mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
4933a85499
a normal base class that provides all common "call" functionality. This merges two complex CRTP mixins for the common "call" logic and common operand bundle logic into a single, normal base class of `CallInst` and `InvokeInst`. Going forward, users can typically `dyn_cast<CallBase>` and use the resulting API. No more need for the `CallSite` wrapper. I'm planning to migrate current usage of the wrapper to directly use the base class and then it can be removed, but those are simpler and much more incremental steps. The big change is to introduce this abstraction into the type system. I've tried to do some basic simplifications of the APIs that I couldn't really help but touch as part of this: - I've tried to organize the attribute API and bundle API into groups to make understanding the API of `CallBase` easier. Without this, I wasn't able to navigate the API sanely for all of the ways I needed to modify it. - I've added what seem like more clear and consistent APIs for getting at the called operand. These ended up being especially useful to consolidate the *numerous* duplicated code paths trying to do this. - I've largely reworked the organization and implementation of the APIs for computing the argument operands as they needed to change to work with the new subclass approach. To minimize any cost associated with this abstraction, I've moved the operand layout in memory to store the called operand last. This makes its position relative to the end of the operand array the same, regardless of the subclass. It should make it much cheaper to reference from the `CallBase` abstraction, and this is likely one of the most frequent things to query. We do still pay one abstraction penalty here: we have to branch to determine whether there are 0 or 2 extra operands when computing the end of the argument operand sequence. However, that seems both rare and should optimize well. I've implemented this in a way specifically designed to allow it to optimize fairly well. If this shows up in profiles, we can add overrides of the relevant methods to the subclasses that bypass this penalty. It seems very unlikely that this will be an issue as the code was *already* dealing with an ever present abstraction of whether or not there are operand bundles, so this isn't the first branch to go into the computation. I've tried to remove as much of the obvious vestigial API surface of the old CRTP implementation as I could, but I suspect there is further cleanup that should now be possible, especially around the operand bundle APIs. I'm leaving all of that for future work in this patch as enough things are changing here as-is. One thing that made this harder for me to reason about and debug was the pervasive use of unsigned values in subtraction and other arithmetic computations. I had to debug more than one unintentional wrap. I've switched a few of these to use `int` which seems substantially simpler, but I've held back from doing this more broadly to avoid creating confusing divergence within a single class's API. I also worked to remove all of the magic numbers used to index into operands, putting them behind named constants or putting them into a single method with a comment and strictly using the method elsewhere. This was necessary to be able to re-layout the operands as discussed above. Thanks to Ben for reviewing this (somewhat large and awkward) patch! Differential Revision: https://reviews.llvm.org/D54788 llvm-svn: 347452
724 lines
24 KiB
C++
724 lines
24 KiB
C++
//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the CallSite class, which is a handy wrapper for code that
|
|
// wants to treat Call and Invoke instructions in a generic way. When in non-
|
|
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
|
|
// Finally, when some degree of customization is necessary between these two
|
|
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
|
|
//
|
|
// NOTE: These classes are supposed to have "value semantics". So they should be
|
|
// passed by value, not by reference; they should not be "new"ed or "delete"d.
|
|
// They are efficiently copyable, assignable and constructable, with cost
|
|
// equivalent to copying a pointer (notice that they have only a single data
|
|
// member). The internal representation carries a flag which indicates which of
|
|
// the two variants is enclosed. This allows for cheaper checks when various
|
|
// accessors of CallSite are employed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CALLSITE_H
|
|
#define LLVM_IR_CALLSITE_H
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
namespace Intrinsic {
|
|
enum ID : unsigned;
|
|
}
|
|
|
|
template <typename FunTy = const Function,
|
|
typename BBTy = const BasicBlock,
|
|
typename ValTy = const Value,
|
|
typename UserTy = const User,
|
|
typename UseTy = const Use,
|
|
typename InstrTy = const Instruction,
|
|
typename CallTy = const CallInst,
|
|
typename InvokeTy = const InvokeInst,
|
|
typename IterTy = User::const_op_iterator>
|
|
class CallSiteBase {
|
|
protected:
|
|
PointerIntPair<InstrTy*, 1, bool> I;
|
|
|
|
CallSiteBase() = default;
|
|
CallSiteBase(CallTy *CI) : I(CI, true) { assert(CI); }
|
|
CallSiteBase(InvokeTy *II) : I(II, false) { assert(II); }
|
|
explicit CallSiteBase(ValTy *II) { *this = get(II); }
|
|
|
|
private:
|
|
/// This static method is like a constructor. It will create an appropriate
|
|
/// call site for a Call or Invoke instruction, but it can also create a null
|
|
/// initialized CallSiteBase object for something which is NOT a call site.
