mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
65a455b060
llvm-svn: 27151
1254 lines
47 KiB
C++
1254 lines
47 KiB
C++
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for PowerPC,
|
|
// converting from a legalized dag to a PPC dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPC.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "PPCISelLowering.h"
|
|
#include "PPCHazardRecognizers.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <iostream>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// PPCDAGToDAGISel - PPC specific code to select PPC machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class PPCDAGToDAGISel : public SelectionDAGISel {
|
|
PPCTargetMachine &TM;
|
|
PPCTargetLowering PPCLowering;
|
|
unsigned GlobalBaseReg;
|
|
public:
|
|
PPCDAGToDAGISel(PPCTargetMachine &tm)
|
|
: SelectionDAGISel(PPCLowering), TM(tm),
|
|
PPCLowering(*TM.getTargetLowering()) {}
|
|
|
|
virtual bool runOnFunction(Function &Fn) {
|
|
// Make sure we re-emit a set of the global base reg if necessary
|
|
GlobalBaseReg = 0;
|
|
SelectionDAGISel::runOnFunction(Fn);
|
|
|
|
InsertVRSaveCode(Fn);
|
|
return true;
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDOperand getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
|
|
/// base register. Return the virtual register that holds this value.
|
|
SDOperand getGlobalBaseReg();
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
void Select(SDOperand &Result, SDOperand Op);
|
|
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the
|
|
/// specified condition code, returning the CR# of the expression.
|
|
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
|
|
|
|
/// SelectAddrImm - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 16-bit displacement [r+imm].
|
|
bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
|
|
|
|
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
|
|
/// represented as an indexed [r+r] operation. Returns false if it can
|
|
/// be represented by [r+imm], which are preferred.
|
|
bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
|
|
|
|
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
|
|
|
|
/// SelectAddrImmShift - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
|
|
/// for use by STD and friends.
|
|
bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDOperand> &OutOps,
|
|
SelectionDAG &DAG) {
|
|
SDOperand Op0, Op1;
|
|
switch (ConstraintCode) {
|
|
default: return true;
|
|
case 'm': // memory
|
|
if (!SelectAddrIdx(Op, Op0, Op1))
|
|
SelectAddrImm(Op, Op0, Op1);
|
|
break;
|
|
case 'o': // offsetable
|
|
if (!SelectAddrImm(Op, Op0, Op1)) {
|
|
Select(Op0, Op); // r+0.
|
|
Op1 = getI32Imm(0);
|
|
}
|
|
break;
|
|
case 'v': // not offsetable
|
|
SelectAddrIdxOnly(Op, Op0, Op1);
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(Op0);
|
|
OutOps.push_back(Op1);
|
|
return false;
|
|
}
|
|
|
|
SDOperand BuildSDIVSequence(SDNode *N);
|
|
SDOperand BuildUDIVSequence(SDNode *N);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
|
|
|
|
void InsertVRSaveCode(Function &Fn);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this
|
|
/// target when scheduling the DAG.
|
|
virtual HazardRecognizer *CreateTargetHazardRecognizer() {
|
|
// Should use subtarget info to pick the right hazard recognizer. For
|
|
// now, always return a PPC970 recognizer.
|
|
const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
|
|
assert(II && "No InstrInfo?");
|
|
return new PPCHazardRecognizer970(*II);
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "PPCGenDAGISel.inc"
|
|
|
|
private:
|
|
SDOperand SelectSETCC(SDOperand Op);
|
|
SDOperand SelectCALL(SDOperand Op);
|
|
};
|
|
}
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
|
|
// The selection process is inherently a bottom-up recursive process (users
|
|
// select their uses before themselves). Given infinite stack space, we
|
|
// could just start selecting on the root and traverse the whole graph. In
|
|
// practice however, this causes us to run out of stack space on large basic
|
|
// blocks. To avoid this problem, select the entry node, then all its uses,
|
|
// iteratively instead of recursively.
|
|
std::vector<SDOperand> Worklist;
|
|
Worklist.push_back(DAG.getEntryNode());
|
|
|
|
// Note that we can do this in the PPC target (scanning forward across token
|
|
// chain edges) because no nodes ever get folded across these edges. On a
|
|
// target like X86 which supports load/modify/store operations, this would
|
|
// have to be more careful.
|
|
while (!Worklist.empty()) {
|
|
SDOperand Node = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
// Chose from the least deep of the top two nodes.
