mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
f5a5ed1a59
llvm-svn: 6043
785 lines
26 KiB
C++
785 lines
26 KiB
C++
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
|
|
//
|
|
// This file contains both code to deal with invoking "external" functions, but
|
|
// also contains code that implements "exported" external functions.
|
|
//
|
|
// External functions in LLI are implemented by dlopen'ing the lli executable
|
|
// and using dlsym to look op the functions that we want to invoke. If a
|
|
// function is found, then the arguments are mangled and passed in to the
|
|
// function call.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Interpreter.h"
|
|
#include "ExecutionAnnotations.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <map>
|
|
#include <dlfcn.h>
|
|
#include <link.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
using std::vector;
|
|
|
|
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
|
|
static std::map<const Function *, ExFunc> Functions;
|
|
static std::map<std::string, ExFunc> FuncNames;
|
|
|
|
static Interpreter *TheInterpreter;
|
|
|
|
// getCurrentExecutablePath() - Return the directory that the lli executable
|
|
// lives in.
|
|
//
|
|
std::string Interpreter::getCurrentExecutablePath() const {
|
|
Dl_info Info;
|
|
if (dladdr(&TheInterpreter, &Info) == 0) return "";
|
|
|
|
std::string LinkAddr(Info.dli_fname);
|
|
unsigned SlashPos = LinkAddr.rfind('/');
|
|
if (SlashPos != std::string::npos)
|
|
LinkAddr.resize(SlashPos); // Trim the executable name off...
|
|
|
|
return LinkAddr;
|
|
}
|
|
|
|
|
|
static char getTypeID(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::VoidTyID: return 'V';
|
|
case Type::BoolTyID: return 'o';
|
|
case Type::UByteTyID: return 'B';
|
|
case Type::SByteTyID: return 'b';
|
|
case Type::UShortTyID: return 'S';
|
|
case Type::ShortTyID: return 's';
|
|
case Type::UIntTyID: return 'I';
|
|
case Type::IntTyID: return 'i';
|
|
case Type::ULongTyID: return 'L';
|
|
case Type::LongTyID: return 'l';
|
|
case Type::FloatTyID: return 'F';
|
|
case Type::DoubleTyID: return 'D';
|
|
case Type::PointerTyID: return 'P';
|
|
case Type::FunctionTyID: return 'M';
|
|
case Type::StructTyID: return 'T';
|
|
case Type::ArrayTyID: return 'A';
|
|
case Type::OpaqueTyID: return 'O';
|
|
default: return 'U';
|
|
}
|
|
}
|
|
|
|
static ExFunc lookupFunction(const Function *M) {
|
|
// Function not found, look it up... start by figuring out what the
|
|
// composite function name should be.
|
|
std::string ExtName = "lle_";
|
|
const FunctionType *MT = M->getFunctionType();
|
|
for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
|
|
ExtName += getTypeID(Ty);
|
|
ExtName += "_" + M->getName();
|
|
|
|
//std::cout << "Tried: '" << ExtName << "'\n";
|
|
ExFunc FnPtr = FuncNames[ExtName];
|
|
if (FnPtr == 0)
|
|
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
|
|
if (FnPtr == 0)
|
|
FnPtr = FuncNames["lle_X_"+M->getName()];
|
|
if (FnPtr == 0) // Try calling a generic function... if it exists...
|
|
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
|
|
if (FnPtr != 0)
|
|
Functions.insert(std::make_pair(M, FnPtr)); // Cache for later
|
|
return FnPtr;
|
|
}
|
|
|
|
GenericValue Interpreter::callExternalFunction(Function *M,
|
|
const vector<GenericValue> &ArgVals) {
|
|
TheInterpreter = this;
|
|
|
|
// Do a lookup to see if the function is in our cache... this should just be a
|
|
// defered annotation!
|
|
std::map<const Function *, ExFunc>::iterator FI = Functions.find(M);
|
|
ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second;
|
|
if (Fn == 0) {
|
|
std::cout << "Tried to execute an unknown external function: "
|
|
<< M->getType()->getDescription() << " " << M->getName() << "\n";
|
|
return GenericValue();
|
|
}
|
|
|
|
// TODO: FIXME when types are not const!
|
|
GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()),
|
|
ArgVals);
|
|
return Result;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions "exported" to the running application...
