1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Linker/IRMover.cpp
Teresa Johnson a52cfbb4e3 [ThinLTO] Find all needed metadata when linking metadata as postpass
For metadata postpass linking, after importing all functions, we need
to recursively walk through any nodes reached via imported functions to
locate needed subprogram metadata. Some might only be reached indirectly
via the variable list for an inlined function.

llvm-svn: 258728
2016-01-25 22:04:56 +00:00

1704 lines
61 KiB
C++

//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type *, Type *> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type *, 16> SpeculativeTypes;
SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType *, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
public:
TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
}
private:
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
assert(SpeculativeTypes.empty());
assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
MappedTypes.erase(Ty);
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
SpeculativeDstOpaqueTypes.size());
for (StructType *Ty : SpeculativeDstOpaqueTypes)
DstResolvedOpaqueTypes.erase(Ty);
} else {
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
STy->setName("");
}
SpeculativeTypes.clear();
SpeculativeDstOpaqueTypes.clear();
}
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
}
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
return true;
}
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
SpeculativeTypes.push_back(SrcTy);
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
}
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
return false;
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
return false;
}
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type *, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
DstStructTypesSet.switchToNonOpaque(DstSTy);
}
SrcDefinitionsToResolve.clear();
DstResolvedOpaqueTypes.clear();
}
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
STy->setName("");
DTy->setName(TmpName);
}
DstStructTypesSet.addNonOpaque(DTy);
}
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
}
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
#ifndef NDEBUG
if (!IsUniqued) {
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
}
}
#endif
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
}
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
ElementTypes.resize(Ty->getNumContainedTypes());
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
}
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
}
}
return *Entry;
}
// If all of the element types mapped directly over and the type is not
// a nomed struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
cast<ArrayType>(Ty)->getNumElements());
case Type::VectorTyID:
return *Entry = VectorType::get(ElementTypes[0],
cast<VectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
cast<PointerType>(Ty)->getAddressSpace());
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
makeArrayRef(ElementTypes).slice(1),
cast<FunctionType>(Ty)->isVarArg());
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
DstStructTypesSet.addOpaque(STy);
return *Entry = Ty;
}
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
STy->setName("");
return *Entry = OldT;
}
if (!AnyChange) {
DstStructTypesSet.addNonOpaque(STy);
return *Entry = Ty;
}
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
}
}
}
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
//===----------------------------------------------------------------------===//
// IRLinker implementation.
//===----------------------------------------------------------------------===//
namespace {
class IRLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
IRLinker *TheIRLinker;
public:
GlobalValueMaterializer(IRLinker *TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materializeDeclFor(Value *V) override;
void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
Metadata *mapTemporaryMetadata(Metadata *MD) override;
void replaceTemporaryMetadata(const Metadata *OrigMD,
Metadata *NewMD) override;
bool isMetadataNeeded(Metadata *MD) override;
};
class LocalValueMaterializer final : public ValueMaterializer {
IRLinker *TheIRLinker;
public:
LocalValueMaterializer(IRLinker *TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materializeDeclFor(Value *V) override;
void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
Metadata *mapTemporaryMetadata(Metadata *MD) override;
void replaceTemporaryMetadata(const Metadata *OrigMD,
Metadata *NewMD) override;
bool isMetadataNeeded(Metadata *MD) override;
};
/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
Module &DstM;
Module &SrcM;
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
TypeMapTy TypeMap;
GlobalValueMaterializer GValMaterializer;
LocalValueMaterializer LValMaterializer;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
ValueToValueMapTy AliasValueMap;
DenseSet<GlobalValue *> ValuesToLink;
std::vector<GlobalValue *> Worklist;
void maybeAdd(GlobalValue *GV) {
if (ValuesToLink.insert(GV).second)
Worklist.push_back(GV);
}
/// Set to true when all global value body linking is complete (including
/// lazy linking). Used to prevent metadata linking from creating new
/// references.
bool DoneLinkingBodies = false;
bool HasError = false;
/// Flag indicating that we are just linking metadata (after function
/// importing).
bool IsMetadataLinkingPostpass;
/// Flags to pass to value mapper invocations.
