mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
Mirror of https://github.com/RPCS3/llvm-mirror
e9267f10c7
LiveVariables add implicit kills to correctly track partial register kills. This works well enough and is fairly accurate. But coalescer can make it impossible to maintain these markers. e.g. BL <ga:sss1>, %R0<kill,undef>, %S0<kill>, %R0<imp-def>, %R1<imp-def,dead>, %R2<imp-def,dead>, %R3<imp-def,dead>, %R12<imp-def,dead>, %LR<imp-def,dead>, %D0<imp-def>, ... ... %reg1031<def> = FLDS <cp#1>, 0, 14, %reg0, Mem:LD4[ConstantPool] ... %S0<def> = FCPYS %reg1031<kill>, 14, %reg0, %D0<imp-use,kill> When reg1031 and S0 are coalesced, the copy (FCPYS) will be eliminated the the implicit-kill of D0 is lost. In this case it's possible to move the marker to the FLDS. But in many cases, this is not possible. Suppose %reg1031<def> = FOO <cp#1>, %D0<imp-def> ... %S0<def> = FCPYS %reg1031<kill>, 14, %reg0, %D0<imp-use,kill> When FCPYS goes away, the definition of S0 is the "FOO" instruction. However, transferring the D0 implicit-kill to FOO doesn't work since it is the def of D0 itself. We need to fix this in another time by introducing a "kill" pseudo instruction to track liveness. Disabling the assertion is not ideal, but machine verifier is doing that job now. It's important to know double-def is not a miscomputation since it means a register should be free but it's not tracked as free. It's a performance issue instead. llvm-svn: 82677 |
||
---|---|---|
autoconf | ||
bindings | ||
cmake | ||
docs | ||
examples | ||
include | ||
lib | ||
projects | ||
runtime | ||
test | ||
tools | ||
unittests | ||
utils | ||
website | ||
win32 | ||
Xcode | ||
build-for-llvm-top.sh | ||
CMakeLists.txt | ||
configure | ||
CREDITS.TXT | ||
LICENSE.TXT | ||
llvm.spec.in | ||
Makefile | ||
Makefile.common | ||
Makefile.config.in | ||
Makefile.rules | ||
ModuleInfo.txt | ||
README.txt |
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the HTML documentation provided in docs/index.html for further assistance with LLVM.