mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-10-30 07:22:55 +01:00
e8381114ef
llvm-svn: 5489
1258 lines
48 KiB
C++
1258 lines
48 KiB
C++
//===- DataStructure.cpp - Implement the core data structure analysis -----===//
|
|
//
|
|
// This file implements the core data structure functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/DSGraph.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/Timer.h"
|
|
#include <algorithm>
|
|
|
|
namespace {
|
|
Statistic<> NumFolds ("dsnode", "Number of nodes completely folded");
|
|
Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
|
|
};
|
|
|
|
namespace DS { // TODO: FIXME
|
|
extern TargetData TD;
|
|
}
|
|
using namespace DS;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSNode Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DSNode::DSNode(enum NodeTy NT, const Type *T)
|
|
: Ty(Type::VoidTy), Size(0), NodeType(NT) {
|
|
// Add the type entry if it is specified...
|
|
if (T) mergeTypeInfo(T, 0);
|
|
}
|
|
|
|
// DSNode copy constructor... do not copy over the referrers list!
|
|
DSNode::DSNode(const DSNode &N)
|
|
: Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size),
|
|
NodeType(N.NodeType) {
|
|
}
|
|
|
|
void DSNode::removeReferrer(DSNodeHandle *H) {
|
|
// Search backwards, because we depopulate the list from the back for
|
|
// efficiency (because it's a vector).
|
|
std::vector<DSNodeHandle*>::reverse_iterator I =
|
|
std::find(Referrers.rbegin(), Referrers.rend(), H);
|
|
assert(I != Referrers.rend() && "Referrer not pointing to node!");
|
|
Referrers.erase(I.base()-1);
|
|
}
|
|
|
|
// addGlobal - Add an entry for a global value to the Globals list. This also
|
|
// marks the node with the 'G' flag if it does not already have it.
|
|
//
|
|
void DSNode::addGlobal(GlobalValue *GV) {
|
|
// Keep the list sorted.
|
|
std::vector<GlobalValue*>::iterator I =
|
|
std::lower_bound(Globals.begin(), Globals.end(), GV);
|
|
|
|
if (I == Globals.end() || *I != GV) {
|
|
//assert(GV->getType()->getElementType() == Ty);
|
|
Globals.insert(I, GV);
|
|
NodeType |= GlobalNode;
|
|
}
|
|
}
|
|
|
|
/// foldNodeCompletely - If we determine that this node has some funny
|
|
/// behavior happening to it that we cannot represent, we fold it down to a
|
|
/// single, completely pessimistic, node. This node is represented as a
|
|
/// single byte with a single TypeEntry of "void".
|
|
///
|
|
void DSNode::foldNodeCompletely() {
|
|
if (isNodeCompletelyFolded()) return;
|
|
|
|
++NumFolds;
|
|
|
|
// We are no longer typed at all...
|
|
Ty = Type::VoidTy;
|
|
NodeType |= Array;
|
|
Size = 1;
|
|
|
|
// Loop over all of our referrers, making them point to our zero bytes of
|
|
// space.
|
|
for (std::vector<DSNodeHandle*>::iterator I = Referrers.begin(),
|
|
E = Referrers.end(); I != E; ++I)
|
|
(*I)->setOffset(0);
|
|
|
|
// If we have links, merge all of our outgoing links together...
|
|
for (unsigned i = 1, e = Links.size(); i < e; ++i)
|
|
Links[0].mergeWith(Links[i]);
|
|
Links.resize(1);
|
|
}
|
|
|
|
/// isNodeCompletelyFolded - Return true if this node has been completely
|
|
/// folded down to something that can never be expanded, effectively losing
|
|
/// all of the field sensitivity that may be present in the node.
|
|
///
|
|
bool DSNode::isNodeCompletelyFolded() const {
|
|
return getSize() == 1 && Ty == Type::VoidTy && isArray();
|
|
}
|
|
|
|
|
|
/// mergeTypeInfo - This method merges the specified type into the current node
|
|
/// at the specified offset. This may update the current node's type record if
|
|
/// this gives more information to the node, it may do nothing to the node if
|
|
/// this information is already known, or it may merge the node completely (and
|
|
/// return true) if the information is incompatible with what is already known.
|
|
///
|
|
/// This method returns true if the node is completely folded, otherwise false.
|
|
///
|
|
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) {
|
|
// Check to make sure the Size member is up-to-date. Size can be one of the
|
|
// following:
|
|
// Size = 0, Ty = Void: Nothing is known about this node.
|
|
// Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
|
|
// Size = 1, Ty = Void, Array = 1: The node is collapsed
|
|
// Otherwise, sizeof(Ty) = Size
|
|
//
|
|
assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
|
|
(Size == 0 && !Ty->isSized() && !isArray()) ||
|
|
(Size == 1 && Ty == Type::VoidTy && isArray()) ||
|
|
(Size == 0 && !Ty->isSized() && !isArray()) ||
|
|
(TD.getTypeSize(Ty) == Size)) &&
|
|
"Size member of DSNode doesn't match the type structure!");
|
|
assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
|
|
|
|
if (Offset == 0 && NewTy == Ty)
|
|
return false; // This should be a common case, handle it efficiently
|
|
|
|
// Return true immediately if the node is completely folded.
|
|
if (isNodeCompletelyFolded()) return true;
|
|
|
|
// If this is an array type, eliminate the outside arrays because they won't
|
|
// be used anyway. This greatly reduces the size of large static arrays used
|
|
// as global variables, for example.
|
|
//
|
|
bool WillBeArray = false;
|
|
while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
|
|
// FIXME: we might want to keep small arrays, but must be careful about
|
|
// things like: [2 x [10000 x int*]]
|
|
NewTy = AT->getElementType();
|
|
WillBeArray = true;
|
|
}
|
|
|
|
// Figure out how big the new type we're merging in is...
|
|
unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
|
|
|
|
// Otherwise check to see if we can fold this type into the current node. If
|
|
// we can't, we fold the node completely, if we can, we potentially update our
|
|
// internal state.
|
|
//
|
|
if (Ty == Type::VoidTy) {
|
|
// If this is the first type that this node has seen, just accept it without
|
|
// question....
|
|
assert(Offset == 0 && "Cannot have an offset into a void node!");
|
|
assert(!isArray() && "This shouldn't happen!");
|
|
Ty = NewTy;
|
|
NodeType &= ~Array;
|
|
if (WillBeArray) NodeType |= Array;
|
|
Size = NewTySize;
|
|
|
|
// Calculate the number of outgoing links from this node.