RemapFlags ValueMapperFlags = RF_MoveDistinctMDs;
/// Association between metadata values created during bitcode parsing and
/// the value id. Used to correlate temporary metadata created during
/// function importing with the final metadata parsed during the subsequent
/// metadata linking postpass.
DenseMap<const Metadata *, unsigned> MetadataToIDs;
/// Association between metadata value id and temporary metadata that
/// remains unmapped after function importing. Saved during function
/// importing and consumed during the metadata linking postpass.
DenseMap<unsigned, MDNode *> *ValIDToTempMDMap;
/// Set of subprogram metadata that does not need to be linked into the
/// destination module, because the functions were not imported directly
/// or via an inlined body in an imported function.
SmallPtrSet<const Metadata *, 16> UnneededSubprograms;
/// Handles cloning of a global values from the source module into
/// the destination module, including setting the attributes and visibility.
GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
/// Helper method for setting a message and returning an error code.
bool emitError(const Twine &Message) {
SrcM.getContext().diagnose(LinkDiagnosticInfo(DS_Error, Message));
HasError = true;
return true;
}
void emitWarning(const Twine &Message) {
SrcM.getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
}
/// Check whether we should be linking metadata from the source module.
bool shouldLinkMetadata() {
// ValIDToTempMDMap will be non-null when we are importing or otherwise want
// to link metadata lazily, and then when linking the metadata.
// We only want to return true for the former case.
return ValIDToTempMDMap == nullptr || IsMetadataLinkingPostpass;
}
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
}
void computeTypeMapping();
Constant *linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
Constant *linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
bool linkModuleFlagsMetadata();
void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
bool linkFunctionBody(Function &Dst, Function &Src);
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
/// Functions that take care of cloning a specific global value type
/// into the destination module.
GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
Function *copyFunctionProto(const Function *SF);
GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
void linkNamedMDNodes();
/// Populate the UnneededSubprograms set with the DISubprogram metadata
/// from the source module that we don't need to link into the dest module,
/// because the functions were not imported directly or via an inlined body
/// in an imported function.
void findNeededSubprograms();
/// Recursive helper for findNeededSubprograms to locate any DISubprogram
/// reached from the given Node, marking any found as needed.
void findReachedSubprograms(const MDNode *Node,
SmallPtrSet<const MDNode *, 16> &Visited);
/// The value mapper leaves nulls in the list of subprograms for any
/// in the UnneededSubprograms map. Strip those out after metadata linking.
void stripNullSubprograms();
public:
IRLinker(Module &DstM, IRMover::IdentifiedStructTypeSet &Set, Module &SrcM,
ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
DenseMap<unsigned, MDNode *> *ValIDToTempMDMap = nullptr,
bool IsMetadataLinkingPostpass = false)
: DstM(DstM), SrcM(SrcM), AddLazyFor(AddLazyFor), TypeMap(Set),
GValMaterializer(this), LValMaterializer(this),
IsMetadataLinkingPostpass(IsMetadataLinkingPostpass),
ValIDToTempMDMap(ValIDToTempMDMap) {
for (GlobalValue *GV : ValuesToLink)
maybeAdd(GV);
// If appropriate, tell the value mapper that it can expect to see
// temporary metadata.
if (!shouldLinkMetadata())
ValueMapperFlags = ValueMapperFlags | RF_HaveUnmaterializedMetadata;
}
~IRLinker() {
// In the case where we are not linking metadata, we unset the CanReplace
// flag on all temporary metadata in the MetadataToIDs map to ensure
// none was replaced while being a map key. Now that we are destructing
// the map, set the flag back to true, so that it is replaceable during
// metadata linking.
if (!shouldLinkMetadata()) {
for (auto MDI : MetadataToIDs) {
Metadata *MD = const_cast<Metadata *>(MDI.first);
MDNode *Node = dyn_cast<MDNode>(MD);
assert((Node && Node->isTemporary()) &&
"Found non-temp metadata in map when not linking metadata");
Node->setCanReplace(true);
}
}
}
bool run();
Value *materializeDeclFor(Value *V, bool ForAlias);
void materializeInitFor(GlobalValue *New, GlobalValue *Old, bool ForAlias);
/// Save the mapping between the given temporary metadata and its metadata
/// value id. Used to support metadata linking as a postpass for function
/// importing.