|
|
if (!Worklist.empty() &&
|
|
Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
|
|
std::swap(Worklist.back(), Node);
|
|
|
|
if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
|
|
CodeGenMap.count(Node)) continue;
|
|
|
|
for (SDNode::use_iterator UI = Node.Val->use_begin(),
|
|
E = Node.Val->use_end(); UI != E; ++UI) {
|
|
// Scan the values. If this use has a value that is a token chain, add it
|
|
// to the worklist.
|
|
SDNode *User = *UI;
|
|
for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
|
|
if (User->getValueType(i) == MVT::Other) {
|
|
Worklist.push_back(SDOperand(User, i));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finally, legalize this node.
|
|
SDOperand Dummy;
|
|
Select(Dummy, Node);
|
|
}
|
|
|
|
// Select target instructions for the DAG.
|
|
DAG.setRoot(SelectRoot(DAG.getRoot()));
|
|
CodeGenMap.clear();
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
}
|
|
|
|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
|
|
/// all virtual registers are created and all machine instructions are built,
|
|
/// check to see if we need to save/restore VRSAVE. If so, do it.
|
|
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
|
|
// Check to see if this function uses vector registers, which means we have to
|
|
// save and restore the VRSAVE register and update it with the regs we use.
|
|
//
|
|
// In this case, there will be virtual registers of vector type type created
|
|
// by the scheduler. Detect them now.
|
|
MachineFunction &Fn = MachineFunction::get(&F);
|
|
SSARegMap *RegMap = Fn.getSSARegMap();
|
|
bool HasVectorVReg = false;
|
|
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
|
|
e = RegMap->getLastVirtReg()+1; i != e; ++i)
|
|
if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
|
|
HasVectorVReg = true;
|
|
break;
|
|
}
|
|
if (!HasVectorVReg) return; // nothing to do.
|
|
|
|
// If we have a vector register, we want to emit code into the entry and exit
|
|
// blocks to save and restore the VRSAVE register. We do this here (instead
|
|
// of marking all vector instructions as clobbering VRSAVE) for two reasons:
|
|
//
|
|
// 1. This (trivially) reduces the load on the register allocator, by not
|
|
// having to represent the live range of the VRSAVE register.
|
|
// 2. This (more significantly) allows us to create a temporary virtual
|
|
// register to hold the saved VRSAVE value, allowing this temporary to be
|
|
// register allocated, instead of forcing it to be spilled to the stack.
|
|
|
|
// Create two vregs - one to hold the VRSAVE register that is live-in to the
|
|
// function and one for the value after having bits or'd into it.
|
|
unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
|
|
unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
|
|
|
|
MachineBasicBlock &EntryBB = *Fn.begin();
|
|
// Emit the following code into the entry block:
|
|
// InVRSAVE = MFVRSAVE
|
|
// UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
|
|
// MTVRSAVE UpdatedVRSAVE
|
|
MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
|
|
BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
|
|
BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
|
|
BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
|
|
|
|
// Find all return blocks, outputting a restore in each epilog.
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
|
|
IP = BB->end(); --IP;
|
|
|
|
// Skip over all terminator instructions, which are part of the return
|
|
// sequence.
|
|
MachineBasicBlock::iterator I2 = IP;
|
|
while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
|
|
IP = I2;
|
|
|
|
// Emit: MTVRSAVE InVRSave
|
|
BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// getGlobalBaseReg - Output the instructions required to put the
|
|
/// base address to use for accessing globals into a register.
|
|
///
|
|
SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
|
|
if (!GlobalBaseReg) {
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = BB->getParent()->front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
|
|
// FIXME: when we get to LP64, we will need to create the appropriate
|
|
// type of register here.
|
|
GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
|
|
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
|
|
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
|
|
}
|
|
return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
|
|
}
|
|
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
|
|
if (N->getOpcode() == ISD::Constant) {
|
|
Imm = cast<ConstantSDNode>(N)->getValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
|
|
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
|
|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
|
|
// not, since all 1s are not contiguous.
|
|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
|
|
if (isShiftedMask_32(Val)) {
|
|
// look for the first non-zero bit
|
|
MB = CountLeadingZeros_32(Val);
|
|
// look for the first zero bit after the run of ones
|
|
ME = CountLeadingZeros_32((Val - 1) ^ Val);
|
|
return true;
|
|
} else {
|
|
Val = ~Val; // invert mask
|
|
if (isShiftedMask_32(Val)) {
|
|
// effectively look for the first zero bit
|
|
ME = CountLeadingZeros_32(Val) - 1;
|
|
// effectively look for the first one bit after the run of zeros
|
|
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
|
|
return true;
|
|
}
|
|
}
|
|
// no run present
|
|
return false;
|
|
}
|
|
|
|
// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
|
|
// and mask opcode and mask operation.