|
|
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
|
|
return false;
|
|
}
|
|
|
|
// Handle node expansion case here...
|
|
if (Offset+NewTySize > Size) {
|
|
// It is illegal to grow this node if we have treated it as an array of
|
|
// objects...
|
|
if (isArray()) {
|
|
foldNodeCompletely();
|
|
return true;
|
|
}
|
|
|
|
if (Offset) { // We could handle this case, but we don't for now...
|
|
DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into "
|
|
<< "offset != 0: Collapsing!\n");
|
|
foldNodeCompletely();
|
|
return true;
|
|
}
|
|
|
|
// Okay, the situation is nice and simple, we are trying to merge a type in
|
|
// at offset 0 that is bigger than our current type. Implement this by
|
|
// switching to the new type and then merge in the smaller one, which should
|
|
// hit the other code path here. If the other code path decides it's not
|
|
// ok, it will collapse the node as appropriate.
|
|
//
|
|
const Type *OldTy = Ty;
|
|
Ty = NewTy;
|
|
NodeType &= ~Array;
|
|
if (WillBeArray) NodeType |= Array;
|
|
Size = NewTySize;
|
|
|
|
// Must grow links to be the appropriate size...
|
|
Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
|
|
|
|
// Merge in the old type now... which is guaranteed to be smaller than the
|
|
// "current" type.
|
|
return mergeTypeInfo(OldTy, 0);
|
|
}
|
|
|
|
assert(Offset <= Size &&
|
|
"Cannot merge something into a part of our type that doesn't exist!");
|
|
|
|
// Find the section of Ty that NewTy overlaps with... first we find the
|
|
// type that starts at offset Offset.
|
|
//
|
|
unsigned O = 0;
|
|
const Type *SubType = Ty;
|
|
while (O < Offset) {
|
|
assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
|
|
|
|
switch (SubType->getPrimitiveID()) {
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(SubType);
|
|
const StructLayout &SL = *TD.getStructLayout(STy);
|
|
|
|
unsigned i = 0, e = SL.MemberOffsets.size();
|
|
for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
|
|
/* empty */;
|
|
|
|
// The offset we are looking for must be in the i'th element...
|
|
SubType = STy->getElementTypes()[i];
|
|
O += SL.MemberOffsets[i];
|
|
break;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
SubType = cast<ArrayType>(SubType)->getElementType();
|
|
unsigned ElSize = TD.getTypeSize(SubType);
|
|
unsigned Remainder = (Offset-O) % ElSize;
|
|
O = Offset-Remainder;
|
|
break;
|
|
}
|
|
default:
|
|
foldNodeCompletely();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
assert(O == Offset && "Could not achieve the correct offset!");
|
|
|
|
// If we found our type exactly, early exit
|
|
if (SubType == NewTy) return false;
|
|
|
|
// Okay, so we found the leader type at the offset requested. Search the list
|
|
// of types that starts at this offset. If SubType is currently an array or
|
|
// structure, the type desired may actually be the first element of the
|
|
// composite type...
|
|
//
|
|
unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
|
|
unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
|
|
while (SubType != NewTy) {
|
|
const Type *NextSubType = 0;
|
|
unsigned NextSubTypeSize = 0;
|
|
unsigned NextPadSize = 0;
|
|
switch (SubType->getPrimitiveID()) {
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<StructType>(SubType);
|
|
const StructLayout &SL = *TD.getStructLayout(STy);
|
|
if (SL.MemberOffsets.size() > 1)
|
|
NextPadSize = SL.MemberOffsets[1];
|
|
else
|
|
NextPadSize = SubTypeSize;
|
|
NextSubType = STy->getElementTypes()[0];
|
|
NextSubTypeSize = TD.getTypeSize(NextSubType);
|
|
break;
|
|
}
|
|
case Type::ArrayTyID:
|
|
NextSubType = cast<ArrayType>(SubType)->getElementType();
|
|
NextSubTypeSize = TD.getTypeSize(NextSubType);
|
|
NextPadSize = NextSubTypeSize;
|
|
break;
|
|
default: ;
|
|
// fall out
|
|
}
|
|
|
|
if (NextSubType == 0)
|
|
break; // In the default case, break out of the loop
|
|
|
|
if (NextPadSize < NewTySize)
|
|
break; // Don't allow shrinking to a smaller type than NewTySize
|
|
SubType = NextSubType;
|
|
SubTypeSize = NextSubTypeSize;
|
|
PadSize = NextPadSize;
|
|
}
|
|
|
|
// If we found the type exactly, return it...
|
|
if (SubType == NewTy)
|
|
return false;
|
|
|
|
// Check to see if we have a compatible, but different type...
|
|
if (NewTySize == SubTypeSize) {
|
|
// Check to see if this type is obviously convertable... int -> uint f.e.
|
|
if (NewTy->isLosslesslyConvertableTo(SubType))
|
|
return false;
|
|
|
|
// Check to see if we have a pointer & integer mismatch going on here,
|
|
// loading a pointer as a long, for example.
|
|
//
|
|
if (SubType->isInteger() && isa<PointerType>(NewTy) ||
|
|
NewTy->isInteger() && isa<PointerType>(SubType))
|
|
return false;
|
|
} else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
|
|
// We are accessing the field, plus some structure padding. Ignore the
|
|
// structure padding.
|
|
return false;
|
|
}
|
|
|
|
|
|
DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty
|
|
<< "\n due to:" << NewTy << " @ " << Offset << "!\n"
|
|
<< "SubType: " << SubType << "\n\n");
|
|
|
|
foldNodeCompletely();
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// addEdgeTo - Add an edge from the current node to the specified node. This
|
|
// can cause merging of nodes in the graph.
|
|
//
|
|
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
|
|
if (NH.getNode() == 0) return; // Nothing to do
|
|
|
|
DSNodeHandle &ExistingEdge = getLink(Offset);
|
|
if (ExistingEdge.getNode()) {
|
|
// Merge the two nodes...
|
|
ExistingEdge.mergeWith(NH);
|
|
} else { // No merging to perform...
|
|
setLink(Offset, NH); // Just force a link in there...
|
|
}
|
|
}
|
|
|
|
|
|
// MergeSortedVectors - Efficiently merge a vector into another vector where
|
|
// duplicates are not allowed and both are sorted. This assumes that 'T's are
|
|
// efficiently copyable and have sane comparison semantics.