Metadata *mapTemporaryMetadata(Metadata *MD);
/// Replace any temporary metadata saved for the source metadata's id with
/// the new non-temporary metadata. Used when metadata linking as a postpass
/// for function importing.
void replaceTemporaryMetadata(const Metadata *OrigMD, Metadata *NewMD);
/// Indicates whether we need to map the given metadata into the destination
/// module. Used to prevent linking of metadata only needed by functions not
/// linked into the dest module.
bool isMetadataNeeded(Metadata *MD);
};
}
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
GV->takeName(ConflictGV);
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
}
}
Value *GlobalValueMaterializer::materializeDeclFor(Value *V) {
return TheIRLinker->materializeDeclFor(V, false);
}
void GlobalValueMaterializer::materializeInitFor(GlobalValue *New,
GlobalValue *Old) {
TheIRLinker->materializeInitFor(New, Old, false);
}
Metadata *GlobalValueMaterializer::mapTemporaryMetadata(Metadata *MD) {
return TheIRLinker->mapTemporaryMetadata(MD);
}
void GlobalValueMaterializer::replaceTemporaryMetadata(const Metadata *OrigMD,
Metadata *NewMD) {
TheIRLinker->replaceTemporaryMetadata(OrigMD, NewMD);
}
bool GlobalValueMaterializer::isMetadataNeeded(Metadata *MD) {
return TheIRLinker->isMetadataNeeded(MD);
}
Value *LocalValueMaterializer::materializeDeclFor(Value *V) {
return TheIRLinker->materializeDeclFor(V, true);
}
void LocalValueMaterializer::materializeInitFor(GlobalValue *New,
GlobalValue *Old) {
TheIRLinker->materializeInitFor(New, Old, true);
}
Metadata *LocalValueMaterializer::mapTemporaryMetadata(Metadata *MD) {
return TheIRLinker->mapTemporaryMetadata(MD);
}
void LocalValueMaterializer::replaceTemporaryMetadata(const Metadata *OrigMD,
Metadata *NewMD) {
TheIRLinker->replaceTemporaryMetadata(OrigMD, NewMD);
}
bool LocalValueMaterializer::isMetadataNeeded(Metadata *MD) {
return TheIRLinker->isMetadataNeeded(MD);
}
Value *IRLinker::materializeDeclFor(Value *V, bool ForAlias) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
return linkGlobalValueProto(SGV, ForAlias);
}
void IRLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old,
bool ForAlias) {
// If we already created the body, just return.
if (auto *F = dyn_cast<Function>(New)) {
if (!F->isDeclaration())
return;
} else if (auto *V = dyn_cast<GlobalVariable>(New)) {
if (V->hasInitializer())
return;
} else {
auto *A = cast<GlobalAlias>(New);
if (A->getAliasee())
return;
}
if (ForAlias || shouldLink(New, *Old))
linkGlobalValueBody(*New, *Old);
}
Metadata *IRLinker::mapTemporaryMetadata(Metadata *MD) {
if (!ValIDToTempMDMap)
return nullptr;
// If this temporary metadata has a value id recorded during function
// parsing, record that in the ValIDToTempMDMap if one was provided.
auto I = MetadataToIDs.find(MD);
if (I == MetadataToIDs.end())
return nullptr;
unsigned Idx = I->second;
MDNode *Node = cast<MDNode>(MD);
assert(Node->isTemporary());
// If we created a temp MD when importing a different function from
// this module, reuse the same temporary metadata.
auto IterBool = ValIDToTempMDMap->insert(std::make_pair(Idx, Node));
return IterBool.first->second;
}
void IRLinker::replaceTemporaryMetadata(const Metadata *OrigMD,
Metadata *NewMD) {
if (!ValIDToTempMDMap)
return;
#ifndef NDEBUG
auto *N = dyn_cast_or_null<MDNode>(NewMD);
assert(!N || !N->isTemporary());
#endif
// If a mapping between metadata value ids and temporary metadata
// created during function importing was provided, and the source
// metadata has a value id recorded during metadata parsing, replace
// the temporary metadata with the final mapped metadata now.