|
|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
|
|
unsigned &SH, unsigned &MB, unsigned &ME) {
|
|
// Don't even go down this path for i64, since different logic will be
|
|
// necessary for rldicl/rldicr/rldimi.
|
|
if (N->getValueType(0) != MVT::i32)
|
|
return false;
|
|
|
|
unsigned Shift = 32;
|
|
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
|
|
unsigned Opcode = N->getOpcode();
|
|
if (N->getNumOperands() != 2 ||
|
|
!isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
|
|
return false;
|
|
|
|
if (Opcode == ISD::SHL) {
|
|
// apply shift left to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask << Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu << Shift);
|
|
} else if (Opcode == ISD::SRL) {
|
|
// apply shift right to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask >> Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu >> Shift);
|
|
// adjust for the left rotate
|
|
Shift = 32 - Shift;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// if the mask doesn't intersect any Indeterminant bits
|
|
if (Mask && !(Mask & Indeterminant)) {
|
|
SH = Shift;
|
|
// make sure the mask is still a mask (wrap arounds may not be)
|
|
return isRunOfOnes(Mask, MB, ME);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
|
|
}
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
Imm = (unsigned)CN->getSignExtended();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SelectBitfieldInsert - turn an or of two masked values into
|
|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
|
|
/// Returns true on success, false if the caller still needs to select OR.
|
|
///
|
|
/// Patterns matched:
|
|
/// 1. or shl, and 5. or and, and
|
|
/// 2. or and, shl 6. or shl, shr
|
|
/// 3. or shr, and 7. or shr, shl
|
|
/// 4. or and, shr
|
|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
|
|
bool IsRotate = false;
|
|
unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
|
|
unsigned Value;
|
|
|
|
SDOperand Op0 = N->getOperand(0);
|
|
SDOperand Op1 = N->getOperand(1);
|
|
|
|
unsigned Op0Opc = Op0.getOpcode();
|
|
unsigned Op1Opc = Op1.getOpcode();
|
|
|
|
// Verify that we have the correct opcodes
|
|
if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
|
|
return false;
|
|
if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
|
|
return false;
|
|
|
|
// Generate Mask value for Target
|
|
if (isIntImmediate(Op0.getOperand(1), Value)) {
|
|
switch(Op0Opc) {
|
|
case ISD::SHL: TgtMask <<= Value; break;
|
|
case ISD::SRL: TgtMask >>= Value; break;
|
|
case ISD::AND: TgtMask &= Value; break;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
// Generate Mask value for Insert
|
|
if (!isIntImmediate(Op1.getOperand(1), Value))
|
|
return 0;
|
|
|
|
switch(Op1Opc) {
|
|
case ISD::SHL:
|
|
SH = Value;
|
|
InsMask <<= SH;
|
|
if (Op0Opc == ISD::SRL) IsRotate = true;
|
|
break;
|
|
case ISD::SRL:
|
|
SH = Value;
|
|
InsMask >>= SH;
|
|
SH = 32-SH;
|
|
if (Op0Opc == ISD::SHL) IsRotate = true;
|
|
break;
|
|
case ISD::AND:
|
|
InsMask &= Value;
|
|
break;
|
|
}
|
|
|
|
// If both of the inputs are ANDs and one of them has a logical shift by
|
|
// constant as its input, make that AND the inserted value so that we can
|
|
// combine the shift into the rotate part of the rlwimi instruction
|
|
bool IsAndWithShiftOp = false;
|
|
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
|
|
if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op1.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
} else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
|
|
std::swap(Op0, Op1);
|
|
std::swap(TgtMask, InsMask);
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that the Target mask and Insert mask together form a full word mask
|
|
// and that the Insert mask is a run of set bits (which implies both are runs
|
|
// of set bits). Given that, Select the arguments and generate the rlwimi
|
|
// instruction.
|
|
unsigned MB, ME;
|
|
if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
|
|
bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
|
|
bool Op0IsAND = Op0Opc == ISD::AND;
|
|
// Check for rotlwi / rotrwi here, a special case of bitfield insert
|
|
// where both bitfield halves are sourced from the same value.