|
|
//
|
|
static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
|
|
const std::vector<GlobalValue*> &Src) {
|
|
// By far, the most common cases will be the simple ones. In these cases,
|
|
// avoid having to allocate a temporary vector...
|
|
//
|
|
if (Src.empty()) { // Nothing to merge in...
|
|
return;
|
|
} else if (Dest.empty()) { // Just copy the result in...
|
|
Dest = Src;
|
|
} else if (Src.size() == 1) { // Insert a single element...
|
|
const GlobalValue *V = Src[0];
|
|
std::vector<GlobalValue*>::iterator I =
|
|
std::lower_bound(Dest.begin(), Dest.end(), V);
|
|
if (I == Dest.end() || *I != Src[0]) // If not already contained...
|
|
Dest.insert(I, Src[0]);
|
|
} else if (Dest.size() == 1) {
|
|
GlobalValue *Tmp = Dest[0]; // Save value in temporary...
|
|
Dest = Src; // Copy over list...
|
|
std::vector<GlobalValue*>::iterator I =
|
|
std::lower_bound(Dest.begin(), Dest.end(), Tmp);
|
|
if (I == Dest.end() || *I != Tmp) // If not already contained...
|
|
Dest.insert(I, Tmp);
|
|
|
|
} else {
|
|
// Make a copy to the side of Dest...
|
|
std::vector<GlobalValue*> Old(Dest);
|
|
|
|
// Make space for all of the type entries now...
|
|
Dest.resize(Dest.size()+Src.size());
|
|
|
|
// Merge the two sorted ranges together... into Dest.
|
|
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
|
|
|
|
// Now erase any duplicate entries that may have accumulated into the
|
|
// vectors (because they were in both of the input sets)
|
|
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
|
|
}
|
|
}
|
|
|
|
|
|
// MergeNodes() - Helper function for DSNode::mergeWith().
|
|
// This function does the hard work of merging two nodes, CurNodeH
|
|
// and NH after filtering out trivial cases and making sure that
|
|
// CurNodeH.offset >= NH.offset.
|
|
//
|
|
// ***WARNING***
|
|
// Since merging may cause either node to go away, we must always
|
|
// use the node-handles to refer to the nodes. These node handles are
|
|
// automatically updated during merging, so will always provide access
|
|
// to the correct node after a merge.
|
|
//
|
|
void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
|
|
assert(CurNodeH.getOffset() >= NH.getOffset() &&
|
|
"This should have been enforced in the caller.");
|
|
|
|
// Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
|
|
// respect to NH.Offset) is now zero. NOffset is the distance from the base
|
|
// of our object that N starts from.
|
|
//
|
|
unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
|
|
unsigned NSize = NH.getNode()->getSize();
|
|
|
|
// Merge the type entries of the two nodes together...
|
|
if (NH.getNode()->Ty != Type::VoidTy) {
|
|
CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
|
|
}
|
|
assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0);
|
|
|
|
// If we are merging a node with a completely folded node, then both nodes are
|
|
// now completely folded.
|
|
//
|
|
if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
|
|
if (!NH.getNode()->isNodeCompletelyFolded()) {
|
|
NH.getNode()->foldNodeCompletely();
|
|
assert(NH.getOffset()==0 && "folding did not make offset 0?");
|
|
NOffset = NH.getOffset();
|
|
NSize = NH.getNode()->getSize();
|
|
assert(NOffset == 0 && NSize == 1);
|
|
}
|
|
} else if (NH.getNode()->isNodeCompletelyFolded()) {
|
|
CurNodeH.getNode()->foldNodeCompletely();
|
|
assert(CurNodeH.getOffset()==0 && "folding did not make offset 0?");
|
|
NOffset = NH.getOffset();
|
|
NSize = NH.getNode()->getSize();
|
|
assert(NOffset == 0 && NSize == 1);
|
|
}
|
|
|
|
if (CurNodeH.getNode() == NH.getNode() || NH.getNode() == 0) return;
|
|
assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0);
|
|
|
|
// Remove all edges pointing at N, causing them to point to 'this' instead.
|
|
// Make sure to adjust their offset, not just the node pointer.
|
|
// Also, be careful to use the DSNode* rather than NH since NH is one of
|
|
// the referrers and once NH refers to CurNodeH.getNode() this will
|
|
// become an infinite loop.
|
|
DSNode* N = NH.getNode();
|
|
unsigned OldNHOffset = NH.getOffset();
|
|
while (!N->Referrers.empty()) {
|
|
DSNodeHandle &Ref = *N->Referrers.back();
|
|
Ref = DSNodeHandle(CurNodeH.getNode(), NOffset+Ref.getOffset());
|
|
}
|
|
NH = DSNodeHandle(N, OldNHOffset); // reset NH to point back to where it was
|
|
|
|
assert((CurNodeH.getNode()->NodeType & DSNode::DEAD) == 0);
|
|
|
|
// Make all of the outgoing links of *NH now be outgoing links of
|
|
// this. This can cause recursive merging!
|
|
//
|
|
for (unsigned i = 0; i < NH.getNode()->getSize(); i += DS::PointerSize) {
|
|
DSNodeHandle &Link = NH.getNode()->getLink(i);
|
|
if (Link.getNode()) {
|
|
// Compute the offset into the current node at which to
|
|
// merge this link. In the common case, this is a linear
|
|
// relation to the offset in the original node (with
|
|
// wrapping), but if the current node gets collapsed due to
|
|
// recursive merging, we must make sure to merge in all remaining
|
|
// links at offset zero.
|
|
unsigned MergeOffset = 0;
|
|
if (CurNodeH.getNode()->Size != 1)
|
|
MergeOffset = (i+NOffset) % CurNodeH.getNode()->getSize();
|
|
CurNodeH.getNode()->addEdgeTo(MergeOffset, Link);
|
|
}
|
|
}
|
|
|
|
// Now that there are no outgoing edges, all of the Links are dead.
|
|
NH.getNode()->Links.clear();
|
|
NH.getNode()->Size = 0;
|
|
NH.getNode()->Ty = Type::VoidTy;
|
|
|
|
// Merge the node types
|
|
CurNodeH.getNode()->NodeType |= NH.getNode()->NodeType;
|
|
NH.getNode()->NodeType = DEAD; // NH is now a dead node.
|
|
|
|
// Merge the globals list...