auto I = MetadataToIDs.find(OrigMD);
if (I == MetadataToIDs.end())
return;
unsigned Idx = I->second;
auto VI = ValIDToTempMDMap->find(Idx);
// Nothing to do if we didn't need to create a temporary metadata during
// function importing.
if (VI == ValIDToTempMDMap->end())
return;
MDNode *TempMD = VI->second;
TempMD->replaceAllUsesWith(NewMD);
MDNode::deleteTemporary(TempMD);
ValIDToTempMDMap->erase(VI);
}
bool IRLinker::isMetadataNeeded(Metadata *MD) {
// Currently only DISubprogram metadata is marked as being unneeded.
if (UnneededSubprograms.empty())
return true;
MDNode *Node = dyn_cast<MDNode>(MD);
if (!Node)
return true;
DISubprogram *SP = getDISubprogram(Node);
if (!SP)
return true;
return !UnneededSubprograms.count(SP);
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV =
new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
SGVar->isConstant(), GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGVar->getName(),
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
NewDGV->setAlignment(SGVar->getAlignment());
return NewDGV;
}
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
return Function::Create(TypeMap.get(SF->getFunctionType()),
GlobalValue::ExternalLinkage, SF->getName(), &DstM);
}
/// Set up prototypes for any aliases that come over from the source module.
GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *Ty = TypeMap.get(SGA->getValueType());
return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
GlobalValue::ExternalLinkage, SGA->getName(),
&DstM);
}
GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
bool ForDefinition) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
NewGV = copyGlobalVariableProto(SGVar);
} else if (auto *SF = dyn_cast<Function>(SGV)) {
NewGV = copyFunctionProto(SF);
} else {
if (ForDefinition)
NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
else
NewGV = new GlobalVariable(
DstM, TypeMap.get(SGV->getValueType()),
/*isConstant*/ false, GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGV->getName(),
/*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
SGV->getType()->getAddressSpace());
}
if (ForDefinition)
NewGV->setLinkage(SGV->getLinkage());
else if (SGV->hasExternalWeakLinkage() || SGV->hasWeakLinkage() ||
SGV->hasLinkOnceLinkage())
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
NewGV->copyAttributesFrom(SGV);
// Remove these copied constants in case this stays a declaration, since
// they point to the source module. If the def is linked the values will
// be mapped in during linkFunctionBody.
if (auto *NewF = dyn_cast<Function>(NewGV)) {
NewF->setPersonalityFn(nullptr);
NewF->setPrefixData(nullptr);
NewF->setPrologueData(nullptr);
}
return NewGV;
}
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
for (GlobalValue &SGV : SrcM.globals()) {
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
continue;
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
}
for (GlobalValue &SGV : SrcM)
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
for (GlobalValue &SGV : SrcM.aliases())
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
std::vector<StructType *> Types = SrcM.getIdentifiedStructTypes();
for (StructType *ST : Types) {
if (!ST->hasName())
continue;
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
if (!DST)
continue;
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
//
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
//
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
}
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
Dest.push_back(C->getAggregateElement(i));
}
/// If there were any appending global variables, link them together now.
/// Return true on error.
Constant *IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
->getElementType();
StringRef Name = SrcGV->getName();
bool IsNewStructor = false;
bool IsOldStructor = false;
if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
if (cast<StructType>(EltTy)->getNumElements() == 3)
IsNewStructor = true;
else
IsOldStructor = true;
}
PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
if (IsOldStructor) {
auto &ST = *cast<StructType>(EltTy);
Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
EltTy = StructType::get(SrcGV->getContext(), Tys, false);
}
if (DstGV) {
ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) {
emitError(
"Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending global!");
return nullptr;
}
// Check to see that they two arrays agree on type.