|
|
static CallSiteBase get(ValTy *V) {
|
|
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
|
|
if (II->getOpcode() == Instruction::Call)
|
|
return CallSiteBase(static_cast<CallTy*>(II));
|
|
else if (II->getOpcode() == Instruction::Invoke)
|
|
return CallSiteBase(static_cast<InvokeTy*>(II));
|
|
}
|
|
return CallSiteBase();
|
|
}
|
|
|
|
public:
|
|
/// Return true if a CallInst is enclosed. Note that !isCall() does not mean
|
|
/// an InvokeInst is enclosed. It may also signify a NULL instruction pointer.
|
|
bool isCall() const { return I.getInt(); }
|
|
|
|
/// Return true if a InvokeInst is enclosed.
|
|
bool isInvoke() const { return getInstruction() && !I.getInt(); }
|
|
|
|
InstrTy *getInstruction() const { return I.getPointer(); }
|
|
InstrTy *operator->() const { return I.getPointer(); }
|
|
explicit operator bool() const { return I.getPointer(); }
|
|
|
|
/// Get the basic block containing the call site.
|
|
BBTy* getParent() const { return getInstruction()->getParent(); }
|
|
|
|
/// Return the pointer to function that is being called.
|
|
ValTy *getCalledValue() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return *getCallee();
|
|
}
|
|
|
|
/// Return the function being called if this is a direct call, otherwise
|
|
/// return null (if it's an indirect call).
|
|
FunTy *getCalledFunction() const {
|
|
return dyn_cast<FunTy>(getCalledValue());
|
|
}
|
|
|
|
/// Return true if the callsite is an indirect call.
|
|
bool isIndirectCall() const {
|
|
const Value *V = getCalledValue();
|
|
if (!V)
|
|
return false;
|
|
if (isa<FunTy>(V) || isa<Constant>(V))
|
|
return false;
|
|
if (const CallInst *CI = dyn_cast<CallInst>(getInstruction())) {
|
|
if (CI->isInlineAsm())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Set the callee to the specified value.
|
|
void setCalledFunction(Value *V) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
*getCallee() = V;
|
|
}
|
|
|
|
/// Return the intrinsic ID of the intrinsic called by this CallSite,
|
|
/// or Intrinsic::not_intrinsic if the called function is not an
|
|
/// intrinsic, or if this CallSite is an indirect call.
|
|
Intrinsic::ID getIntrinsicID() const {
|
|
if (auto *F = getCalledFunction())
|
|
return F->getIntrinsicID();
|
|
// Don't use Intrinsic::not_intrinsic, as it will require pulling
|
|
// Intrinsics.h into every header that uses CallSite.
|
|
return static_cast<Intrinsic::ID>(0);
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to the callee operand's Use.
|
|
bool isCallee(Value::const_user_iterator UI) const {
|
|
return isCallee(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether this Use is the callee operand's Use.
|
|
bool isCallee(const Use *U) const { return getCallee() == U; }
|
|
|
|
/// Determine whether the passed iterator points to an argument operand.
|
|
bool isArgOperand(Value::const_user_iterator UI) const {
|
|
return isArgOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to an argument operand.
|
|
bool isArgOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
return arg_begin() <= U && U < arg_end();
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to a bundle operand.
|
|
bool isBundleOperand(Value::const_user_iterator UI) const {
|
|
return isBundleOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to a bundle operand.
|
|
bool isBundleOperand(const Use *U) const {
|
|
assert(getInstruction() == U->getUser());
|
|
if (!hasOperandBundles())
|
|
return false;
|
|
unsigned OperandNo = U - (*this)->op_begin();
|
|
return getBundleOperandsStartIndex() <= OperandNo &&
|
|
OperandNo < getBundleOperandsEndIndex();
|
|
}
|
|
|
|
/// Determine whether the passed iterator points to a data operand.
