1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/tools/llvm-upgrade/UpgradeInternals.h
Reid Spencer 4149df60dd For PR1256:
Make Signedness information pervasive throughout all types and values.
There is no easy way to get around this. Because the GEP instruction can
index through an arbitrarily complex value structure, it is necessary to
keep track of signedness information throughout that structure. This change
makes Signedness a full class, capable of representing Signedness in
arbitrarily shaped types. The class is then used throughout llvm-upgrade to
track signedness and differentiate between globals, locals, and functions
based on their signedness.

For PR1243:
This patch also removes bogus warnings about renaming internal globals. It
now only emits such warnings when renaming non-internal globals because
they may affect linkage.

llvm-svn: 35234
2007-03-21 17:14:36 +00:00

396 lines
12 KiB
C++

//===-- ParserInternals.h - Definitions internal to the parser --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines the various variables that are shared among the
// different components of the parser...
//
//===----------------------------------------------------------------------===//
#ifndef PARSER_INTERNALS_H
#define PARSER_INTERNALS_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/StringExtras.h"
#include <list>
#include <iostream>
// Global variables exported from the lexer.
extern int yydebug;
extern void error(const std::string& msg, int line = -1);
extern char* Upgradetext;
extern int Upgradeleng;
extern int Upgradelineno;
namespace llvm {
class Module;
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
bool debug, bool addAttrs);
extern std::istream* LexInput;
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an error.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull = false);
/// InlineAsmDescriptor - This is a simple class that holds info about inline
/// asm blocks, for use by ValID.
struct InlineAsmDescriptor {
std::string AsmString, Constraints;
bool HasSideEffects;
InlineAsmDescriptor(const std::string &as, const std::string &c, bool HSE)
: AsmString(as), Constraints(c), HasSideEffects(HSE) {}
};
/// This class keeps track of the signedness of a type or value. It allows the
/// signedness of a composite type to be captured in a relatively simple form.
/// This is needed in order to retain the signedness of pre LLVM 2.0 types so
/// they can be upgraded properly. Signedness of composite types must be
/// captured in order to accurately get the signedness of a value through a
/// GEP instruction.
/// @brief Class to track signedness of types and values.
struct Signedness {
/// The basic kinds of signedness values.
enum Kind {
Signless, ///< The type doesn't have any sign.
Unsigned, ///< The type is an unsigned integer.
Signed, ///< The type is a signed integer.
Named, ///< The type is a named type (probably forward ref or up ref).
Composite ///< The type is composite (struct, array, pointer).
};
private:
/// @brief Keeps track of Signedness for composite types
typedef std::vector<Signedness> SignVector;
Kind kind; ///< The kind of signedness node
union {
SignVector *sv; ///< The vector of Signedness for composite types
std::string *name; ///< The name of the type for named types.
};
public:
/// The Signedness class is used as a member of a union so it cannot have
/// a constructor or assignment operator. This function suffices.
/// @brief Copy one signedness value to another
void copy(const Signedness &that);
/// The Signedness class is used as a member of a union so it cannot have
/// a destructor.
/// @brief Release memory, if any allocated.
void destroy();
/// @brief Make a Signless node.
void makeSignless() { kind = Signless; sv = 0; }
/// @brief Make a Signed node.
void makeSigned() { kind = Signed; sv = 0; }
/// @brief Make an Unsigned node.
void makeUnsigned() { kind = Unsigned; sv = 0; }
/// @brief Make a Named node.
void makeNamed(const std::string& nm){
kind = Named; name = new std::string(nm);
}
/// @brief Make an empty Composite node.
void makeComposite() { kind = Composite; sv = new SignVector(); }
/// @brief Make an Composite node, with the first element given.
void makeComposite(const Signedness &S) {
kind = Composite;
sv = new SignVector();
sv->push_back(S);
}
/// @brief Add an element to a Composite node.
void add(const Signedness &S) {
assert(isComposite() && "Must be composite to use add");
sv->push_back(S);
}
bool operator<(const Signedness &that) const;
bool operator==(const Signedness &that) const;
bool isSigned() const { return kind == Signed; }
bool isUnsigned() const { return kind == Unsigned; }
bool isSignless() const { return kind == Signless; }
bool isNamed() const { return kind == Named; }
bool isComposite() const { return kind == Composite; }
/// This is used by GetElementPtr to extract the sign of an element.
/// @brief Get a specific element from a Composite node.
Signedness get(uint64_t idx) const {
assert(isComposite() && "Invalid Signedness type for get()");
assert(sv && idx < sv->size() && "Invalid index");
return (*sv)[idx];
}
/// @brief Get the name from a Named node.
const std::string& getName() const {
assert(isNamed() && "Can't get name from non-name Sign");
return *name;
}
#ifndef NDEBUG
void dump() const;
#endif
};
// ValID - Represents a reference of a definition of some sort. This may either
// be a numeric reference or a symbolic (%var) reference. This is just a
// discriminated union.
//
// Note that I can't implement this class in a straight forward manner with