if (EltTy != DstTy->getElementType()) {
emitError("Appending variables with different element types!");
return nullptr;
}
if (DstGV->isConstant() != SrcGV->isConstant()) {
emitError("Appending variables linked with different const'ness!");
return nullptr;
}
if (DstGV->getAlignment() != SrcGV->getAlignment()) {
emitError(
"Appending variables with different alignment need to be linked!");
return nullptr;
}
if (DstGV->getVisibility() != SrcGV->getVisibility()) {
emitError(
"Appending variables with different visibility need to be linked!");
return nullptr;
}
if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) {
emitError(
"Appending variables with different unnamed_addr need to be linked!");
return nullptr;
}
if (StringRef(DstGV->getSection()) != SrcGV->getSection()) {
emitError(
"Appending variables with different section name need to be linked!");
return nullptr;
}
}
SmallVector<Constant *, 16> DstElements;
if (DstGV)
getArrayElements(DstGV->getInitializer(), DstElements);
SmallVector<Constant *, 16> SrcElements;
getArrayElements(SrcGV->getInitializer(), SrcElements);
if (IsNewStructor)
SrcElements.erase(
std::remove_if(SrcElements.begin(), SrcElements.end(),
[this](Constant *E) {
auto *Key = dyn_cast<GlobalValue>(
E->getAggregateElement(2)->stripPointerCasts());
if (!Key)
return false;
GlobalValue *DGV = getLinkedToGlobal(Key);
return !shouldLink(DGV, *Key);
}),
SrcElements.end());
uint64_t NewSize = DstElements.size() + SrcElements.size();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG = new GlobalVariable(
DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
/*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
SrcGV->getType()->getAddressSpace());
NG->copyAttributesFrom(SrcGV);
forceRenaming(NG, SrcGV->getName());
Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
// Stop recursion.
ValueMap[SrcGV] = Ret;
for (auto *V : SrcElements) {
Constant *NewV;
if (IsOldStructor) {
auto *S = cast<ConstantStruct>(V);
auto *E1 = MapValue(S->getOperand(0), ValueMap, ValueMapperFlags,
&TypeMap, &GValMaterializer);
auto *E2 = MapValue(S->getOperand(1), ValueMap, ValueMapperFlags,
&TypeMap, &GValMaterializer);
Value *Null = Constant::getNullValue(VoidPtrTy);
NewV =
ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
} else {
NewV =
MapValue(V, ValueMap, ValueMapperFlags, &TypeMap, &GValMaterializer);
}
DstElements.push_back(NewV);
}
NG->setInitializer(ConstantArray::get(NewType, DstElements));
// Replace any uses of the two global variables with uses of the new
// global.
if (DstGV) {
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
DstGV->eraseFromParent();
}
return Ret;
}
bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
// Already imported all the values. Just map to the Dest value
// in case it is referenced in the metadata.
if (IsMetadataLinkingPostpass) {
assert(!ValuesToLink.count(&SGV) &&
"Source value unexpectedly requested for link during metadata link");
return false;
}
if (ValuesToLink.count(&SGV))
return true;
if (SGV.hasLocalLinkage())
return true;
if (DGV && !DGV->isDeclarationForLinker())
return false;
if (SGV.hasAvailableExternallyLinkage())
return true;
if (DoneLinkingBodies)
return false;
AddLazyFor(SGV, [this](GlobalValue &GV) { maybeAdd(&GV); });
return ValuesToLink.count(&SGV);
}
Constant *IRLinker::linkGlobalValueProto(GlobalValue *SGV, bool ForAlias) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
bool ShouldLink = shouldLink(DGV, *SGV);
// just missing from map
if (ShouldLink) {
auto I = ValueMap.find(SGV);
if (I != ValueMap.end())
return cast<Constant>(I->second);
I = AliasValueMap.find(SGV);
if (I != AliasValueMap.end())
return cast<Constant>(I->second);
}
DGV = nullptr;
if (ShouldLink || !ForAlias)
DGV = getLinkedToGlobal(SGV);
// Handle the ultra special appending linkage case first.
assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
if (SGV->hasAppendingLinkage())
return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
GlobalValue *NewGV;
if (DGV && !ShouldLink) {
NewGV = DGV;
} else {
// If we are done linking global value bodies (i.e. we are performing
// metadata linking), don't link in the global value due to this
// reference, simply map it to null.
