1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/VMCore/Verifier.cpp
Chris Lattner a7ed569db1 convert some vectors to smallvector.
llvm-svn: 34145
2007-02-10 08:33:11 +00:00

1106 lines
42 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/PassManager.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;
namespace { // Anonymous namespace for class
struct VISIBILITY_HIDDEN
Verifier : public FunctionPass, InstVisitor<Verifier> {
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
VerifierFailureAction action;
// What to do if verification fails.
Module *Mod; // Module we are verifying right now
ETForest *EF; // ET-Forest, caution can be null!
std::stringstream msgs; // A stringstream to collect messages
/// InstInThisBlock - when verifying a basic block, keep track of all of the
/// instructions we have seen so far. This allows us to do efficient
/// dominance checks for the case when an instruction has an operand that is
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
Verifier()
: Broken(false), RealPass(true), action(AbortProcessAction),
EF(0), msgs( std::ios::app | std::ios::out ) {}
Verifier( VerifierFailureAction ctn )
: Broken(false), RealPass(true), action(ctn), EF(0),
msgs( std::ios::app | std::ios::out ) {}
Verifier(bool AB )
: Broken(false), RealPass(true),
action( AB ? AbortProcessAction : PrintMessageAction), EF(0),
msgs( std::ios::app | std::ios::out ) {}
Verifier(ETForest &ef)
: Broken(false), RealPass(false), action(PrintMessageAction),
EF(&ef), msgs( std::ios::app | std::ios::out ) {}
bool doInitialization(Module &M) {
Mod = &M;
verifyTypeSymbolTable(M.getTypeSymbolTable());
verifyValueSymbolTable(M.getValueSymbolTable());
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool runOnFunction(Function &F) {
// Get dominator information if we are being run by PassManager
if (RealPass) EF = &getAnalysis<ETForest>();
visit(F);
InstsInThisBlock.clear();
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool doFinalization(Module &M) {
// Scan through, checking all of the external function's linkage now...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
visitGlobalValue(*I);
// Check to make sure function prototypes are okay.
if (I->isDeclaration()) visitFunction(*I);
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
// If the module is broken, abort at this time.
return abortIfBroken();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
if (RealPass)
AU.addRequired<ETForest>();
}
/// abortIfBroken - If the module is broken and we are supposed to abort on
/// this condition, do so.
///
bool abortIfBroken() {
if (Broken) {
msgs << "Broken module found, ";
switch (action) {
case AbortProcessAction:
msgs << "compilation aborted!\n";
cerr << msgs.str();
abort();
case PrintMessageAction:
msgs << "verification continues.\n";
cerr << msgs.str();
return false;
case ReturnStatusAction:
msgs << "compilation terminated.\n";
return Broken;
}
}
return false;
}
// Verification methods...
void verifyTypeSymbolTable(TypeSymbolTable &ST);
void verifyValueSymbolTable(ValueSymbolTable &ST);
void visitGlobalValue(GlobalValue &GV);
void visitGlobalVariable(GlobalVariable &GV);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
void VerifyIntrinsicPrototype(Function *F, ...);
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
msgs << *V;
} else {
WriteAsOperand(msgs, V, true, Mod);
msgs << "\n";
}
}
void WriteType(const Type* T ) {
if ( !T ) return;
WriteTypeSymbolic(msgs, T, Mod );
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
msgs << Message << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
Broken = true;
}
void CheckFailed( const std::string& Message, const Value* V1,
const Type* T2, const Value* V3 = 0 ) {
msgs << Message << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
};
RegisterPass<Verifier> X("verify", "Module Verifier");
} // End anonymous namespace
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.isDeclaration() ||
GV.hasExternalLinkage() ||
GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage(),
"Global is external, but doesn't have external or dllimport or weak linkage!",
&GV);
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
GlobalVariable &GVar = cast<GlobalVariable>(GV);
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
"Only global arrays can have appending linkage!", &GV);
}
}
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
if (GV.hasInitializer())
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
"Global variable initializer type does not match global "
"variable type!", &GV);
visitGlobalValue(GV);
}
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}
// verifySymbolTable - Verify that a function or module symbol table is ok
//
void Verifier::verifyValueSymbolTable(ValueSymbolTable &ST) {
// Loop over all of the values in the symbol table.
for (ValueSymbolTable::const_iterator VI = ST.begin(), VE = ST.end();
VI != VE; ++VI) {
Value *V = VI->second;
// Check that there are no void typed values in the symbol table. Values
// with a void type cannot be put into symbol tables because they cannot
// have names!