// constructors and stuff because it goes in a union.
//
struct ValID {
enum {
NumberVal, NameVal, ConstSIntVal, ConstUIntVal, ConstFPVal, ConstNullVal,
ConstUndefVal, ConstZeroVal, ConstantVal, InlineAsmVal
} Type;
union {
int Num; // If it's a numeric reference
char *Name; // If it's a named reference. Memory must be free'd.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
double ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
Signedness S;
static ValID create(int Num) {
ValID D; D.Type = NumberVal; D.Num = Num; D.S.makeSignless();
return D;
}
static ValID create(char *Name) {
ValID D; D.Type = NameVal; D.Name = Name; D.S.makeSignless();
return D;
}
static ValID create(int64_t Val) {
ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val;
D.S.makeSigned();
return D;
}
static ValID create(uint64_t Val) {
ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val;
D.S.makeUnsigned();
return D;
}
static ValID create(double Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val;
D.S.makeSignless();
return D;
}
static ValID createNull() {
ValID D; D.Type = ConstNullVal;
D.S.makeSignless();
return D;
}
static ValID createUndef() {
ValID D; D.Type = ConstUndefVal;
D.S.makeSignless();
return D;
}
static ValID createZeroInit() {
ValID D; D.Type = ConstZeroVal;
D.S.makeSignless();
return D;
}
static ValID create(Constant *Val) {
ValID D; D.Type = ConstantVal; D.ConstantValue = Val;
D.S.makeSignless();
return D;
}
static ValID createInlineAsm(const std::string &AsmString,
const std::string &Constraints,
bool HasSideEffects) {
ValID D;
D.Type = InlineAsmVal;
D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects);
D.S.makeSignless();
return D;
}
inline void destroy() const {
if (Type == NameVal)
free(Name); // Free this strdup'd memory.
else if (Type == InlineAsmVal)
delete IAD;
}
inline ValID copy() const {
if (Type != NameVal) return *this;
ValID Result = *this;
Result.Name = strdup(Name);
return Result;
}
inline std::string getName() const {
switch (Type) {
case NumberVal : return std::string("#") + itostr(Num);
case NameVal : return Name;
case ConstFPVal : return ftostr(ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
case ConstUIntVal :
case ConstSIntVal : return std::string("%") + itostr(ConstPool64);
case ConstantVal:
if (ConstantValue == ConstantInt::get(Type::Int1Ty, true))
return "true";
if (ConstantValue == ConstantInt::get(Type::Int1Ty, false))
return "false";
return "<constant expression>";
default:
assert(0 && "Unknown value!");
abort();
return "";
}
}
bool operator<(const ValID &V) const {
if (Type != V.Type) return Type < V.Type;
switch (Type) {
case NumberVal: return Num < V.Num;
case NameVal: return strcmp(Name, V.Name) < 0;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
case ConstFPVal: return ConstPoolFP < V.ConstPoolFP;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;
case ConstantVal: return ConstantValue < V.ConstantValue;
default: assert(0 && "Unknown value type!"); return false;
}
}
};
/// The following enums are used to keep track of prior opcodes. The lexer will
/// retain the ability to parse obsolete opcode mnemonics and generates semantic
/// values containing one of these enumerators.
enum TermOps {
RetOp, BrOp, SwitchOp, InvokeOp, UnwindOp, UnreachableOp
};
enum BinaryOps {
AddOp, SubOp, MulOp,
DivOp, UDivOp, SDivOp, FDivOp,
RemOp, URemOp, SRemOp, FRemOp,
AndOp, OrOp, XorOp,
ShlOp, ShrOp, LShrOp, AShrOp,
SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT
};
enum MemoryOps {
MallocOp, FreeOp, AllocaOp, LoadOp, StoreOp, GetElementPtrOp
};
enum OtherOps {
PHIOp, CallOp, SelectOp, UserOp1, UserOp2, VAArg,
ExtractElementOp, InsertElementOp, ShuffleVectorOp,
ICmpOp, FCmpOp
};
enum CastOps {
CastOp, TruncOp, ZExtOp, SExtOp, FPTruncOp, FPExtOp, FPToUIOp, FPToSIOp,
UIToFPOp, SIToFPOp, PtrToIntOp, IntToPtrOp, BitCastOp
};
// An enumeration for the old calling conventions, ala LLVM 1.9
namespace OldCallingConv {
enum ID {
C = 0, CSRet = 1, Fast = 8, Cold = 9, X86_StdCall = 64, X86_FastCall = 65,
None = 99999
};
}
/// These structures are used as the semantic values returned from various
/// productions in the grammar. They simply bundle an LLVM IR object with
/// its Signedness value. These help track signedness through the various
/// productions.
struct TypeInfo {
const llvm::Type *T;
Signedness S;
bool operator<(const TypeInfo& that) const {
if (this == &that)
return false;
if (T < that.T)
return true;
if (T == that.T) {
bool result = S < that.S;
//#define TYPEINFO_DEBUG
#ifdef TYPEINFO_DEBUG
std::cerr << (result?"true ":"false ") << T->getDescription() << " (";
S.dump();
std::cerr << ") < " << that.T->getDescription() << " (";
that.S.dump();
std::cerr << ")\n";
#endif
return result;
}
return false;
}
bool operator==(const TypeInfo& that) const {
if (this == &that)
return true;
return T == that.T && S == that.S;
}
void destroy() { S.destroy(); }
};
struct PATypeInfo {
llvm::PATypeHolder* PAT;
Signedness S;
void destroy() { S.destroy(); delete PAT; }
};
struct ConstInfo {
llvm::Constant* C;
Signedness S;
void destroy() { S.destroy(); }
};
struct ValueInfo {
llvm::Value* V;
Signedness S;
void destroy() { S.destroy(); }
};
struct InstrInfo {
llvm::Instruction *I;
Signedness S;
void destroy() { S.destroy(); }
};
struct TermInstInfo {
llvm::TerminatorInst *TI;
Signedness S;
void destroy() { S.destroy(); }
};
struct PHIListInfo {
std::list<std::pair<llvm::Value*, llvm::BasicBlock*> > *P;
Signedness S;
void destroy() { S.destroy(); delete P; }
};
} // End llvm namespace
#endif