if (DoneLinkingBodies)
return nullptr;
NewGV = copyGlobalValueProto(SGV, ShouldLink);
if (ShouldLink || !ForAlias)
forceRenaming(NewGV, SGV->getName());
}
if (ShouldLink || ForAlias) {
if (const Comdat *SC = SGV->getComdat()) {
if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
Comdat *DC = DstM.getOrInsertComdat(SC->getName());
DC->setSelectionKind(SC->getSelectionKind());
GO->setComdat(DC);
}
}
}
if (!ShouldLink && ForAlias)
NewGV->setLinkage(GlobalValue::InternalLinkage);
Constant *C = NewGV;
if (DGV)
C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
if (DGV && NewGV != DGV) {
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
DGV->eraseFromParent();
}
return C;
}
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, ValueMapperFlags,
&TypeMap, &GValMaterializer));
}
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
bool IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (std::error_code EC = Src.materialize())
return emitError(EC.message());
if (!shouldLinkMetadata())
// This is only supported for lazy links. Do after materialization of
// a function and before remapping metadata on instructions below
// in RemapInstruction, as the saved mapping is used to handle
// the temporary metadata hanging off instructions.
SrcM.getMaterializer()->saveMetadataList(MetadataToIDs,
/* OnlyTempMD = */ true);
// Link in the prefix data.
if (Src.hasPrefixData())
Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, ValueMapperFlags,
&TypeMap, &GValMaterializer));
// Link in the prologue data.
if (Src.hasPrologueData())
Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap,
ValueMapperFlags, &TypeMap,
&GValMaterializer));
// Link in the personality function.
if (Src.hasPersonalityFn())
Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap,
ValueMapperFlags, &TypeMap,
&GValMaterializer));
// Go through and convert function arguments over, remembering the mapping.
Function::arg_iterator DI = Dst.arg_begin();
for (Argument &Arg : Src.args()) {
DI->setName(Arg.getName()); // Copy the name over.
// Add a mapping to our mapping.
ValueMap[&Arg] = &*DI;
++DI;
}
// Copy over the metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
Src.getAllMetadata(MDs);
for (const auto &I : MDs)
Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, ValueMapperFlags,
&TypeMap, &GValMaterializer));
// Splice the body of the source function into the dest function.
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// At this point, all of the instructions and values of the function are now
// copied over. The only problem is that they are still referencing values in
// the Source function as operands. Loop through all of the operands of the
// functions and patch them up to point to the local versions.
for (BasicBlock &BB : Dst)
for (Instruction &I : BB)
RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries | ValueMapperFlags,
&TypeMap, &GValMaterializer);
// There is no need to map the arguments anymore.
for (Argument &Arg : Src.args())
ValueMap.erase(&Arg);
return false;
}
void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
Constant *Aliasee = Src.getAliasee();
Constant *Val = MapValue(Aliasee, AliasValueMap, ValueMapperFlags, &TypeMap,
&LValMaterializer);
Dst.setAliasee(Val);
}
bool IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalInit(cast<GlobalVariable>(Dst), *GVar);
return false;
}
linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
return false;
}
void IRLinker::findReachedSubprograms(
const MDNode *Node, SmallPtrSet<const MDNode *, 16> &Visited) {
if (!Visited.insert(Node).second)
return;
DISubprogram *SP = getDISubprogram(Node);
if (SP)
UnneededSubprograms.erase(SP);
for (auto &Op : Node->operands()) {
const MDNode *OpN = dyn_cast_or_null<MDNode>(Op.get());
if (!OpN)
continue;
findReachedSubprograms(OpN, Visited);
}
}
void IRLinker::findNeededSubprograms() {
// Track unneeded nodes to make it simpler to handle the case
// where we are checking if an already-mapped SP is needed.
NamedMDNode *CompileUnits = SrcM.getNamedMetadata("llvm.dbg.cu");
if (!CompileUnits)
return;
for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
// Ensure that we don't remove subprograms referenced by DIImportedEntity.
// It is not legal to have a DIImportedEntity with a null entity or scope.
// Using getDISubprogram handles the case where the subprogram is reached
// via an intervening DILexicalBlock.
// FIXME: The DISubprogram for functions not linked in but kept due to
// being referenced by a DIImportedEntity should also get their
// IsDefinition flag is unset.