|
|
bool isDataOperand(Value::const_user_iterator UI) const {
|
|
return isDataOperand(&UI.getUse());
|
|
}
|
|
|
|
/// Determine whether the passed use points to a data operand.
|
|
bool isDataOperand(const Use *U) const {
|
|
return data_operands_begin() <= U && U < data_operands_end();
|
|
}
|
|
|
|
ValTy *getArgument(unsigned ArgNo) const {
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
return *(arg_begin() + ArgNo);
|
|
}
|
|
|
|
void setArgument(unsigned ArgNo, Value* newVal) {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
|
|
getInstruction()->setOperand(ArgNo, newVal);
|
|
}
|
|
|
|
/// Given a value use iterator, returns the argument that corresponds to it.
|
|
/// Iterator must actually correspond to an argument.
|
|
unsigned getArgumentNo(Value::const_user_iterator I) const {
|
|
return getArgumentNo(&I.getUse());
|
|
}
|
|
|
|
/// Given a use for an argument, get the argument number that corresponds to
|
|
/// it.
|
|
unsigned getArgumentNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isArgOperand(U) && "Argument # out of range!");
|
|
return U - arg_begin();
|
|
}
|
|
|
|
/// The type of iterator to use when looping over actual arguments at this
|
|
/// call site.
|
|
using arg_iterator = IterTy;
|
|
|
|
iterator_range<IterTy> args() const {
|
|
return make_range(arg_begin(), arg_end());
|
|
}
|
|
bool arg_empty() const { return arg_end() == arg_begin(); }
|
|
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
|
|
|
|
/// Given a value use iterator, return the data operand corresponding to it.
|
|
/// Iterator must actually correspond to a data operand.
|
|
unsigned getDataOperandNo(Value::const_user_iterator UI) const {
|
|
return getDataOperandNo(&UI.getUse());
|
|
}
|
|
|
|
/// Given a use for a data operand, get the data operand number that
|
|
/// corresponds to it.
|
|
unsigned getDataOperandNo(const Use *U) const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
assert(isDataOperand(U) && "Data operand # out of range!");
|
|
return U - data_operands_begin();
|
|
}
|
|
|
|
/// Type of iterator to use when looping over data operands at this call site
|
|
/// (see below).
|
|
using data_operand_iterator = IterTy;
|
|
|
|
/// data_operands_begin/data_operands_end - Return iterators iterating over
|
|
/// the call / invoke argument list and bundle operands. For invokes, this is
|
|
/// the set of instruction operands except the invoke target and the two
|
|
/// successor blocks; and for calls this is the set of instruction operands
|
|
/// except the call target.
|
|
|
|
IterTy data_operands_begin() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_begin();
|
|
}
|
|
IterTy data_operands_end() const {
|
|
assert(getInstruction() && "Not a call or invoke instruction!");
|
|
return (*this)->op_end() - (isCall() ? 1 : 3);
|
|
}
|
|
iterator_range<IterTy> data_ops() const {
|
|
return make_range(data_operands_begin(), data_operands_end());
|
|
}
|
|
bool data_operands_empty() const {
|
|
return data_operands_end() == data_operands_begin();
|
|
}
|
|
unsigned data_operands_size() const {
|
|
return std::distance(data_operands_begin(), data_operands_end());
|
|
}
|
|
|
|
/// Return the type of the instruction that generated this call site.
|
|
Type *getType() const { return (*this)->getType(); }
|
|
|
|
/// Return the caller function for this call site.
|
|
FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
|
|
|
|
/// Tests if this call site must be tail call optimized. Only a CallInst can
|
|
/// be tail call optimized.
|
|
bool isMustTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isMustTailCall();
|
|
}
|
|
|
|
/// Tests if this call site is marked as a tail call.