|
|
if (IsRotate && fullMask &&
|
|
N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
|
|
SDOperand Tmp;
|
|
Select(Tmp, N->getOperand(0).getOperand(0));
|
|
return CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Tmp,
|
|
getI32Imm(SH), getI32Imm(0), getI32Imm(31));
|
|
}
|
|
SDOperand Tmp1, Tmp2;
|
|
Select(Tmp1, ((Op0IsAND && fullMask) ? Op0.getOperand(0) : Op0));
|
|
Select(Tmp2, (IsAndWithShiftOp ? Op1.getOperand(0).getOperand(0)
|
|
: Op1.getOperand(0)));
|
|
return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// SelectAddrImm - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 16-bit displacement [r+imm].
|
|
bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp,
|
|
SDOperand &Base) {
|
|
// If this can be more profitably realized as r+r, fail.
|
|
if (SelectAddrIdx(N, Disp, Base))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
unsigned imm = 0;
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
|
|
Disp = getI32Imm(imm & 0xFFFF);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
return true; // [r+i]
|
|
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
|
// Match LOAD (ADD (X, Lo(G))).
|
|
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
|
|
&& "Cannot handle constant offsets yet!");
|
|
Disp = N.getOperand(1).getOperand(0); // The global address.
|
|
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
|
Disp.getOpcode() == ISD::TargetConstantPool);
|
|
Base = N.getOperand(0);
|
|
return true; // [&g+r]
|
|
}
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
unsigned imm = 0;
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are
|
|
// provably disjoint.
|
|
uint64_t LHSKnownZero, LHSKnownOne;
|
|
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
|
|
LHSKnownZero, LHSKnownOne);
|
|
if ((LHSKnownZero|~imm) == ~0U) {
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
Base = N.getOperand(0);
|
|
Disp = getI32Imm(imm & 0xFFFF);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
// Loading from a constant address.
|
|
int Addr = (int)CN->getValue();
|
|
|
|
// If this address fits entirely in a 16-bit sext immediate field, codegen
|
|
// this as "d, 0"
|
|
if (Addr == (short)Addr) {
|
|
Disp = getI32Imm(Addr);
|
|
Base = CurDAG->getRegister(PPC::R0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, break this down into an LIS + disp.
|
|
Disp = getI32Imm((short)Addr);
|
|
Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Disp = getI32Imm(0);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
|
|
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
else
|
|
Base = N;
|
|
return true; // [r+0]
|
|
}
|
|
|
|
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
|
|
/// represented as an indexed [r+r] operation. Returns false if it can
|
|
/// be represented by [r+imm], which are preferred.
|
|
bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base,
|
|
SDOperand &Index) {
|
|
unsigned imm = 0;
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
|
|
return false; // r+i
|
|
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
|
|
return false; // r+i
|
|
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
|
|
return false; // r+i can fold it if we can.
|
|
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are provably
|
|
// disjoint.
|
|
uint64_t LHSKnownZero, LHSKnownOne;
|
|
uint64_t RHSKnownZero, RHSKnownOne;
|
|
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
|
|
LHSKnownZero, LHSKnownOne);
|
|
|
|
if (LHSKnownZero) {
|
|
PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
|
|
RHSKnownZero, RHSKnownOne);
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
if ((LHSKnownZero | RHSKnownZero) == ~0U) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
|
|
/// represented as an indexed [r+r] operation.
|
|
bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base,
|
|
SDOperand &Index) {
|
|
// Check to see if we can easily represent this as an [r+r] address. This
|
|
// will fail if it thinks that the address is more profitably represented as
|
|
// reg+imm, e.g. where imm = 0.
|
|
if (SelectAddrIdx(N, Base, Index))
|
|
return true;
|
|
|
|
// If the operand is an addition, always emit this as [r+r], since this is
|
|
// better (for code size, and execution, as the memop does the add for free)
|
|
// than emitting an explicit add.