SmallPtrSet<DISubprogram *, 8> ImportedEntitySPs;
for (auto *IE : CU->getImportedEntities()) {
if (auto *SP = getDISubprogram(dyn_cast<MDNode>(IE->getEntity())))
ImportedEntitySPs.insert(SP);
if (auto *SP = getDISubprogram(dyn_cast<MDNode>(IE->getScope())))
ImportedEntitySPs.insert(SP);
}
for (auto *Op : CU->getSubprograms()) {
// Unless we were doing function importing and deferred metadata linking,
// any needed SPs should have been mapped as they would be reached
// from the function linked in (either on the function itself for linked
// function bodies, or from DILocation on inlined instructions).
assert(!(ValueMap.MD()[Op] && IsMetadataLinkingPostpass) &&
"DISubprogram shouldn't be mapped yet");
if (!ValueMap.MD()[Op] && !ImportedEntitySPs.count(Op))
UnneededSubprograms.insert(Op);
}
}
if (!IsMetadataLinkingPostpass)
return;
// In the case of metadata linking as a postpass (e.g. for function
// importing), see which MD from the source has an associated
// temporary metadata node, which means that any DISubprogram
// reached from that MD was needed by an imported function.
SmallPtrSet<const MDNode *, 16> Visited;
for (auto MDI : MetadataToIDs) {
const MDNode *Node = dyn_cast<MDNode>(MDI.first);
if (!Node)
continue;
if (!ValIDToTempMDMap->count(MDI.second))
continue;
// Find any SP needed recursively from this needed Node.
findReachedSubprograms(Node, Visited);
}
}
// Squash null subprograms from compile unit subprogram lists.
void IRLinker::stripNullSubprograms() {
NamedMDNode *CompileUnits = DstM.getNamedMetadata("llvm.dbg.cu");
if (!CompileUnits)
return;
for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
SmallVector<Metadata *, 16> NewSPs;
NewSPs.reserve(CU->getSubprograms().size());
bool FoundNull = false;
for (DISubprogram *SP : CU->getSubprograms()) {
if (!SP) {
FoundNull = true;
continue;
}
NewSPs.push_back(SP);
}
if (FoundNull)
CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
}
}
/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
findNeededSubprograms();
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
for (const NamedMDNode &NMD : SrcM.named_metadata()) {
// Don't link module flags here. Do them separately.
if (&NMD == SrcModFlags)
continue;
NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
// Add Src elements into Dest node.
for (const MDNode *op : NMD.operands())
DestNMD->addOperand(MapMetadata(
op, ValueMap, ValueMapperFlags | RF_NullMapMissingGlobalValues,
&TypeMap, &GValMaterializer));
}
stripNullSubprograms();
}
/// Merge the linker flags in Src into the Dest module.
bool IRLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
if (!SrcModFlags)
return false;
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
DstModFlags->addOperand(SrcModFlags->getOperand(I));
return false;
}
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode *, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
Flags[ID] = std::make_pair(Op, I);
}
}
// Merge in the flags from the source module, and also collect its set of
// requirements.
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
ConstantInt *SrcBehavior =
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
DstModFlags->addOperand(SrcOp);
}
continue;
}
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
ConstantInt *DstBehavior =
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting override values");
}
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
continue;
}
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue) {
emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors");
continue;
}
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
};
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override:
llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitWarning("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
MDs.append(DstValue->op_begin(), DstValue->op_end());
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(), MDs));
break;
}
case Module::AppendUnique: {
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
Elts.insert(DstValue->op_begin(), DstValue->op_end());
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(),
makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
}
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue) {
emitError("linking module flags '" + Flag->getString() +
"': does not have the required value");
continue;
}
}
return HasError;
}
// This function returns true if the triples match.
static bool triplesMatch(const Triple &T0, const Triple &T1) {
// If vendor is apple, ignore the version number.
if (T0.getVendor() == Triple::Apple)
return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
return T0 == T1;
}
// This function returns the merged triple.
static std::string mergeTriples(const Triple &SrcTriple,
const Triple &DstTriple) {
// If vendor is apple, pick the triple with the larger version number.