Assert1(V->getType() != Type::VoidTy,
"Values with void type are not allowed to have names!", V);
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
// Check function arguments.
const FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.getArgumentList().size();
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
F.getReturnType() == Type::VoidTy,
"Functions cannot return aggregate values!", &F);
Assert1(!FT->isStructReturn() ||
(FT->getReturnType() == Type::VoidTy &&
FT->getNumParams() > 0 && isa<PointerType>(FT->getParamType(0))),
"Invalid struct-return function!", &F);
// Check that this function meets the restrictions on this calling convention.
switch (F.getCallingConv()) {
default:
break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::X86_FastCall:
Assert1(!F.isVarArg(),
"Varargs functions must have C calling conventions!", &F);
break;
}
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++i) {
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
// Make sure no aggregates are passed by value.
Assert1(I->getType()->isFirstClassType(),
"Functions cannot take aggregates as arguments by value!", I);
}
if (!F.isDeclaration()) {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
if (F.getName().size() >= 5)
Assert1(F.getName().substr(0, 5) != "llvm.",
"llvm intrinsics cannot be defined!", &F);
verifyValueSymbolTable(F.getValueSymbolTable());
// Check the entry node
BasicBlock *Entry = &F.getEntryBlock();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN);
Assert1(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!", PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first,
Values[i].second, Values[i-1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert3(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
if (RI.getNumOperands() == 0)
Assert2(F->getReturnType() == Type::VoidTy,
"Found return instr that returns void in Function of non-void "
"return type!", &RI, F->getReturnType());
else
Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
const Type *SwitchTy = SI.getCondition()->getType();
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
visitTerminatorInst(SI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert1(SI.getCondition()->getType() == Type::Int1Ty,
"Select condition type must be bool!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
"Select values must have identical types!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isInteger(),"UInt2FP source must be integral", &I);
Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isInteger(),"SInt2FP source must be integral", &I);
Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
Assert1(DestTy->isInteger(),"FP2UInt result must be integral", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
Assert1(DestTy->isInteger(),"FP2ToI result must be integral", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
"Bitcast requires both operands to be pointer or neither", &I);
Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the operands of the PHI node have the same type as the
// result.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::visitCallInst(CallInst &CI) {
Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
"Called function must be a pointer!", &CI);
const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", &CI);
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",&CI);
else
Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", &CI);
// Verify that all arguments to the call match the function type...
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CI.getOperand(i+1), FTy->getParamType(i), &CI);
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicFunctionCall(ID, CI);
visitInstruction(CI);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert1(B.getType()->isInteger() ||
(isa<PackedType>(B.getType()) &&
cast<PackedType>(B.getType())->getElementType()->isInteger()),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert1(B.getType()->isInteger(),
"Shift must return an integer result!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
/* FALL THROUGH */
default:
// Arithmetic operators only work on integer or fp values
Assert1(B.getType() == B.getOperand(0)->getType(),
"Arithmetic operators must have same type for operands and result!",
&B);
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
isa<PackedType>(B.getType()),
"Arithmetic operators must have integer, fp, or packed type!", &B);
break;
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst& IC) {
// Check that the operands are the same type
const Type* Op0Ty = IC.getOperand(0)->getType();
const Type* Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
"Invalid operand types for ICmp instruction", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst& FC) {
// Check that the operands are the same type
const Type* Op0Ty = FC.getOperand(0)->getType();
const Type* Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert1(Op0Ty->isFloatingPoint(),
"Invalid operand types for FCmp instruction", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
Assert1(SV.getType() == SV.getOperand(0)->getType(),
"Result of shufflevector must match first operand type!", &SV);
// Check to see if Mask is valid.
if (const ConstantPacked *MV = dyn_cast<ConstantPacked>(SV.getOperand(2))) {
for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
isa<UndefValue>(MV->getOperand(i)),
"Invalid shufflevector shuffle mask!", &SV);
}
} else {
Assert1(isa<UndefValue>(SV.getOperand(2)) ||
isa<ConstantAggregateZero>(SV.getOperand(2)),
"Invalid shufflevector shuffle mask!", &SV);
}
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
const Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
&Idxs[0], Idxs.size(), true);
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(isa<PointerType>(GEP.getType()) &&
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
visitInstruction(GEP);
}
void Verifier::visitLoadInst(LoadInst &LI) {
const Type *ElTy =
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
const Type *ElTy =
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
visitInstruction(SI);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)&I ||
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
"Only PHI nodes may reference their own value!", &I);
}
// Check that void typed values don't have names
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", &I, Used);
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
Assert1(I.getOperand(i)->getType()->isFirstClassType(),
"Instruction operands must be first-class values!", &I);
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
"Cannot take the address of an intrinsic!", &I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert1(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert1(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
BasicBlock *OpBlock = Op->getParent();
// Check that a definition dominates all of its uses.
if (!isa<PHINode>(I)) {
// Invoke results are only usable in the normal destination, not in the
// exceptional destination.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
OpBlock = II->getNormalDest();
Assert2(OpBlock != II->getUnwindDest(),
"No uses of invoke possible due to dominance structure!",
Op, II);
// If the normal successor of an invoke instruction has multiple
// predecessors, then the normal edge from the invoke is critical, so
// the invoke value can only be live if the destination block
// dominates all of it's predecessors (other than the invoke) or if
// the invoke value is only used by a phi in the successor.