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
Base = N.getOperand(0);
|
|
Index = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, do it the hard way, using R0 as the base register.
|
|
Base = CurDAG->getRegister(PPC::R0, MVT::i32);
|
|
Index = N;
|
|
return true;
|
|
}
|
|
|
|
/// SelectAddrImmShift - Returns true if the address N can be represented by
|
|
/// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
|
|
/// for use by STD and friends.
|
|
bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp,
|
|
SDOperand &Base) {
|
|
// If this can be more profitably realized as r+r, fail.
|
|
if (SelectAddrIdx(N, Disp, Base))
|
|
return false;
|
|
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
unsigned imm = 0;
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
|
|
(imm & 3) == 0) {
|
|
Disp = getI32Imm((imm & 0xFFFF) >> 2);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
|
|
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
} else {
|
|
Base = N.getOperand(0);
|
|
}
|
|
return true; // [r+i]
|
|
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
|
|
// Match LOAD (ADD (X, Lo(G))).
|
|
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
|
|
&& "Cannot handle constant offsets yet!");
|
|
Disp = N.getOperand(1).getOperand(0); // The global address.
|
|
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
|
|
Disp.getOpcode() == ISD::TargetConstantPool);
|
|
Base = N.getOperand(0);
|
|
return true; // [&g+r]
|
|
}
|
|
} else if (N.getOpcode() == ISD::OR) {
|
|
unsigned imm = 0;
|
|
if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
|
|
(imm & 3) == 0) {
|
|
// If this is an or of disjoint bitfields, we can codegen this as an add
|
|
// (for better address arithmetic) if the LHS and RHS of the OR are
|
|
// provably disjoint.
|
|
uint64_t LHSKnownZero, LHSKnownOne;
|
|
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
|
|
LHSKnownZero, LHSKnownOne);
|
|
if ((LHSKnownZero|~imm) == ~0U) {
|
|
// If all of the bits are known zero on the LHS or RHS, the add won't
|
|
// carry.
|
|
Base = N.getOperand(0);
|
|
Disp = getI32Imm((imm & 0xFFFF) >> 2);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
// Loading from a constant address.
|
|
int Addr = (int)CN->getValue();
|
|
if ((Addr & 3) == 0) {
|
|
// If this address fits entirely in a 16-bit sext immediate field, codegen
|
|
// this as "d, 0"
|
|
if (Addr == (short)Addr) {
|
|
Disp = getI32Imm(Addr >> 2);
|
|
Base = CurDAG->getRegister(PPC::R0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, break this down into an LIS + disp.
|
|
Disp = getI32Imm((short)Addr >> 2);
|
|
Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Disp = getI32Imm(0);
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
|
|
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
|
|
else
|
|
Base = N;
|
|
return true; // [r+0]
|
|
}
|
|
|
|
|
|
/// SelectCC - Select a comparison of the specified values with the specified
|
|
/// condition code, returning the CR# of the expression.
|
|
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
|
|
ISD::CondCode CC) {
|
|
// Always select the LHS.
|
|
Select(LHS, LHS);
|
|
|
|
// Use U to determine whether the SETCC immediate range is signed or not.
|
|
if (MVT::isInteger(LHS.getValueType())) {
|
|
bool U = ISD::isUnsignedIntSetCC(CC);
|
|
unsigned Imm;
|
|
if (isIntImmediate(RHS, Imm) &&
|
|
((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
|
|
return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI,
|
|
MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0);
|
|
Select(RHS, RHS);
|
|
return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
|
|
LHS, RHS), 0);
|
|
} else if (LHS.getValueType() == MVT::f32) {
|
|
Select(RHS, RHS);
|
|
return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0);
|
|
} else {
|
|
Select(RHS, RHS);
|
|
return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0);
|
|
}
|
|
}
|
|
|
|
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
|
|
/// to Condition.
|
|
static unsigned getBCCForSetCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown condition!"); abort();
|
|
case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETEQ: return PPC::BEQ;
|
|
case ISD::SETONE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETNE: return PPC::BNE;
|
|
case ISD::SETOLT: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: return PPC::BLT;
|
|
case ISD::SETOLE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: return PPC::BLE;
|
|
case ISD::SETOGT: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT: return PPC::BGT;
|
|
case ISD::SETOGE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: return PPC::BGE;
|
|
|
|
case ISD::SETO: return PPC::BUN;
|
|
case ISD::SETUO: return PPC::BNU;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getCRIdxForSetCC - Return the index of the condition register field
|
|
/// associated with the SetCC condition, and whether or not the field is
|
|
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
|
|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown condition!"); abort();
|
|
case ISD::SETOLT: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETULT:
|
|
case ISD::SETLT: Inv = false; return 0;
|
|
case ISD::SETOGE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETUGE:
|
|
case ISD::SETGE: Inv = true; return 0;
|
|
case ISD::SETOGT: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETUGT:
|
|
case ISD::SETGT: Inv = false; return 1;
|
|
case ISD::SETOLE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETULE:
|
|
case ISD::SETLE: Inv = true; return 1;
|
|
case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETEQ: Inv = false; return 2;
|
|
case ISD::SETONE: // FIXME: This is incorrect see PR642.