|
|
//
|
|
extern "C" { // Don't add C++ manglings to llvm mangling :)
|
|
|
|
// void putchar(sbyte)
|
|
GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
|
|
std::cout << Args[0].SByteVal;
|
|
return GenericValue();
|
|
}
|
|
|
|
// int putchar(int)
|
|
GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
|
|
std::cout << ((char)Args[0].IntVal) << std::flush;
|
|
return Args[0];
|
|
}
|
|
|
|
// void putchar(ubyte)
|
|
GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
|
|
std::cout << Args[0].SByteVal << std::flush;
|
|
return Args[0];
|
|
}
|
|
|
|
// void __main()
|
|
GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) {
|
|
return GenericValue();
|
|
}
|
|
|
|
// void exit(int)
|
|
GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
|
|
TheInterpreter->exitCalled(Args[0]);
|
|
return GenericValue();
|
|
}
|
|
|
|
// void abort(void)
|
|
GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
|
|
std::cerr << "***PROGRAM ABORTED***!\n";
|
|
GenericValue GV;
|
|
GV.IntVal = 1;
|
|
TheInterpreter->exitCalled(GV);
|
|
return GenericValue();
|
|
}
|
|
|
|
// void *malloc(uint)
|
|
GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1 && "Malloc expects one argument!");
|
|
return PTOGV(malloc(Args[0].UIntVal));
|
|
}
|
|
|
|
// void *calloc(uint, uint)
|
|
GenericValue lle_X_calloc(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2 && "calloc expects two arguments!");
|
|
return PTOGV(calloc(Args[0].UIntVal, Args[1].UIntVal));
|
|
}
|
|
|
|
// void free(void *)
|
|
GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
free(GVTOP(Args[0]));
|
|
return GenericValue();
|
|
}
|
|
|
|
// int atoi(char *)
|
|
GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = atoi((char*)GVTOP(Args[0]));
|
|
return GV;
|
|
}
|
|
|
|
// double pow(double, double)
|
|
GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
GenericValue GV;
|
|
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// double exp(double)
|
|
GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.DoubleVal = exp(Args[0].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// double sqrt(double)
|
|
GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.DoubleVal = sqrt(Args[0].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// double log(double)
|
|
GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.DoubleVal = log(Args[0].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// int isnan(double value);
|
|
GenericValue lle_X_isnan(FunctionType *F, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = isnan(Args[0].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// double floor(double)
|
|
GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.DoubleVal = floor(Args[0].DoubleVal);
|
|
return GV;
|
|
}
|
|
|
|
// double drand48()
|
|
GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 0);
|
|
GenericValue GV;
|
|
GV.DoubleVal = drand48();
|
|
return GV;
|
|
}
|
|
|
|
// long lrand48()
|
|
GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 0);
|
|
GenericValue GV;
|
|
GV.IntVal = lrand48();
|
|
return GV;
|
|
}
|
|
|
|
// void srand48(long)
|
|
GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
srand48(Args[0].IntVal);
|
|
return GenericValue();
|
|
}
|
|
|
|
// void srand(uint)
|
|
GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
srand(Args[0].UIntVal);
|
|
return GenericValue();
|
|
}
|
|
|
|
// int puts(const char*)
|
|
GenericValue lle_X_puts(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = puts((char*)GVTOP(Args[0]));
|
|
return GV;
|
|
}
|
|
|
|
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
|
|
// output useful.
|
|
GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
|
|
char *OutputBuffer = (char *)GVTOP(Args[0]);
|
|
const char *FmtStr = (const char *)GVTOP(Args[1]);
|
|
unsigned ArgNo = 2;
|
|
|
|
// printf should return # chars printed. This is completely incorrect, but
|
|
// close enough for now.
|
|
GenericValue GV; GV.IntVal = strlen(FmtStr);
|
|
while (1) {
|
|
switch (*FmtStr) {
|
|
case 0: return GV; // Null terminator...