|
|
if (!NH.getNode()->Globals.empty()) {
|
|
MergeSortedVectors(CurNodeH.getNode()->Globals, NH.getNode()->Globals);
|
|
|
|
// Delete the globals from the old node...
|
|
NH.getNode()->Globals.clear();
|
|
}
|
|
}
|
|
|
|
|
|
// mergeWith - Merge this node and the specified node, moving all links to and
|
|
// from the argument node into the current node, deleting the node argument.
|
|
// Offset indicates what offset the specified node is to be merged into the
|
|
// current node.
|
|
//
|
|
// The specified node may be a null pointer (in which case, nothing happens).
|
|
//
|
|
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
|
|
DSNode *N = NH.getNode();
|
|
if (N == 0 || (N == this && NH.getOffset() == Offset))
|
|
return; // Noop
|
|
|
|
assert((N->NodeType & DSNode::DEAD) == 0);
|
|
assert((NodeType & DSNode::DEAD) == 0);
|
|
assert(!hasNoReferrers() && "Should not try to fold a useless node!");
|
|
|
|
if (N == this) {
|
|
// We cannot merge two pieces of the same node together, collapse the node
|
|
// completely.
|
|
DEBUG(std::cerr << "Attempting to merge two chunks of"
|
|
<< " the same node together!\n");
|
|
foldNodeCompletely();
|
|
return;
|
|
}
|
|
|
|
// If both nodes are not at offset 0, make sure that we are merging the node
|
|
// at an later offset into the node with the zero offset.
|
|
//
|
|
if (Offset < NH.getOffset()) {
|
|
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
|
|
return;
|
|
} else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
|
|
// If the offsets are the same, merge the smaller node into the bigger node
|
|
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
|
|
return;
|
|
}
|
|
|
|
// Ok, now we can merge the two nodes. Use a static helper that works with
|
|
// two node handles, since "this" may get merged away at intermediate steps.
|
|
DSNodeHandle CurNodeH(this, Offset);
|
|
DSNodeHandle NHCopy(NH);
|
|
DSNode::MergeNodes(CurNodeH, NHCopy);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSCallSite Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
|
|
Function &DSCallSite::getCaller() const {
|
|
return *Inst->getParent()->getParent();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSGraph Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(0) {
|
|
PrintAuxCalls = false;
|
|
hash_map<const DSNode*, DSNodeHandle> NodeMap;
|
|
RetNode = cloneInto(G, ScalarMap, NodeMap);
|
|
}
|
|
|
|
DSGraph::DSGraph(const DSGraph &G,
|
|
hash_map<const DSNode*, DSNodeHandle> &NodeMap)
|
|
: Func(G.Func), GlobalsGraph(0) {
|
|
PrintAuxCalls = false;
|
|
RetNode = cloneInto(G, ScalarMap, NodeMap);
|
|
}
|
|
|
|
DSGraph::~DSGraph() {
|
|
FunctionCalls.clear();
|
|
AuxFunctionCalls.clear();
|
|
ScalarMap.clear();
|
|
RetNode.setNode(0);
|
|
|
|
// Drop all intra-node references, so that assertions don't fail...
|
|
std::for_each(Nodes.begin(), Nodes.end(),
|
|
std::mem_fun(&DSNode::dropAllReferences));
|
|
|
|
// Delete all of the nodes themselves...
|
|
std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
|
|
}
|
|
|
|
// dump - Allow inspection of graph in a debugger.
|
|
void DSGraph::dump() const { print(std::cerr); }
|
|
|
|
|
|
/// remapLinks - Change all of the Links in the current node according to the
|
|
/// specified mapping.
|
|
///
|
|
void DSNode::remapLinks(hash_map<const DSNode*, DSNodeHandle> &OldNodeMap) {
|
|
for (unsigned i = 0, e = Links.size(); i != e; ++i) {
|
|
DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
|
|
Links[i].setNode(H.getNode());
|
|
Links[i].setOffset(Links[i].getOffset()+H.getOffset());
|
|
}
|
|
}
|
|
|
|
|
|
// cloneInto - Clone the specified DSGraph into the current graph, returning the
|
|
// Return node of the graph. The translated ScalarMap for the old function is
|
|
// filled into the OldValMap member. If StripAllocas is set to true, Alloca
|
|
// markers are removed from the graph, as the graph is being cloned into a
|
|
// calling function's graph.
|
|
//
|
|
DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
|
|
hash_map<Value*, DSNodeHandle> &OldValMap,
|
|
hash_map<const DSNode*, DSNodeHandle> &OldNodeMap,
|
|
unsigned CloneFlags) {
|
|
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
|
|
assert(&G != this && "Cannot clone graph into itself!");
|
|
|
|
unsigned FN = Nodes.size(); // First new node...
|
|
|
|
// Duplicate all of the nodes, populating the node map...
|
|
Nodes.reserve(FN+G.Nodes.size());
|
|
|
|
// Remove alloca or mod/ref bits as specified...
|
|
unsigned clearBits = (CloneFlags & StripAllocaBit ? DSNode::AllocaNode : 0)
|
|
| (CloneFlags & StripModRefBits ? (DSNode::Modified | DSNode::Read) : 0);
|
|
clearBits |= DSNode::DEAD; // Clear dead flag...
|
|
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
|
|
DSNode *Old = G.Nodes[i];
|
|
DSNode *New = new DSNode(*Old);
|
|
New->NodeType &= ~clearBits;
|
|
Nodes.push_back(New);
|
|
OldNodeMap[Old] = New;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
Timer::addPeakMemoryMeasurement();
|
|
#endif
|
|
|
|
// Rewrite the links in the new nodes to point into the current graph now.
|
|
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
|
|
Nodes[i]->remapLinks(OldNodeMap);
|
|
|
|
// Copy the scalar map... merging all of the global nodes...
|
|
for (hash_map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(),
|
|
E = G.ScalarMap.end(); I != E; ++I) {
|
|
DSNodeHandle &H = OldValMap[I->first];
|
|
DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
|
|
H.setNode(MappedNode.getNode());
|
|
H.setOffset(I->second.getOffset()+MappedNode.getOffset());
|
|
|
|
if (isa<GlobalValue>(I->first)) { // Is this a global?
|
|
hash_map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first);
|
|
if (GVI != ScalarMap.end()) // Is the global value in this fn already?