|
|
case ISD::SETNE: Inv = true; return 2;
|
|
case ISD::SETO: Inv = true; return 3;
|
|
case ISD::SETUO: Inv = false; return 3;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
unsigned Imm;
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
if (isIntImmediate(N->getOperand(1), Imm)) {
|
|
// We can codegen setcc op, imm very efficiently compared to a brcond.
|
|
// Check for those cases here.
|
|
// setcc op, 0
|
|
if (Imm == 0) {
|
|
SDOperand Op;
|
|
Select(Op, N->getOperand(0));
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETEQ:
|
|
Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
|
|
getI32Imm(5), getI32Imm(31));
|
|
case ISD::SETNE: {
|
|
SDOperand AD =
|
|
SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(~0U)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
|
|
AD.getValue(1));
|
|
}
|
|
case ISD::SETLT:
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
case ISD::SETGT: {
|
|
SDOperand T =
|
|
SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
|
|
T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
}
|
|
}
|
|
} else if (Imm == ~0U) { // setcc op, -1
|
|
SDOperand Op;
|
|
Select(Op, N->getOperand(0));
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETEQ:
|
|
Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(1)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
|
|
getI32Imm(0)), 0),
|
|
Op.getValue(1));
|
|
case ISD::SETNE: {
|
|
Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
|
|
SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
Op, getI32Imm(~0U));
|
|
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op,
|
|
SDOperand(AD, 1));
|
|
}
|
|
case ISD::SETLT: {
|
|
SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
|
|
getI32Imm(1)), 0);
|
|
SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
|
|
Op), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
|
|
getI32Imm(31), getI32Imm(31));
|
|
}
|
|
case ISD::SETGT:
|
|
Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op,
|
|
getI32Imm(1), getI32Imm(31),
|
|
getI32Imm(31)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Inv;
|
|
unsigned Idx = getCRIdxForSetCC(CC, Inv);
|
|
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
|
|
SDOperand IntCR;
|
|
|
|
// Force the ccreg into CR7.
|
|
SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
|
|
|
|
SDOperand InFlag(0, 0); // Null incoming flag value.
|
|
CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
|
|
InFlag).getValue(1);
|
|
|
|
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
|
|
IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
|
|
CCReg), 0);
|
|
else
|
|
IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
|
|
|
|
if (!Inv) {
|
|
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
|
|
getI32Imm((32-(3-Idx)) & 31),
|
|
getI32Imm(31), getI32Imm(31));
|
|
} else {
|
|
SDOperand Tmp =
|
|
SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
|
|
getI32Imm((32-(3-Idx)) & 31),
|
|
getI32Imm(31),getI32Imm(31)), 0);
|
|
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
|
|
}
|
|
}
|
|
|
|
/// isCallCompatibleAddress - Return true if the specified 32-bit value is
|
|
/// representable in the immediate field of a Bx instruction.
|
|
static bool isCallCompatibleAddress(ConstantSDNode *C) {
|
|
int Addr = C->getValue();
|
|
if (Addr & 3) return false; // Low 2 bits are implicitly zero.
|
|
return (Addr << 6 >> 6) == Addr; // Top 6 bits have to be sext of immediate.
|
|
}
|
|
|
|
SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
SDOperand Chain;
|
|
Select(Chain, N->getOperand(0));
|
|
|
|
unsigned CallOpcode;
|
|
std::vector<SDOperand> CallOperands;
|
|
|
|
if (GlobalAddressSDNode *GASD =
|
|
dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
|
|
CallOpcode = PPC::BL;
|
|
CallOperands.push_back(N->getOperand(1));
|
|
} else if (ExternalSymbolSDNode *ESSDN =
|
|
dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
|
|
CallOpcode = PPC::BL;
|
|
CallOperands.push_back(N->getOperand(1));
|
|
} else if (isa<ConstantSDNode>(N->getOperand(1)) &&
|
|
isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
|
|
CallOpcode = PPC::BLA;
|
|
CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
|
|
} else {
|
|
// Copy the callee address into the CTR register.
|
|
SDOperand Callee;
|
|
Select(Callee, N->getOperand(1));
|
|
Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee,
|
|
Chain), 0);
|
|
|
|
// Copy the callee address into R12 on darwin.