|
|
default: // Normal nonspecial character
|
|
sprintf(OutputBuffer++, "%c", *FmtStr++);
|
|
break;
|
|
case '\\': { // Handle escape codes
|
|
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
|
|
FmtStr += 2; OutputBuffer += 2;
|
|
break;
|
|
}
|
|
case '%': { // Handle format specifiers
|
|
char FmtBuf[100] = "", Buffer[1000] = "";
|
|
char *FB = FmtBuf;
|
|
*FB++ = *FmtStr++;
|
|
char Last = *FB++ = *FmtStr++;
|
|
unsigned HowLong = 0;
|
|
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
|
|
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
|
|
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
|
|
Last != 'p' && Last != 's' && Last != '%') {
|
|
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
|
|
Last = *FB++ = *FmtStr++;
|
|
}
|
|
*FB = 0;
|
|
|
|
switch (Last) {
|
|
case '%':
|
|
sprintf(Buffer, FmtBuf); break;
|
|
case 'c':
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
|
|
case 'd': case 'i':
|
|
case 'u': case 'o':
|
|
case 'x': case 'X':
|
|
if (HowLong >= 1) {
|
|
if (HowLong == 1 && TheInterpreter->getModule().has64BitPointers() &&
|
|
sizeof(long) < sizeof(long long)) {
|
|
// Make sure we use %lld with a 64 bit argument because we might be
|
|
// compiling LLI on a 32 bit compiler.
|
|
unsigned Size = strlen(FmtBuf);
|
|
FmtBuf[Size] = FmtBuf[Size-1];
|
|
FmtBuf[Size+1] = 0;
|
|
FmtBuf[Size-1] = 'l';
|
|
}
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
|
|
} else
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
|
|
case 'e': case 'E': case 'g': case 'G': case 'f':
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
|
|
case 'p':
|
|
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
|
|
case 's':
|
|
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
|
|
default: std::cout << "<unknown printf code '" << *FmtStr << "'!>";
|
|
ArgNo++; break;
|
|
}
|
|
strcpy(OutputBuffer, Buffer);
|
|
OutputBuffer += strlen(Buffer);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
|
|
GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
|
|
char Buffer[10000];
|
|
vector<GenericValue> NewArgs;
|
|
NewArgs.push_back(PTOGV(Buffer));
|
|
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
|
|
GenericValue GV = lle_X_sprintf(M, NewArgs);
|
|
std::cout << Buffer;
|
|
return GV;
|
|
}
|
|
|
|
static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
|
|
void *Arg2, void *Arg3, void *Arg4, void *Arg5,
|
|
void *Arg6, void *Arg7, void *Arg8) {
|
|
void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
|
|
|
|
// Loop over the format string, munging read values as appropriate (performs
|
|
// byteswaps as neccesary).
|
|
unsigned ArgNo = 0;
|
|
while (*Fmt) {
|
|
if (*Fmt++ == '%') {
|
|
// Read any flag characters that may be present...
|
|
bool Suppress = false;
|
|
bool Half = false;
|
|
bool Long = false;
|
|
bool LongLong = false; // long long or long double
|
|
|
|
while (1) {
|
|
switch (*Fmt++) {
|
|
case '*': Suppress = true; break;
|
|
case 'a': /*Allocate = true;*/ break; // We don't need to track this
|
|
case 'h': Half = true; break;
|
|
case 'l': Long = true; break;
|
|
case 'q':
|
|
case 'L': LongLong = true; break;
|
|
default:
|
|
if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
|
|
goto Out;
|
|
}
|
|
}
|
|
Out:
|
|
|
|
// Read the conversion character
|
|
if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
|
|
unsigned Size = 0;
|
|
const Type *Ty = 0;
|
|
|
|
switch (Fmt[-1]) {
|
|
case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
|
|
case 'd':
|
|
if (Long || LongLong) {
|
|
Size = 8; Ty = Type::ULongTy;
|
|
} else if (Half) {
|
|
Size = 4; Ty = Type::UShortTy;
|
|
} else {
|
|
Size = 4; Ty = Type::UIntTy;
|
|
}
|
|
break;
|
|
|
|
case 'e': case 'g': case 'E':
|
|
case 'f':
|
|
if (Long || LongLong) {
|
|
Size = 8; Ty = Type::DoubleTy;
|
|
} else {
|
|
Size = 4; Ty = Type::FloatTy;
|
|
}
|
|
break;
|
|
|
|
case 's': case 'c': case '[': // No byteswap needed
|
|
Size = 1;
|
|
Ty = Type::SByteTy;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
if (Size) {
|
|
GenericValue GV;
|
|
void *Arg = Args[ArgNo++];
|
|
memcpy(&GV, Arg, Size);
|
|
TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// int sscanf(const char *format, ...);
|
|
GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
|
|
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
|
|
|
|
char *Args[10];
|
|