if (SrcTriple.getVendor() == Triple::Apple)
if (DstTriple.isOSVersionLT(SrcTriple))
return SrcTriple.str();
return DstTriple.str();
}
bool IRLinker::run() {
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (DstM.getDataLayout().isDefault())
DstM.setDataLayout(SrcM.getDataLayout());
if (SrcM.getDataLayout() != DstM.getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM.getModuleIdentifier() + "' is '" +
SrcM.getDataLayoutStr() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" +
DstM.getDataLayoutStr() + "'\n");
}
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty())
DstM.setTargetTriple(SrcM.getTargetTriple());
Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple());
if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
emitWarning("Linking two modules of different target triples: " +
SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() +
"' whereas '" + DstM.getModuleIdentifier() + "' is '" +
DstM.getTargetTriple() + "'\n");
DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
// Append the module inline asm string.
if (!SrcM.getModuleInlineAsm().empty()) {
if (DstM.getModuleInlineAsm().empty())
DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm());
else
DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
SrcM.getModuleInlineAsm());
}
// Loop over all of the linked values to compute type mappings.
computeTypeMapping();
std::reverse(Worklist.begin(), Worklist.end());
while (!Worklist.empty()) {
GlobalValue *GV = Worklist.back();
Worklist.pop_back();
// Already mapped.
if (ValueMap.find(GV) != ValueMap.end() ||
AliasValueMap.find(GV) != AliasValueMap.end())
continue;
assert(!GV->isDeclaration());
MapValue(GV, ValueMap, ValueMapperFlags, &TypeMap, &GValMaterializer);
if (HasError)
return true;
}
// Note that we are done linking global value bodies. This prevents
// metadata linking from creating new references.
DoneLinkingBodies = true;
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
if (shouldLinkMetadata()) {
// Even if just linking metadata we should link decls above in case
// any are referenced by metadata. IRLinker::shouldLink ensures that
// we don't actually link anything from source.
if (IsMetadataLinkingPostpass) {
// Ensure metadata materialized
if (SrcM.getMaterializer()->materializeMetadata())
return true;
SrcM.getMaterializer()->saveMetadataList(MetadataToIDs,
/* OnlyTempMD = */ false);
}
linkNamedMDNodes();
if (IsMetadataLinkingPostpass) {
// Handle anything left in the ValIDToTempMDMap, such as metadata nodes
// not reached by the dbg.cu NamedMD (i.e. only reached from
// instructions).
// Walk the MetadataToIDs once to find the set of new (imported) MD
// that still has corresponding temporary metadata, and invoke metadata
// mapping on each one.
for (auto MDI : MetadataToIDs) {
if (!ValIDToTempMDMap->count(MDI.second))
continue;
MapMetadata(MDI.first, ValueMap, ValueMapperFlags, &TypeMap,
&GValMaterializer);
}
assert(ValIDToTempMDMap->empty());
}
// Merge the module flags into the DstM module.
if (linkModuleFlagsMetadata())
return true;
}
return false;
}
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
if (IsPacked != That.IsPacked)
return false;
if (ETypes != That.ETypes)
return false;
return true;
}
bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
}
StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
Key.IsPacked);
}
unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey())
return LHS == getEmptyKey();
if (RHS == getTombstoneKey())
return LHS == getTombstoneKey();
return KeyTy(LHS) == KeyTy(RHS);
}
void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
}
void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
bool Removed = OpaqueStructTypes.erase(Ty);
(void)Removed;
assert(Removed);
}
void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
assert(Ty->isOpaque());
OpaqueStructTypes.insert(Ty);
}
StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
if (I == NonOpaqueStructTypes.end())
return nullptr;
return *I;
}
bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
if (I == NonOpaqueStructTypes.end())
return false;
return *I == Ty;
}
IRMover::IRMover(Module &M) : Composite(M) {
TypeFinder StructTypes;
StructTypes.run(M, true);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
IdentifiedStructTypes.addOpaque(Ty);
else
IdentifiedStructTypes.addNonOpaque(Ty);
}
}
bool IRMover::move(
Module &Src, ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
DenseMap<unsigned, MDNode *> *ValIDToTempMDMap,
bool IsMetadataLinkingPostpass) {
IRLinker TheIRLinker(Composite, IdentifiedStructTypes, Src, ValuesToLink,
AddLazyFor, ValIDToTempMDMap, IsMetadataLinkingPostpass);
bool RetCode = TheIRLinker.run();
Composite.dropTriviallyDeadConstantArrays();
return RetCode;
}