|
|
SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
|
|
Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
|
|
|
|
CallOperands.push_back(R12);
|
|
CallOpcode = PPC::BCTRL;
|
|
}
|
|
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
SDOperand InFlag; // Null incoming flag value.
|
|
|
|
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
|
|
unsigned DestReg = 0;
|
|
MVT::ValueType RegTy = N->getOperand(i).getValueType();
|
|
if (RegTy == MVT::i32) {
|
|
assert(GPR_idx < 8 && "Too many int args");
|
|
DestReg = GPR[GPR_idx++];
|
|
} else {
|
|
assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
|
|
"Unpromoted integer arg?");
|
|
assert(FPR_idx < 13 && "Too many fp args");
|
|
DestReg = FPR[FPR_idx++];
|
|
}
|
|
|
|
if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
SDOperand Val;
|
|
Select(Val, N->getOperand(i));
|
|
Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
|
|
}
|
|
}
|
|
|
|
// Finally, once everything is in registers to pass to the call, emit the
|
|
// call itself.
|
|
if (InFlag.Val)
|
|
CallOperands.push_back(InFlag); // Strong dep on register copies.
|
|
else
|
|
CallOperands.push_back(Chain); // Weak dep on whatever occurs before
|
|
Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
|
|
CallOperands), 0);
|
|
|
|
std::vector<SDOperand> CallResults;
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other: break;
|
|
case MVT::i32:
|
|
if (N->getValueType(1) == MVT::i32) {
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
|
|
Chain.getValue(2)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
} else {
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
|
|
Chain.getValue(1)).getValue(1);
|
|
CallResults.push_back(Chain.getValue(0));
|
|
break;
|
|
}
|
|
|
|
CallResults.push_back(Chain);
|
|
for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
|
|
CodeGenMap[Op.getValue(i)] = CallResults[i];
|
|
return CallResults[Op.ResNo];
|
|
}
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
|
|
N->getOpcode() < PPCISD::FIRST_NUMBER) {
|
|
Result = Op;
|
|
return; // Already selected.
|
|
}
|
|
|
|
// If this has already been converted, use it.
|
|
std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
|
|
if (CGMI != CodeGenMap.end()) {
|
|
Result = CGMI->second;
|
|
return;
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::SETCC:
|
|
Result = SelectSETCC(Op);
|
|
return;
|
|
case PPCISD::CALL:
|
|
Result = SelectCALL(Op);
|
|
return;
|
|
case PPCISD::GlobalBaseReg:
|
|
Result = getGlobalBaseReg();
|
|
return;
|
|
|
|
case ISD::FrameIndex: {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
if (N->hasOneUse()) {
|
|
Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i32),
|
|
getI32Imm(0));
|
|
return;
|
|
}
|
|
Result = CodeGenMap[Op] =
|
|
SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
|
|
CurDAG->getTargetFrameIndex(FI, MVT::i32),
|
|
getI32Imm(0)), 0);
|
|
return;
|
|
}
|
|
|
|
case PPCISD::MFCR: {
|
|
SDOperand InFlag;
|
|
Select(InFlag, N->getOperand(1));
|
|
// Use MFOCRF if supported.
|
|
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
|
|
Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
|
|
N->getOperand(0), InFlag), 0);
|
|
else
|
|
Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0);
|
|
CodeGenMap[Op] = Result;
|
|
return;
|
|
}
|
|
|
|
case ISD::SDIV: {
|
|
// FIXME: since this depends on the setting of the carry flag from the srawi
|
|
// we should really be making notes about that for the scheduler.
|
|
// FIXME: It sure would be nice if we could cheaply recognize the
|
|
// srl/add/sra pattern the dag combiner will generate for this as
|
|
// sra/addze rather than having to handle sdiv ourselves. oh well.
|
|
unsigned Imm;
|
|
if (isIntImmediate(N->getOperand(1), Imm)) {
|
|
SDOperand N0;
|
|
Select(N0, N->getOperand(0));
|
|
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
|
|
SDNode *Op =
|
|
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
|
|
N0, getI32Imm(Log2_32(Imm)));
|
|
Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
|
|
SDOperand(Op, 0), SDOperand(Op, 1));
|
|
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
|
|
SDNode *Op =
|
|
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
|
|
N0, getI32Imm(Log2_32(-Imm)));
|
|
SDOperand PT =
|
|
SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
|
|
SDOperand(Op, 0), SDOperand(Op, 1)),
|
|
0);
|
|
Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::AND: {
|
|
unsigned Imm, Imm2;
|
|
// If this is an and of a value rotated between 0 and 31 bits and then and'd
|
|
// with a mask, emit rlwinm
|
|
if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
|
|
isShiftedMask_32(~Imm))) {
|
|
SDOperand Val;
|
|
unsigned SH, MB, ME;
|
|
if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
|
|
Select(Val, N->getOperand(0).getOperand(0));
|
|
} else if (Imm == 0) {
|
|
// AND X, 0 -> 0, not "rlwinm 32".