for (unsigned i = 0; i < args.size(); ++i)
|
|
Args[i] = (char*)GVTOP(args[i]);
|
|
|
|
GenericValue GV;
|
|
GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]);
|
|
ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9], 0);
|
|
return GV;
|
|
}
|
|
|
|
// int scanf(const char *format, ...);
|
|
GenericValue lle_X_scanf(FunctionType *M, const vector<GenericValue> &args) {
|
|
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
|
|
|
|
char *Args[10];
|
|
for (unsigned i = 0; i < args.size(); ++i)
|
|
Args[i] = (char*)GVTOP(args[i]);
|
|
|
|
GenericValue GV;
|
|
GV.IntVal = scanf(Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]);
|
|
ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]);
|
|
return GV;
|
|
}
|
|
|
|
|
|
// int clock(void) - Profiling implementation
|
|
GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
|
|
extern int clock(void);
|
|
GenericValue GV; GV.IntVal = clock();
|
|
return GV;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String Functions...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// int strcmp(const char *S1, const char *S2);
|
|
GenericValue lle_X_strcmp(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
GenericValue Ret;
|
|
Ret.IntVal = strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]));
|
|
return Ret;
|
|
}
|
|
|
|
// char *strcat(char *Dest, const char *src);
|
|
GenericValue lle_X_strcat(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
|
|
}
|
|
|
|
// char *strcpy(char *Dest, const char *src);
|
|
GenericValue lle_X_strcpy(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
|
|
}
|
|
|
|
// long strlen(const char *src);
|
|
GenericValue lle_X_strlen(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue Ret;
|
|
Ret.LongVal = strlen((char*)GVTOP(Args[0]));
|
|
return Ret;
|
|
}
|
|
|
|
// char *__strdup(const char *src);
|
|
GenericValue lle_X___strdup(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
return PTOGV(strdup((char*)GVTOP(Args[0])));
|
|
}
|
|
|
|
// void *memset(void *S, int C, size_t N)
|
|
GenericValue lle_X_memset(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 3);
|
|
return PTOGV(memset(GVTOP(Args[0]), Args[1].IntVal, Args[2].UIntVal));
|
|
}
|
|
|
|
// void *memcpy(void *Dest, void *src, size_t Size);
|
|
GenericValue lle_X_memcpy(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 3);
|
|
return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
|
|
Args[2].UIntVal));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IO Functions...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// getFILE - Turn a pointer in the host address space into a legit pointer in
|
|
// the interpreter address space. For the most part, this is an identity
|
|
// transformation, but if the program refers to stdio, stderr, stdin then they
|
|
// have pointers that are relative to the __iob array. If this is the case,
|
|
// change the FILE into the REAL stdio stream.
|
|
//
|
|
static FILE *getFILE(void *Ptr) {
|
|
static Module *LastMod = 0;
|
|
static PointerTy IOBBase = 0;
|
|
static unsigned FILESize;
|
|
|
|
if (LastMod != &TheInterpreter->getModule()) { // Module change or initialize?
|
|
Module *M = LastMod = &TheInterpreter->getModule();
|
|
|
|
// Check to see if the currently loaded module contains an __iob symbol...
|
|
GlobalVariable *IOB = 0;
|
|
SymbolTable &ST = M->getSymbolTable();
|
|
for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) {
|
|
SymbolTable::VarMap &M = I->second;
|
|
for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end();
|
|
J != E; ++J)
|
|
if (J->first == "__iob")
|
|
if ((IOB = dyn_cast<GlobalVariable>(J->second)))
|
|
break;
|
|
if (IOB) break;
|
|
}
|
|
|
|
#if 0 /// FIXME! __iob support for LLI
|
|
// If we found an __iob symbol now, find out what the actual address it's
|
|
// held in is...
|
|
if (IOB) {
|
|
// Get the address the array lives in...
|
|
GlobalAddress *Address =
|
|
(GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID);
|
|
IOBBase = (PointerTy)(GenericValue*)Address->Ptr;
|
|
|
|
// Figure out how big each element of the array is...
|
|
const ArrayType *AT =
|
|
dyn_cast<ArrayType>(IOB->getType()->getElementType());
|
|
if (AT)
|
|
FILESize = TD.getTypeSize(AT->getElementType());
|
|
else
|
|
FILESize = 16*8; // Default size
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Check to see if this is a reference to __iob...