|
|
bool isTailCall() const {
|
|
return isCall() && cast<CallInst>(getInstruction())->isTailCall();
|
|
}
|
|
|
|
#define CALLSITE_DELEGATE_GETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
return isCall() \
|
|
? cast<CallInst>(II)->METHOD \
|
|
: cast<InvokeInst>(II)->METHOD
|
|
|
|
#define CALLSITE_DELEGATE_SETTER(METHOD) \
|
|
InstrTy *II = getInstruction(); \
|
|
if (isCall()) \
|
|
cast<CallInst>(II)->METHOD; \
|
|
else \
|
|
cast<InvokeInst>(II)->METHOD
|
|
|
|
unsigned getNumArgOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumArgOperands());
|
|
}
|
|
|
|
ValTy *getArgOperand(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getArgOperand(i));
|
|
}
|
|
|
|
ValTy *getReturnedArgOperand() const {
|
|
CALLSITE_DELEGATE_GETTER(getReturnedArgOperand());
|
|
}
|
|
|
|
bool isInlineAsm() const {
|
|
if (isCall())
|
|
return cast<CallInst>(getInstruction())->isInlineAsm();
|
|
return false;
|
|
}
|
|
|
|
/// Get the calling convention of the call.
|
|
CallingConv::ID getCallingConv() const {
|
|
CALLSITE_DELEGATE_GETTER(getCallingConv());
|
|
}
|
|
/// Set the calling convention of the call.
|
|
void setCallingConv(CallingConv::ID CC) {
|
|
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
|
|
}
|
|
|
|
FunctionType *getFunctionType() const {
|
|
CALLSITE_DELEGATE_GETTER(getFunctionType());
|
|
}
|
|
|
|
void mutateFunctionType(FunctionType *Ty) const {
|
|
CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty));
|
|
}
|
|
|
|
/// Get the parameter attributes of the call.
|
|
AttributeList getAttributes() const {
|
|
CALLSITE_DELEGATE_GETTER(getAttributes());
|
|
}
|
|
/// Set the parameter attributes of the call.
|
|
void setAttributes(AttributeList PAL) {
|
|
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind));
|
|
}
|
|
|
|
void addAttribute(unsigned i, Attribute Attr) {
|
|
CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr));
|
|
}
|
|
|
|
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeAttribute(unsigned i, StringRef Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind));
|
|
}
|
|
|
|
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind));
|
|
}
|
|
|
|
/// Return true if this function has the given attribute.
|
|
bool hasFnAttr(Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// Return true if this function has the given attribute.
|
|
bool hasFnAttr(StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind));
|
|
}
|
|
|
|
/// Return true if this return value has the given attribute.
|
|
bool hasRetAttr(Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind));
|
|
}
|
|
|
|
/// Return true if the call or the callee has the given attribute.
|
|
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
Attribute getAttribute(unsigned i, StringRef Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind));
|
|
}
|
|
|
|
/// Return true if the data operand at index \p i directly or indirectly has
|
|
/// the attribute \p A.
|
|
///
|
|
/// Normal call or invoke arguments have per operand attributes, as specified
|
|
/// in the attribute set attached to this instruction, while operand bundle
|
|
/// operands may have some attributes implied by the type of its containing
|
|
/// operand bundle.
|
|
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
|
|
CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind));
|
|
}
|
|
|
|
/// Extract the alignment of the return value.
|
|
unsigned getRetAlignment() const {
|
|
CALLSITE_DELEGATE_GETTER(getRetAlignment());
|
|
}
|
|
|
|
/// Extract the alignment for a call or parameter (0=unknown).
|
|
unsigned getParamAlignment(unsigned ArgNo) const {
|
|
CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo));
|
|
}
|
|
|
|
/// Extract the number of dereferenceable bytes for a call or parameter
|
|
/// (0=unknown).
|
|
uint64_t getDereferenceableBytes(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i));
|
|
}
|
|
|
|
/// Extract the number of dereferenceable_or_null bytes for a call or
|
|
/// parameter (0=unknown).
|
|
uint64_t getDereferenceableOrNullBytes(unsigned i) const {
|
|
CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i));
|
|
}
|
|
|
|
/// Determine if the return value is marked with NoAlias attribute.
|
|
bool returnDoesNotAlias() const {
|
|
CALLSITE_DELEGATE_GETTER(returnDoesNotAlias());
|
|
}
|
|
|
|
/// Return true if the call should not be treated as a call to a builtin.
|
|
bool isNoBuiltin() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoBuiltin());
|
|
}
|
|
|
|
/// Return true if the call requires strict floating point semantics.
|
|
bool isStrictFP() const {
|
|
CALLSITE_DELEGATE_GETTER(isStrictFP());
|
|
}
|
|
|
|
/// Return true if the call should not be inlined.