|
|
GVI->second.mergeWith(H);
|
|
else
|
|
ScalarMap[I->first] = H; // Add global pointer to this graph
|
|
}
|
|
}
|
|
|
|
if (!(CloneFlags & DontCloneCallNodes)) {
|
|
// Copy the function calls list...
|
|
unsigned FC = FunctionCalls.size(); // FirstCall
|
|
FunctionCalls.reserve(FC+G.FunctionCalls.size());
|
|
for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
|
|
FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
|
|
}
|
|
|
|
if (!(CloneFlags & DontCloneAuxCallNodes)) {
|
|
// Copy the auxillary function calls list...
|
|
unsigned FC = AuxFunctionCalls.size(); // FirstCall
|
|
AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
|
|
for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
|
|
AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
|
|
}
|
|
|
|
// Return the returned node pointer...
|
|
DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()];
|
|
return DSNodeHandle(MappedRet.getNode(),
|
|
MappedRet.getOffset()+G.RetNode.getOffset());
|
|
}
|
|
|
|
/// mergeInGraph - The method is used for merging graphs together. If the
|
|
/// argument graph is not *this, it makes a clone of the specified graph, then
|
|
/// merges the nodes specified in the call site with the formal arguments in the
|
|
/// graph.
|
|
///
|
|
void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph,
|
|
unsigned CloneFlags) {
|
|
hash_map<Value*, DSNodeHandle> OldValMap;
|
|
DSNodeHandle RetVal;
|
|
hash_map<Value*, DSNodeHandle> *ScalarMap = &OldValMap;
|
|
|
|
// If this is not a recursive call, clone the graph into this graph...
|
|
if (&Graph != this) {
|
|
// Clone the callee's graph into the current graph, keeping
|
|
// track of where scalars in the old graph _used_ to point,
|
|
// and of the new nodes matching nodes of the old graph.
|
|
hash_map<const DSNode*, DSNodeHandle> OldNodeMap;
|
|
|
|
// The clone call may invalidate any of the vectors in the data
|
|
// structure graph. Strip locals and don't copy the list of callers
|
|
RetVal = cloneInto(Graph, OldValMap, OldNodeMap, CloneFlags);
|
|
ScalarMap = &OldValMap;
|
|
} else {
|
|
RetVal = getRetNode();
|
|
ScalarMap = &getScalarMap();
|
|
}
|
|
|
|
// Merge the return value with the return value of the context...
|
|
RetVal.mergeWith(CS.getRetVal());
|
|
|
|
// Resolve all of the function arguments...
|
|
Function &F = Graph.getFunction();
|
|
Function::aiterator AI = F.abegin();
|
|
|
|
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
|
|
// Advance the argument iterator to the first pointer argument...
|
|
while (!isPointerType(AI->getType())) {
|
|
++AI;
|
|
#ifndef NDEBUG
|
|
if (AI == F.aend())
|
|
std::cerr << "Bad call to Function: " << F.getName() << "\n";
|
|
#endif
|
|
assert(AI != F.aend() && "# Args provided is not # Args required!");
|
|
}
|
|
|
|
// Add the link from the argument scalar to the provided value
|
|
DSNodeHandle &NH = (*ScalarMap)[AI];
|
|
assert(NH.getNode() && "Pointer argument without scalarmap entry?");
|
|
NH.mergeWith(CS.getPtrArg(i));
|
|
}
|
|
}
|
|
|
|
|
|
// markIncompleteNodes - Mark the specified node as having contents that are not
|
|
// known with the current analysis we have performed. Because a node makes all
|
|
// of the nodes it can reach imcomplete if the node itself is incomplete, we
|
|
// must recursively traverse the data structure graph, marking all reachable
|
|
// nodes as incomplete.
|
|
//
|
|
static void markIncompleteNode(DSNode *N) {
|
|
// Stop recursion if no node, or if node already marked...
|
|
if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
|
|
|
|
// Actually mark the node
|
|
N->NodeType |= DSNode::Incomplete;
|
|
|
|
// Recusively process children...
|
|
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
|
|
if (DSNode *DSN = N->getLink(i).getNode())
|
|
markIncompleteNode(DSN);
|
|
}
|
|
|
|
static void markIncomplete(DSCallSite &Call) {
|
|
// Then the return value is certainly incomplete!
|
|
markIncompleteNode(Call.getRetVal().getNode());
|
|
|
|
// All objects pointed to by function arguments are incomplete!
|
|
for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
|
|
markIncompleteNode(Call.getPtrArg(i).getNode());
|
|
}
|
|
|
|
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
|
|
// modified by other functions that have not been resolved yet. This marks
|
|
// nodes that are reachable through three sources of "unknownness":
|
|
//
|
|
// Global Variables, Function Calls, and Incoming Arguments
|
|
//
|
|
// For any node that may have unknown components (because something outside the
|
|
// scope of current analysis may have modified it), the 'Incomplete' flag is
|
|
// added to the NodeType.
|
|
//
|
|
void DSGraph::markIncompleteNodes(unsigned Flags) {
|
|
// Mark any incoming arguments as incomplete...
|
|
if ((Flags & DSGraph::MarkFormalArgs) && Func)
|
|
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
|
|
if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end())
|
|
markIncompleteNode(ScalarMap[I].getNode());
|
|
|
|
// Mark stuff passed into functions calls as being incomplete...
|
|
if (!shouldPrintAuxCalls())
|
|
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
|
|
markIncomplete(FunctionCalls[i]);
|
|
else
|
|
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
|
|
markIncomplete(AuxFunctionCalls[i]);
|
|
|
|
|
|
// Mark all of the nodes pointed to by global nodes as incomplete...