|
|
if (IOBBase) {
|
|
unsigned FDNum = ((unsigned long)Ptr-IOBBase)/FILESize;
|
|
if (FDNum == 0)
|
|
return stdin;
|
|
else if (FDNum == 1)
|
|
return stdout;
|
|
else if (FDNum == 2)
|
|
return stderr;
|
|
}
|
|
|
|
return (FILE*)Ptr;
|
|
}
|
|
|
|
|
|
// FILE *fopen(const char *filename, const char *mode);
|
|
GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
return PTOGV(fopen((const char *)GVTOP(Args[0]),
|
|
(const char *)GVTOP(Args[1])));
|
|
}
|
|
|
|
// int fclose(FILE *F);
|
|
GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = fclose(getFILE(GVTOP(Args[0])));
|
|
return GV;
|
|
}
|
|
|
|
// int feof(FILE *stream);
|
|
GenericValue lle_X_feof(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
|
|
GV.IntVal = feof(getFILE(GVTOP(Args[0])));
|
|
return GV;
|
|
}
|
|
|
|
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
|
|
GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 4);
|
|
GenericValue GV;
|
|
|
|
GV.UIntVal = fread((void*)GVTOP(Args[0]), Args[1].UIntVal,
|
|
Args[2].UIntVal, getFILE(GVTOP(Args[3])));
|
|
return GV;
|
|
}
|
|
|
|
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
|
|
GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 4);
|
|
GenericValue GV;
|
|
|
|
GV.UIntVal = fwrite((void*)GVTOP(Args[0]), Args[1].UIntVal,
|
|
Args[2].UIntVal, getFILE(GVTOP(Args[3])));
|
|
return GV;
|
|
}
|
|
|
|
// char *fgets(char *s, int n, FILE *stream);
|
|
GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 3);
|
|
return GVTOP(fgets((char*)GVTOP(Args[0]), Args[1].IntVal,
|
|
getFILE(GVTOP(Args[2]))));
|
|
}
|
|
|
|
// FILE *freopen(const char *path, const char *mode, FILE *stream);
|
|
GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 3);
|
|
return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
|
|
getFILE(GVTOP(Args[2]))));
|
|
}
|
|
|
|
// int fflush(FILE *stream);
|
|
GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = fflush(getFILE(GVTOP(Args[0])));
|
|
return GV;
|
|
}
|
|
|
|
// int getc(FILE *stream);
|
|
GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue GV;
|
|
GV.IntVal = getc(getFILE(GVTOP(Args[0])));
|
|
return GV;
|
|
}
|
|
|
|
// int _IO_getc(FILE *stream);
|
|
GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
|
|
return lle_X_getc(F, Args);
|
|
}
|
|
|
|
// int fputc(int C, FILE *stream);
|
|
GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
GenericValue GV;
|
|
GV.IntVal = fputc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
|
|
return GV;
|
|
}
|
|
|
|
// int ungetc(int C, FILE *stream);
|
|
GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
GenericValue GV;
|
|
GV.IntVal = ungetc(Args[0].IntVal, getFILE(GVTOP(Args[1])));
|
|
return GV;
|
|
}
|
|
|
|
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
|
|
// useful.
|
|
GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
|
|
assert(Args.size() >= 2);
|
|
char Buffer[10000];
|
|
vector<GenericValue> NewArgs;
|
|
NewArgs.push_back(PTOGV(Buffer));
|
|
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
|
|
GenericValue GV = lle_X_sprintf(M, NewArgs);
|
|
|
|
fputs(Buffer, getFILE(GVTOP(Args[0])));
|
|
return GV;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM Intrinsic Functions...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// void llvm.va_start(<va_list> *) - Implement the va_start operation...
|
|
GenericValue llvm_va_start(FunctionType *F, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
GenericValue *VAListP = (GenericValue *)GVTOP(Args[0]);
|
|
GenericValue Val;
|
|
Val.UIntVal = 0; // Start at the first '...' argument...
|
|
TheInterpreter->StoreValueToMemory(Val, VAListP, Type::UIntTy);
|
|
return GenericValue();
|
|
}
|
|
|
|
// void llvm.va_end(<va_list> *) - Implement the va_end operation...
|
|
GenericValue llvm_va_end(FunctionType *F, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
return GenericValue(); // Noop!
