm.va_start(<va_list> *) - Implement the va_start operation...
GenericValue llvm_va_start(FunctionType *F, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue *VAListP = (GenericValue *)GVTOP(Args[0]);
GenericValue Val;
Val.UIntVal = 0; // Start at the first '...' argument...
TheInterpreter->StoreValueToMemory(Val, VAListP, Type::UIntTy);
return GenericValue();
}
// void llvm.va_end(<va_list> *) - Implement the va_end operation...
GenericValue llvm_va_end(FunctionType *F, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
return GenericValue(); // Noop!
}
// void llvm.va_copy(<va_list> *, <va_list>) - Implement the va_copy
// operation...
GenericValue llvm_va_copy(FunctionType *F, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue *DestVAList = (GenericValue*)GVTOP(Args[0]);
TheInterpreter->StoreValueToMemory(Args[1], DestVAList, Type::UIntTy);
return GenericValue();
}
} // End extern "C"
void Interpreter::initializeExternalFunctions() {
FuncNames["lle_Vb_putchar"] = lle_Vb_putchar;
FuncNames["lle_ii_putchar"] = lle_ii_putchar;
FuncNames["lle_VB_putchar"] = lle_VB_putchar;
FuncNames["lle_V___main"] = lle_V___main;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
FuncNames["lle_X_malloc"] = lle_X_malloc;
FuncNames["lle_X_calloc"] = lle_X_calloc;
FuncNames["lle_X_free"] = lle_X_free;
FuncNames["lle_X_atoi"] = lle_X_atoi;
FuncNames["lle_X_pow"] = lle_X_pow;
FuncNames["lle_X_exp"] = lle_X_exp;
FuncNames["lle_X_log"] = lle_X_log;
FuncNames["lle_X_isnan"] = lle_X_isnan;
FuncNames["lle_X_floor"] = lle_X_floor;
FuncNames["lle_X_srand"] = lle_X_srand;
FuncNames["lle_X_drand48"] = lle_X_drand48;
FuncNames["lle_X_srand48"] = lle_X_srand48;
FuncNames["lle_X_lrand48"] = lle_X_lrand48;
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
FuncNames["lle_X_puts"] = lle_X_puts;
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
FuncNames["lle_i_clock"] = lle_i_clock;
FuncNames["lle_X_strcmp"] = lle_X_strcmp;
FuncNames["lle_X_strcat"] = lle_X_strcat;
FuncNames["lle_X_strcpy"] = lle_X_strcpy;
FuncNames["lle_X_strlen"] = lle_X_strlen;
FuncNames["lle_X___strdup"] = lle_X___strdup;
FuncNames["lle_X_memset"] = lle_X_memset;
FuncNames["lle_X_memcpy"] = lle_X_memcpy;
FuncNames["lle_X_fopen"] = lle_X_fopen;
FuncNames["lle_X_fclose"] = lle_X_fclose;
FuncNames["lle_X_feof"] = lle_X_feof;
FuncNames["lle_X_fread"] = lle_X_fread;
FuncNames["lle_X_fwrite"] = lle_X_fwrite;
FuncNames["lle_X_fgets"] = lle_X_fgets;
FuncNames["lle_X_fflush"] = lle_X_fflush;
FuncNames["lle_X_fgetc"] = lle_X_getc;
FuncNames["lle_X_getc"] = lle_X_getc;
FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
FuncNames["lle_X_fputc"] = lle_X_fputc;
FuncNames["lle_X_ungetc"] = lle_X_ungetc;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
FuncNames["lle_X_freopen"] = lle_X_freopen;
FuncNames["lle_X_llvm.va_start"]= llvm_va_start;
FuncNames["lle_X_llvm.va_end"] = llvm_va_end;
FuncNames["lle_X_llvm.va_copy"] = llvm_va_copy;
}