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
|
|
DSNode *N = Nodes[i];
|
|
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
|
|
if (DSNode *DSN = N->getLink(i).getNode())
|
|
markIncompleteNode(DSN);
|
|
}
|
|
}
|
|
|
|
static inline void killIfUselessEdge(DSNodeHandle &Edge) {
|
|
if (DSNode *N = Edge.getNode()) // Is there an edge?
|
|
if (N->getReferrers().size() == 1) // Does it point to a lonely node?
|
|
if ((N->NodeType & ~DSNode::Incomplete) == 0 && // No interesting info?
|
|
N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
|
|
Edge.setNode(0); // Kill the edge!
|
|
}
|
|
|
|
static inline bool nodeContainsExternalFunction(const DSNode *N) {
|
|
const std::vector<GlobalValue*> &Globals = N->getGlobals();
|
|
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
|
|
if (Globals[i]->isExternal())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void removeIdenticalCalls(std::vector<DSCallSite> &Calls,
|
|
const std::string &where) {
|
|
// Remove trivially identical function calls
|
|
unsigned NumFns = Calls.size();
|
|
std::sort(Calls.begin(), Calls.end()); // Sort by callee as primary key!
|
|
|
|
// Scan the call list cleaning it up as necessary...
|
|
DSNode *LastCalleeNode = 0;
|
|
unsigned NumDuplicateCalls = 0;
|
|
bool LastCalleeContainsExternalFunction = false;
|
|
for (unsigned i = 0; i != Calls.size(); ++i) {
|
|
DSCallSite &CS = Calls[i];
|
|
|
|
// If the Callee is a useless edge, this must be an unreachable call site,
|
|
// eliminate it.
|
|
killIfUselessEdge(CS.getCallee());
|
|
if (CS.getCallee().getNode() == 0) {
|
|
CS.swap(Calls.back());
|
|
Calls.pop_back();
|
|
--i;
|
|
} else {
|
|
// If the return value or any arguments point to a void node with no
|
|
// information at all in it, and the call node is the only node to point
|
|
// to it, remove the edge to the node (killing the node).
|
|
//
|
|
killIfUselessEdge(CS.getRetVal());
|
|
for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
|
|
killIfUselessEdge(CS.getPtrArg(a));
|
|
|
|
// If this call site calls the same function as the last call site, and if
|
|
// the function pointer contains an external function, this node will
|
|
// never be resolved. Merge the arguments of the call node because no
|
|
// information will be lost.
|
|
//
|
|
if (CS.getCallee().getNode() == LastCalleeNode) {
|
|
++NumDuplicateCalls;
|
|
if (NumDuplicateCalls == 1) {
|
|
LastCalleeContainsExternalFunction =
|
|
nodeContainsExternalFunction(LastCalleeNode);
|
|
}
|
|
|
|
if (LastCalleeContainsExternalFunction ||
|
|
// This should be more than enough context sensitivity!
|
|
// FIXME: Evaluate how many times this is tripped!
|
|
NumDuplicateCalls > 20) {
|
|
DSCallSite &OCS = Calls[i-1];
|
|
OCS.mergeWith(CS);
|
|
|
|
// The node will now be eliminated as a duplicate!
|
|
if (CS.getNumPtrArgs() < OCS.getNumPtrArgs())
|
|
CS = OCS;
|
|
else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs())
|
|
OCS = CS;
|
|
}
|
|
} else {
|
|
LastCalleeNode = CS.getCallee().getNode();
|
|
NumDuplicateCalls = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
Calls.erase(std::unique(Calls.begin(), Calls.end()),
|
|
Calls.end());
|
|
|
|
// Track the number of call nodes merged away...
|
|
NumCallNodesMerged += NumFns-Calls.size();
|
|
|
|
DEBUG(if (NumFns != Calls.size())
|
|
std::cerr << "Merged " << (NumFns-Calls.size())
|
|
<< " call nodes in " << where << "\n";);
|
|
}
|
|
|
|
|
|
// removeTriviallyDeadNodes - After the graph has been constructed, this method
|
|
// removes all unreachable nodes that are created because they got merged with
|
|
// other nodes in the graph. These nodes will all be trivially unreachable, so
|
|
// we don't have to perform any non-trivial analysis here.
|
|
//
|
|
void DSGraph::removeTriviallyDeadNodes() {
|
|
removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
|
|
removeIdenticalCalls(AuxFunctionCalls, Func ? Func->getName() : "");
|
|
|
|
for (unsigned i = 0; i != Nodes.size(); ++i) {
|
|
DSNode *Node = Nodes[i];
|
|
if (!(Node->NodeType & ~(DSNode::Composition | DSNode::Array |
|
|
DSNode::DEAD))) {
|
|
// This is a useless node if it has no mod/ref info (checked above),
|
|
// outgoing edges (which it cannot, as it is not modified in this
|
|
// context), and it has no incoming edges. If it is a global node it may
|
|
// have all of these properties and still have incoming edges, due to the
|
|
// scalar map, so we check those now.
|
|
//
|
|
if (Node->getReferrers().size() == Node->getGlobals().size()) {
|
|
std::vector<GlobalValue*> &Globals = Node->getGlobals();
|
|
for (unsigned j = 0, e = Globals.size(); j != e; ++j)
|
|
ScalarMap.erase(Globals[j]);
|
|
Globals.clear();
|
|
|
|
Node->NodeType = DSNode::DEAD;
|
|
}
|
|
}
|
|
|
|
if ((Node->NodeType & ~DSNode::DEAD) == 0 &&
|
|
Node->getReferrers().empty()) { // This node is dead!
|
|
delete Node; // Free memory...
|
|
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// markReachableNodes - This method recursively traverses the specified
|
|
/// DSNodes, marking any nodes which are reachable. All reachable nodes it adds
|
|
/// to the set, which allows it to only traverse visited nodes once.
|
|
///
|
|
void DSNode::markReachableNodes(hash_set<DSNode*> &ReachableNodes) {
|
|
if (this == 0) return;
|
|
if (ReachableNodes.count(this)) return; // Already marked reachable
|
|
ReachableNodes.insert(this); // Is reachable now
|
|
|
|
for (unsigned i = 0, e = getSize(); i < e; i += DS::PointerSize)
|
|
getLink(i).getNode()->markReachableNodes(ReachableNodes);
|
|
}
|
|
|
|
void DSCallSite::markReachableNodes(hash_set<DSNode*> &Nodes) {
|
|
getRetVal().getNode()->markReachableNodes(Nodes);
|
|
getCallee().getNode()->markReachableNodes(Nodes);
|
|
|
|
for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
|
|
getPtrArg(i).getNode()->markReachableNodes(Nodes);
|
|
}
|
|
|
|
// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
|
|
// looking for a node that is marked alive. If an alive node is found, return
|
|
// true, otherwise return false. If an alive node is reachable, this node is
|
|
// marked as alive...
|
|
//
|
|
static bool CanReachAliveNodes(DSNode *N, hash_set<DSNode*> &Alive,
|
|
hash_set<DSNode*> &Visited) {
|
|
if (N == 0) return false;
|
|
|
|
// If we know that this node is alive, return so!
|
|
if (Alive.count(N)) return true;
|
|
|
|
// Otherwise, we don't think the node is alive yet, check for infinite
|
|
// recursion.