|
|
Select(Result, N->getOperand(1));
|
|
return ;
|
|
} else {
|
|
Select(Val, N->getOperand(0));
|
|
isRunOfOnes(Imm, MB, ME);
|
|
SH = 0;
|
|
}
|
|
Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val,
|
|
getI32Imm(SH), getI32Imm(MB),
|
|
getI32Imm(ME));
|
|
return;
|
|
}
|
|
// ISD::OR doesn't get all the bitfield insertion fun.
|
|
// (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
|
|
if (isIntImmediate(N->getOperand(1), Imm) &&
|
|
N->getOperand(0).getOpcode() == ISD::OR &&
|
|
isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) {
|
|
unsigned MB, ME;
|
|
Imm = ~(Imm^Imm2);
|
|
if (isRunOfOnes(Imm, MB, ME)) {
|
|
SDOperand Tmp1, Tmp2;
|
|
Select(Tmp1, N->getOperand(0).getOperand(0));
|
|
Select(Tmp2, N->getOperand(0).getOperand(1));
|
|
Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32,
|
|
Tmp1, Tmp2,
|
|
getI32Imm(0), getI32Imm(MB),
|
|
getI32Imm(ME)), 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
if (SDNode *I = SelectBitfieldInsert(N)) {
|
|
Result = CodeGenMap[Op] = SDOperand(I, 0);
|
|
return;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
case ISD::SHL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
|
|
SDOperand Val;
|
|
Select(Val, N->getOperand(0).getOperand(0));
|
|
Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
|
|
Val, getI32Imm(SH), getI32Imm(MB),
|
|
getI32Imm(ME));
|
|
return;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::SRL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
|
|
SDOperand Val;
|
|
Select(Val, N->getOperand(0).getOperand(0));
|
|
Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32,
|
|
Val, getI32Imm(SH & 0x1F), getI32Imm(MB),
|
|
getI32Imm(ME));
|
|
return;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::SELECT_CC: {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
|
|
// handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
|
|
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
|
|
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
|
|
if (N1C->isNullValue() && N3C->isNullValue() &&
|
|
N2C->getValue() == 1ULL && CC == ISD::SETNE) {
|
|
SDOperand LHS;
|
|
Select(LHS, N->getOperand(0));
|
|
SDNode *Tmp =
|
|
CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
|
|
LHS, getI32Imm(~0U));
|
|
Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
|
|
SDOperand(Tmp, 0), LHS,
|
|
SDOperand(Tmp, 1));
|
|
return;
|
|
}
|
|
|
|
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
|
|
unsigned BROpc = getBCCForSetCC(CC);
|
|
|
|
bool isFP = MVT::isFloatingPoint(N->getValueType(0));
|
|
unsigned SelectCCOp;
|
|
if (MVT::isInteger(N->getValueType(0)))
|
|
SelectCCOp = PPC::SELECT_CC_Int;
|
|
else if (N->getValueType(0) == MVT::f32)
|
|
SelectCCOp = PPC::SELECT_CC_F4;
|
|
else
|
|
SelectCCOp = PPC::SELECT_CC_F8;
|
|
SDOperand N2, N3;
|
|
Select(N2, N->getOperand(2));
|
|
Select(N3, N->getOperand(3));
|
|
Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
|
|
N2, N3, getI32Imm(BROpc));
|
|
return;
|
|
}
|
|
case ISD::BR_CC: {
|
|
SDOperand Chain;
|
|
Select(Chain, N->getOperand(0));
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
|
|
SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
|
|
Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other,
|
|
CondCode, getI32Imm(getBCCForSetCC(CC)),
|
|
N->getOperand(4), Chain);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(Result, Op);
|
|
}
|
|
|
|
|
|
/// createPPCISelDag - This pass converts a legalized DAG into a
|
|
/// PowerPC-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
|
|
return new PPCDAGToDAGISel(TM);
|
|
}
|
|
|