if (!OpBlock->getSinglePredecessor() &&
EF->dominates(&BB->getParent()->getEntryBlock(), BB)) {
// The first case we allow is if the use is a PHI operand in the
// normal block, and if that PHI operand corresponds to the invoke's
// block.
bool Bad = true;
if (PHINode *PN = dyn_cast<PHINode>(&I))
if (PN->getParent() == OpBlock &&
PN->getIncomingBlock(i/2) == Op->getParent())
Bad = false;
// If it is used by something non-phi, then the other case is that
// 'OpBlock' dominates all of its predecessors other than the
// invoke. In this case, the invoke value can still be used.
if (Bad) {
Bad = false;
for (pred_iterator PI = pred_begin(OpBlock),
E = pred_end(OpBlock); PI != E; ++PI) {
if (*PI != II->getParent() && !EF->dominates(OpBlock, *PI)) {
Bad = true;
break;
}
}
}
Assert2(!Bad,
"Invoke value defined on critical edge but not dead!", &I,
Op);
}
} else if (OpBlock == BB) {
// If they are in the same basic block, make sure that the definition
// comes before the use.
Assert2(InstsInThisBlock.count(Op) ||
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
"Instruction does not dominate all uses!", Op, &I);
}
// Definition must dominate use unless use is unreachable!
Assert2(EF->dominates(OpBlock, BB) ||
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
"Instruction does not dominate all uses!", Op, &I);
} else {
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
Assert2(EF->dominates(OpBlock, PredBB) ||
!EF->dominates(&BB->getParent()->getEntryBlock(), PredBB),
"Instruction does not dominate all uses!", Op, &I);
}
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert1(i == 0 && isa<CallInst>(I),
"Cannot take the address of an inline asm!", &I);
}
}
InstsInThisBlock.insert(&I);
}
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF);
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
}
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen. This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Function *F, ...) {
va_list VA;
va_start(VA, F);
const FunctionType *FTy = F->getFunctionType();
// Note that "arg#0" is the return type.
for (unsigned ArgNo = 0; 1; ++ArgNo) {
int TypeID = va_arg(VA, int);
if (TypeID == -2) {
break;
}
if (TypeID == -1) {
if (ArgNo != FTy->getNumParams()+1)
CheckFailed("Intrinsic prototype has too many arguments!", F);
break;
}
if (ArgNo == FTy->getNumParams()+1) {
CheckFailed("Intrinsic prototype has too few arguments!", F);
break;
}
const Type *Ty;
if (ArgNo == 0)
Ty = FTy->getReturnType();
else
Ty = FTy->getParamType(ArgNo-1);
if (TypeID != Ty->getTypeID()) {
if (ArgNo == 0)
CheckFailed("Intrinsic prototype has incorrect result type!", F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
break;
}
if (TypeID == Type::IntegerTyID) {
unsigned GotBits = (unsigned) va_arg(VA, int);
unsigned ExpectBits = cast<IntegerType>(Ty)->getBitWidth();
if (GotBits != ExpectBits) {
std::string bitmsg = " Expecting " + utostr(ExpectBits) + " but got " +
utostr(GotBits) + " bits.";
if (ArgNo == 0)
CheckFailed("Intrinsic prototype has incorrect integer result width!"
+ bitmsg, F);
else
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " has "
"incorrect integer width!" + bitmsg, F);
break;
}
} else if (TypeID == Type::PackedTyID) {
// If this is a packed argument, verify the number and type of elements.
const PackedType *PTy = cast<PackedType>(Ty);
int ElemTy = va_arg(VA, int);
if (ElemTy != PTy->getElementType()->getTypeID()) {
CheckFailed("Intrinsic prototype has incorrect vector element type!",
F);
break;
}
if (ElemTy == Type::IntegerTyID) {
unsigned NumBits = (unsigned)va_arg(VA, int);
unsigned ExpectedBits =
cast<IntegerType>(PTy->getElementType())->getBitWidth();
if (NumBits != ExpectedBits) {
CheckFailed("Intrinsic prototype has incorrect vector element type!",
F);
break;
}
}
if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) {
CheckFailed("Intrinsic prototype has incorrect number of "
"vector elements!",F);
break;
}
}
}
va_end(VA);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
return new Verifier(action);
}
// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
Function &F = const_cast<Function&>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
Verifier *V = new Verifier(action);
FPM.add(V);
FPM.run(F);
return V->Broken;
}
/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
std::string *ErrorInfo) {
PassManager PM;
Verifier *V = new Verifier(action);
PM.add(V);
PM.run((Module&)M);
if (ErrorInfo && V->Broken)
*ErrorInfo = V->msgs.str();
return V->Broken;
}
// vim: sw=2