|
|
}
|
|
|
|
// void llvm.va_copy(<va_list> *, <va_list>) - Implement the va_copy
|
|
// operation...
|
|
GenericValue llvm_va_copy(FunctionType *F, const vector<GenericValue> &Args) {
|
|
assert(Args.size() == 2);
|
|
GenericValue *DestVAList = (GenericValue*)GVTOP(Args[0]);
|
|
TheInterpreter->StoreValueToMemory(Args[1], DestVAList, Type::UIntTy);
|
|
return GenericValue();
|
|
}
|
|
|
|
} // End extern "C"
|
|
|
|
|
|
void Interpreter::initializeExternalFunctions() {
|
|
FuncNames["lle_Vb_putchar"] = lle_Vb_putchar;
|
|
FuncNames["lle_ii_putchar"] = lle_ii_putchar;
|
|
FuncNames["lle_VB_putchar"] = lle_VB_putchar;
|
|
FuncNames["lle_V___main"] = lle_V___main;
|
|
FuncNames["lle_X_exit"] = lle_X_exit;
|
|
FuncNames["lle_X_abort"] = lle_X_abort;
|
|
FuncNames["lle_X_malloc"] = lle_X_malloc;
|
|
FuncNames["lle_X_calloc"] = lle_X_calloc;
|
|
FuncNames["lle_X_free"] = lle_X_free;
|
|
FuncNames["lle_X_atoi"] = lle_X_atoi;
|
|
FuncNames["lle_X_pow"] = lle_X_pow;
|
|
FuncNames["lle_X_exp"] = lle_X_exp;
|
|
FuncNames["lle_X_log"] = lle_X_log;
|
|
FuncNames["lle_X_isnan"] = lle_X_isnan;
|
|
FuncNames["lle_X_floor"] = lle_X_floor;
|
|
FuncNames["lle_X_srand"] = lle_X_srand;
|
|
FuncNames["lle_X_drand48"] = lle_X_drand48;
|
|
FuncNames["lle_X_srand48"] = lle_X_srand48;
|
|
FuncNames["lle_X_lrand48"] = lle_X_lrand48;
|
|
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
|
|
FuncNames["lle_X_puts"] = lle_X_puts;
|
|
FuncNames["lle_X_printf"] = lle_X_printf;
|
|
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
|
|
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
|
|
FuncNames["lle_X_scanf"] = lle_X_scanf;
|
|
FuncNames["lle_i_clock"] = lle_i_clock;
|
|
|
|
FuncNames["lle_X_strcmp"] = lle_X_strcmp;
|
|
FuncNames["lle_X_strcat"] = lle_X_strcat;
|
|
FuncNames["lle_X_strcpy"] = lle_X_strcpy;
|
|
FuncNames["lle_X_strlen"] = lle_X_strlen;
|
|
FuncNames["lle_X___strdup"] = lle_X___strdup;
|
|
FuncNames["lle_X_memset"] = lle_X_memset;
|
|
FuncNames["lle_X_memcpy"] = lle_X_memcpy;
|
|
|
|
FuncNames["lle_X_fopen"] = lle_X_fopen;
|
|
FuncNames["lle_X_fclose"] = lle_X_fclose;
|
|
FuncNames["lle_X_feof"] = lle_X_feof;
|
|
FuncNames["lle_X_fread"] = lle_X_fread;
|
|
FuncNames["lle_X_fwrite"] = lle_X_fwrite;
|
|
FuncNames["lle_X_fgets"] = lle_X_fgets;
|
|
FuncNames["lle_X_fflush"] = lle_X_fflush;
|
|
FuncNames["lle_X_fgetc"] = lle_X_getc;
|
|
FuncNames["lle_X_getc"] = lle_X_getc;
|
|
FuncNames["lle_X__IO_getc"] = lle_X__IO_getc;
|
|
FuncNames["lle_X_fputc"] = lle_X_fputc;
|
|
FuncNames["lle_X_ungetc"] = lle_X_ungetc;
|
|
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
|
|
FuncNames["lle_X_freopen"] = lle_X_freopen;
|
|
|
|
FuncNames["lle_X_llvm.va_start"]= llvm_va_start;
|
|
FuncNames["lle_X_llvm.va_end"] = llvm_va_end;
|
|
FuncNames["lle_X_llvm.va_copy"] = llvm_va_copy;
|
|
}
|