|
|
bool isNoInline() const {
|
|
CALLSITE_DELEGATE_GETTER(isNoInline());
|
|
}
|
|
void setIsNoInline(bool Value = true) {
|
|
CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
|
|
}
|
|
|
|
/// Determine if the call does not access memory.
|
|
bool doesNotAccessMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
|
|
}
|
|
void setDoesNotAccessMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
|
|
}
|
|
|
|
/// Determine if the call does not access or only reads memory.
|
|
bool onlyReadsMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
|
|
}
|
|
void setOnlyReadsMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
|
|
}
|
|
|
|
/// Determine if the call does not access or only writes memory.
|
|
bool doesNotReadMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReadMemory());
|
|
}
|
|
void setDoesNotReadMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory());
|
|
}
|
|
|
|
/// Determine if the call can access memmory only using pointers based
|
|
/// on its arguments.
|
|
bool onlyAccessesArgMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory());
|
|
}
|
|
void setOnlyAccessesArgMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory());
|
|
}
|
|
|
|
/// Determine if the function may only access memory that is
|
|
/// inaccessible from the IR.
|
|
bool onlyAccessesInaccessibleMemory() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory());
|
|
}
|
|
void setOnlyAccessesInaccessibleMemory() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory());
|
|
}
|
|
|
|
/// Determine if the function may only access memory that is
|
|
/// either inaccessible from the IR or pointed to by its arguments.
|
|
bool onlyAccessesInaccessibleMemOrArgMem() const {
|
|
CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem());
|
|
}
|
|
void setOnlyAccessesInaccessibleMemOrArgMem() {
|
|
CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem());
|
|
}
|
|
|
|
/// Determine if the call cannot return.
|
|
bool doesNotReturn() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotReturn());
|
|
}
|
|
void setDoesNotReturn() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
|
|
}
|
|
|
|
/// Determine if the call cannot unwind.
|
|
bool doesNotThrow() const {
|
|
CALLSITE_DELEGATE_GETTER(doesNotThrow());
|
|
}
|
|
void setDoesNotThrow() {
|
|
CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
|
|
}
|
|
|
|
/// Determine if the call can be duplicated.
|
|
bool cannotDuplicate() const {
|
|
CALLSITE_DELEGATE_GETTER(cannotDuplicate());
|
|
}
|
|
void setCannotDuplicate() {
|
|
CALLSITE_DELEGATE_SETTER(setCannotDuplicate());
|
|
}
|
|
|
|
/// Determine if the call is convergent.
|
|
bool isConvergent() const {
|
|
CALLSITE_DELEGATE_GETTER(isConvergent());
|
|
}
|
|
void setConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setConvergent());
|
|
}
|
|
void setNotConvergent() {
|
|
CALLSITE_DELEGATE_SETTER(setNotConvergent());
|
|
}
|
|
|
|
unsigned getNumOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumOperandBundles());
|
|
}
|
|
|
|
bool hasOperandBundles() const {
|
|
CALLSITE_DELEGATE_GETTER(hasOperandBundles());
|
|
}
|
|
|
|
unsigned getBundleOperandsStartIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex());
|
|
}
|
|
|
|
unsigned getBundleOperandsEndIndex() const {
|
|
CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex());
|
|
}
|
|
|
|
unsigned getNumTotalBundleOperands() const {
|
|
CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands());
|
|
}
|
|
|
|
OperandBundleUse getOperandBundleAt(unsigned Index) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(Name));
|
|
}
|
|
|
|
Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(getOperandBundle(ID));
|
|
}
|
|
|
|
unsigned countOperandBundlesOfType(uint32_t ID) const {
|
|
CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID));
|
|
}
|
|
|
|
bool isBundleOperand(unsigned Idx) const {
|
|
CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx));
|
|
}
|
|
|
|
IterTy arg_begin() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_begin());
|
|
}
|
|
|
|
IterTy arg_end() const {
|
|
CALLSITE_DELEGATE_GETTER(arg_end());
|
|
}
|
|
|
|
#undef CALLSITE_DELEGATE_GETTER
|
|
#undef CALLSITE_DELEGATE_SETTER
|
|
|
|
void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
|
|
const Instruction *II = getInstruction();
|
|
// Since this is actually a getter that "looks like" a setter, don't use the
|
|
// above macros to avoid confusion.