|
|
if (Visited.count(N)) return false; // Found a cycle
|
|
Visited.insert(N); // No recursion, insert into Visited...
|
|
|
|
for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
|
|
if (CanReachAliveNodes(N->getLink(i).getNode(), Alive, Visited)) {
|
|
N->markReachableNodes(Alive);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
|
|
// alive nodes.
|
|
//
|
|
static bool CallSiteUsesAliveArgs(DSCallSite &CS, hash_set<DSNode*> &Alive,
|
|
hash_set<DSNode*> &Visited) {
|
|
if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited) ||
|
|
CanReachAliveNodes(CS.getCallee().getNode(), Alive, Visited))
|
|
return true;
|
|
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
|
|
if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// removeDeadNodes - Use a more powerful reachability analysis to eliminate
|
|
// subgraphs that are unreachable. This often occurs because the data
|
|
// structure doesn't "escape" into it's caller, and thus should be eliminated
|
|
// from the caller's graph entirely. This is only appropriate to use when
|
|
// inlining graphs.
|
|
//
|
|
void DSGraph::removeDeadNodes(unsigned Flags) {
|
|
// Reduce the amount of work we have to do... remove dummy nodes left over by
|
|
// merging...
|
|
removeTriviallyDeadNodes();
|
|
|
|
// FIXME: Merge nontrivially identical call nodes...
|
|
|
|
// Alive - a set that holds all nodes found to be reachable/alive.
|
|
hash_set<DSNode*> Alive;
|
|
std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
|
|
|
|
// Mark all nodes reachable by (non-global) scalar nodes as alive...
|
|
for (hash_map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(),
|
|
E = ScalarMap.end(); I != E; ++I)
|
|
if (!isa<GlobalValue>(I->first))
|
|
I->second.getNode()->markReachableNodes(Alive);
|
|
else { // Keep track of global nodes
|
|
GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
|
|
assert(I->second.getNode() && "Null global node?");
|
|
}
|
|
|
|
// The return value is alive as well...
|
|
RetNode.getNode()->markReachableNodes(Alive);
|
|
|
|
// Mark any nodes reachable by primary calls as alive...
|
|
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
|
|
FunctionCalls[i].markReachableNodes(Alive);
|
|
|
|
bool Iterate;
|
|
hash_set<DSNode*> Visited;
|
|
std::vector<unsigned char> AuxFCallsAlive(AuxFunctionCalls.size());
|
|
do {
|
|
Visited.clear();
|
|
// If any global nodes points to a non-global that is "alive", the global is
|
|
// "alive" as well... Remov it from the GlobalNodes list so we only have
|
|
// unreachable globals in the list.
|
|
//
|
|
Iterate = false;
|
|
for (unsigned i = 0; i != GlobalNodes.size(); ++i)
|
|
if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited)) {
|
|
std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to erase
|
|
GlobalNodes.pop_back(); // Erase efficiently
|
|
Iterate = true;
|
|
}
|
|
|
|
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
|
|
if (!AuxFCallsAlive[i] &&
|
|
CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited)) {
|
|
AuxFunctionCalls[i].markReachableNodes(Alive);
|
|
AuxFCallsAlive[i] = true;
|
|
Iterate = true;
|
|
}
|
|
} while (Iterate);
|
|
|
|
// Remove all dead aux function calls...
|
|
unsigned CurIdx = 0;
|
|
for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
|
|
if (AuxFCallsAlive[i])
|
|
AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);
|
|
if (!(Flags & DSGraph::RemoveUnreachableGlobals)) {
|
|
assert(GlobalsGraph && "No globals graph available??");
|
|
// Move the unreachable call nodes to the globals graph...
|
|
GlobalsGraph->AuxFunctionCalls.insert(GlobalsGraph->AuxFunctionCalls.end(),
|
|
AuxFunctionCalls.begin()+CurIdx,
|
|
AuxFunctionCalls.end());
|
|
}
|
|
// Crop all the useless ones out...
|
|
AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
|
|
AuxFunctionCalls.end());
|
|
|
|
// At this point, any nodes which are visited, but not alive, are nodes which
|
|
// should be moved to the globals graph. Loop over all nodes, eliminating
|
|
// completely unreachable nodes, and moving visited nodes to the globals graph
|
|
//
|
|
for (unsigned i = 0; i != Nodes.size(); ++i)
|
|
if (!Alive.count(Nodes[i])) {
|
|
DSNode *N = Nodes[i];
|
|
std::swap(Nodes[i--], Nodes.back()); // move node to end of vector
|
|
Nodes.pop_back(); // Erase node from alive list.
|
|
if (!(Flags & DSGraph::RemoveUnreachableGlobals) && // Not in TD pass
|
|
Visited.count(N)) { // Visited but not alive?
|
|
GlobalsGraph->Nodes.push_back(N); // Move node to globals graph
|
|
} else { // Otherwise, delete the node
|
|
assert(((N->NodeType & DSNode::GlobalNode) == 0 ||
|
|
(Flags & DSGraph::RemoveUnreachableGlobals))
|
|
&& "Killing a global?");
|
|
while (!N->getReferrers().empty()) // Rewrite referrers
|
|
N->getReferrers().back()->setNode(0);
|
|
delete N; // Usecount is zero
|
|
}
|
|
}
|
|
|
|
// Now that the nodes have either been deleted or moved to the globals graph,
|
|
// loop over the scalarmap, updating the entries for globals...
|
|
//
|
|
if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { // Not in the TD pass?
|
|
// In this array we start the remapping, which can cause merging. Because
|
|
// of this, the DSNode pointers in GlobalNodes may be invalidated, so we
|
|
// must always go through the ScalarMap (which contains DSNodeHandles [which
|
|
// cannot be invalidated by merging]).
|
|
//
|
|
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) {
|
|
Value *G = GlobalNodes[i].first;
|
|
hash_map<Value*, DSNodeHandle>::iterator I = ScalarMap.find(G);
|
|
assert(I != ScalarMap.end() && "Global not in scalar map anymore?");
|
|
assert(I->second.getNode() && "Global not pointing to anything?");
|
|
assert(!Alive.count(I->second.getNode()) && "Node is alive??");
|
|
GlobalsGraph->ScalarMap[G].mergeWith(I->second);
|
|
assert(GlobalsGraph->ScalarMap[G].getNode() &&
|
|
"Global not pointing to anything?");
|
|
ScalarMap.erase(I);
|
|
}
|
|
|
|
// Merging leaves behind silly nodes, we remove them to avoid polluting the
|
|
// globals graph.