|
|
if (isCall())
|
|
cast<CallInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
else
|
|
cast<InvokeInst>(II)->getOperandBundlesAsDefs(Defs);
|
|
}
|
|
|
|
/// Determine whether this data operand is not captured.
|
|
bool doesNotCapture(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
|
|
}
|
|
|
|
/// Determine whether this argument is passed by value.
|
|
bool isByValArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::ByVal);
|
|
}
|
|
|
|
/// Determine whether this argument is passed in an alloca.
|
|
bool isInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::InAlloca);
|
|
}
|
|
|
|
/// Determine whether this argument is passed by value or in an alloca.
|
|
bool isByValOrInAllocaArgument(unsigned ArgNo) const {
|
|
return paramHasAttr(ArgNo, Attribute::ByVal) ||
|
|
paramHasAttr(ArgNo, Attribute::InAlloca);
|
|
}
|
|
|
|
/// Determine if there are is an inalloca argument. Only the last argument can
|
|
/// have the inalloca attribute.
|
|
bool hasInAllocaArgument() const {
|
|
return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
|
|
}
|
|
|
|
bool doesNotAccessMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
bool onlyReadsMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
|
|
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
bool doesNotReadMemory(unsigned OpNo) const {
|
|
return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
|
|
dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
|
|
}
|
|
|
|
/// Return true if the return value is known to be not null.
|
|
/// This may be because it has the nonnull attribute, or because at least
|
|
/// one byte is dereferenceable and the pointer is in addrspace(0).
|
|
bool isReturnNonNull() const {
|
|
if (hasRetAttr(Attribute::NonNull))
|
|
return true;
|
|
else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
|
|
!NullPointerIsDefined(getCaller(),
|
|
getType()->getPointerAddressSpace()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if this CallSite passes the given Value* as an argument to
|
|
/// the called function.
|
|
bool hasArgument(const Value *Arg) const {
|
|
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
|
|
++AI)
|
|
if (AI->get() == Arg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
IterTy getCallee() const {
|
|
return cast<CallBase>(getInstruction())->op_end() - 1;
|
|
}
|
|
};
|
|
|
|
class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use,
|
|
Instruction, CallInst, InvokeInst,
|
|
User::op_iterator> {
|
|
public:
|
|
CallSite() = default;
|
|
CallSite(CallSiteBase B) : CallSiteBase(B) {}
|
|
CallSite(CallInst *CI) : CallSiteBase(CI) {}
|
|
CallSite(InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Instruction *II) : CallSiteBase(II) {}
|
|
explicit CallSite(Value *V) : CallSiteBase(V) {}
|
|
|
|
bool operator==(const CallSite &CS) const { return I == CS.I; }
|
|
bool operator!=(const CallSite &CS) const { return I != CS.I; }
|
|
bool operator<(const CallSite &CS) const {
|
|
return getInstruction() < CS.getInstruction();
|
|
}
|
|
|
|
private:
|
|
friend struct DenseMapInfo<CallSite>;
|
|
|
|
User::op_iterator getCallee() const;
|
|
};
|
|
|
|
template <> struct DenseMapInfo<CallSite> {
|
|
using BaseInfo = DenseMapInfo<decltype(CallSite::I)>;
|
|
|
|
static CallSite getEmptyKey() {
|
|
CallSite CS;
|
|
CS.I = BaseInfo::getEmptyKey();
|
|
return CS;
|
|
}
|
|
|
|
static CallSite getTombstoneKey() {
|
|
CallSite CS;
|
|
CS.I = BaseInfo::getTombstoneKey();
|
|
return CS;
|
|
}
|
|
|
|
static unsigned getHashValue(const CallSite &CS) {
|
|
return BaseInfo::getHashValue(CS.I);
|
|
}
|
|
|
|
static bool isEqual(const CallSite &LHS, const CallSite &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Establish a view to a call site for examination.
|
|
class ImmutableCallSite : public CallSiteBase<> {
|
|
public:
|
|
ImmutableCallSite() = default;
|
|
ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {}
|
|
ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {}
|
|
explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {}
|
|
ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_CALLSITE_H
|