|
|
GlobalsGraph->removeTriviallyDeadNodes();
|
|
} else {
|
|
// If we are in the top-down pass, remove all unreachable globals from the
|
|
// ScalarMap...
|
|
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
|
|
ScalarMap.erase(GlobalNodes[i].first);
|
|
}
|
|
|
|
DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
|
|
}
|
|
|
|
void DSGraph::AssertGraphOK() const {
|
|
for (hash_map<Value*, DSNodeHandle>::const_iterator I = ScalarMap.begin(),
|
|
E = ScalarMap.end(); I != E; ++I) {
|
|
assert(I->second.getNode() && "Null node in scalarmap!");
|
|
AssertNodeInGraph(I->second.getNode());
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
|
|
assert((I->second.getNode()->NodeType & DSNode::GlobalNode) &&
|
|
"Global points to node, but node isn't global?");
|
|
AssertNodeContainsGlobal(I->second.getNode(), GV);
|
|
}
|
|
}
|
|
AssertCallNodesInGraph();
|
|
AssertAuxCallNodesInGraph();
|
|
}
|
|
|
|
|
|
#if 0
|
|
//===----------------------------------------------------------------------===//
|
|
// GlobalDSGraph Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if 0
|
|
// Bits used in the next function
|
|
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode;
|
|
|
|
// cloneGlobalInto - Clone the given global node and all its target links
|
|
// (and all their llinks, recursively).
|
|
//
|
|
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
|
|
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
|
|
|
|
// If a clone has already been created for GNode, return it.
|
|
DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]];
|
|
if (ValMapEntry != 0)
|
|
return ValMapEntry;
|
|
|
|
// Clone the node and update the ValMap.
|
|
DSNode* NewNode = new DSNode(*GNode);
|
|
ValMapEntry = NewNode; // j=0 case of loop below!
|
|
Nodes.push_back(NewNode);
|
|
for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
|
|
ScalarMap[NewNode->getGlobals()[j]] = NewNode;
|
|
|
|
// Rewrite the links in the new node to point into the current graph.
|
|
for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
|
|
NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
|
|
|
|
return NewNode;
|
|
}
|
|
|
|
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
|
|
// visible target links (and recursively their such links) into this graph.
|
|
// NodeCache maps the node being cloned to its clone in the Globals graph,
|
|
// in order to track cycles.
|
|
// GlobalsAreFinal is a flag that says whether it is safe to assume that
|
|
// an existing global node is complete. This is important to avoid
|
|
// reinserting all globals when inserting Calls to functions.
|
|
// This is a helper function for cloneGlobals and cloneCalls.
|
|
//
|
|
DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
|
|
hash_map<const DSNode*, DSNode*> &NodeCache,
|
|
bool GlobalsAreFinal) {
|
|
if (OldNode == 0) return 0;
|
|
|
|
// The caller should check this is an external node. Just more efficient...
|
|
assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
|
|
|
|
// If a clone has already been created for OldNode, return it.
|
|
DSNode*& CacheEntry = NodeCache[OldNode];
|
|
if (CacheEntry != 0)
|
|
return CacheEntry;
|
|
|
|
// The result value...
|
|
DSNode* NewNode = 0;
|
|
|
|
// If nodes already exist for any of the globals of OldNode,
|
|
// merge all such nodes together since they are merged in OldNode.
|
|
// If ValueCacheIsFinal==true, look for an existing node that has
|
|
// an identical list of globals and return it if it exists.
|
|
//
|
|
for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
|
|
if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) {
|
|
if (NewNode == 0) {
|
|
NewNode = PrevNode; // first existing node found
|
|
if (GlobalsAreFinal && j == 0)
|
|
if (OldNode->getGlobals() == PrevNode->getGlobals()) {
|
|
CacheEntry = NewNode;
|
|
return NewNode;
|
|
}
|
|
}
|
|
else if (NewNode != PrevNode) { // found another, different from prev
|
|
// update ValMap *before* merging PrevNode into NewNode
|
|
for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
|
|
ScalarMap[PrevNode->getGlobals()[k]] = NewNode;
|
|
NewNode->mergeWith(PrevNode);
|
|
}
|
|
} else if (NewNode != 0) {
|
|
ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
|
|
}
|
|
|
|
// If no existing node was found, clone the node and update the ValMap.
|
|
if (NewNode == 0) {
|
|
NewNode = new DSNode(*OldNode);
|
|
Nodes.push_back(NewNode);
|
|
for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
|
|
NewNode->setLink(j, 0);
|
|
for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
|
|
ScalarMap[NewNode->getGlobals()[j]] = NewNode;
|
|
}
|
|
else
|
|
NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
|
|
|
|
// Add the entry to NodeCache
|
|
CacheEntry = NewNode;
|
|
|
|
// Rewrite the links in the new node to point into the current graph,
|
|
// but only for links to external nodes. Set other links to NULL.
|
|
for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
|
|
DSNode* OldTarget = OldNode->getLink(j);
|
|
if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
|
|
DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
|
|
if (NewNode->getLink(j))
|
|
NewNode->getLink(j)->mergeWith(NewLink);
|
|
else
|
|
NewNode->setLink(j, NewLink);
|
|
}
|
|
}
|
|
|
|
// Remove all local markers
|
|
NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
|
|
|
|
return NewNode;
|
|
}
|
|
|
|
|
|
// GlobalDSGraph::cloneCalls - Clone function calls and their visible target
|
|
// links (and recursively their such links) into this graph.
|
|
//
|
|
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
|
|
hash_map<const DSNode*, DSNode*> NodeCache;
|
|
std::vector<DSCallSite >& FromCalls =Graph.FunctionCalls;
|
|
|
|
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
|
|
|
|
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
|
|
DSCallSite& callCopy = FunctionCalls.back();
|
|
callCopy.reserve(FromCalls[i].size());
|
|
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
|
|
callCopy.push_back
|
|
((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
|
|
? cloneNodeInto(FromCalls[i][j], NodeCache, true)
|
|
: 0);
|
|
}
|
|
|
|
// remove trivially identical function calls
|
|
removeIdenticalCalls(FunctionCalls, "Globals Graph");
|
|
}
|
|
#endif
|
|
|
|
#endif
|