1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Analysis/BranchProbabilityInfo.cpp
Duncan P. N. Exon Smith 3d57886267 IR: Split Metadata from Value
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532.  Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.

I have a follow-up patch prepared for `clang`.  If this breaks other
sub-projects, I apologize in advance :(.  Help me compile it on Darwin
I'll try to fix it.  FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.

This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.

Here's a quick guide for updating your code:

  - `Metadata` is the root of a class hierarchy with three main classes:
    `MDNode`, `MDString`, and `ValueAsMetadata`.  It is distinct from
    the `Value` class hierarchy.  It is typeless -- i.e., instances do
    *not* have a `Type`.

  - `MDNode`'s operands are all `Metadata *` (instead of `Value *`).

  - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
    replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.

    If you're referring solely to resolved `MDNode`s -- post graph
    construction -- just use `MDNode*`.

  - `MDNode` (and the rest of `Metadata`) have only limited support for
    `replaceAllUsesWith()`.

    As long as an `MDNode` is pointing at a forward declaration -- the
    result of `MDNode::getTemporary()` -- it maintains a side map of its
    uses and can RAUW itself.  Once the forward declarations are fully
    resolved RAUW support is dropped on the ground.  This means that
    uniquing collisions on changing operands cause nodes to become
    "distinct".  (This already happened fairly commonly, whenever an
    operand went to null.)

    If you're constructing complex (non self-reference) `MDNode` cycles,
    you need to call `MDNode::resolveCycles()` on each node (or on a
    top-level node that somehow references all of the nodes).  Also,
    don't do that.  Metadata cycles (and the RAUW machinery needed to
    construct them) are expensive.

  - An `MDNode` can only refer to a `Constant` through a bridge called
    `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).

    As a side effect, accessing an operand of an `MDNode` that is known
    to be, e.g., `ConstantInt`, takes three steps: first, cast from
    `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
    third, cast down to `ConstantInt`.

    The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
    metadata schema owners transition away from using `Constant`s when
    the type isn't important (and they don't care about referring to
    `GlobalValue`s).

    In the meantime, I've added transitional API to the `mdconst`
    namespace that matches semantics with the old code, in order to
    avoid adding the error-prone three-step equivalent to every call
    site.  If your old code was:

        MDNode *N = foo();
        bar(isa             <ConstantInt>(N->getOperand(0)));
        baz(cast            <ConstantInt>(N->getOperand(1)));
        bak(cast_or_null    <ConstantInt>(N->getOperand(2)));
        bat(dyn_cast        <ConstantInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));

    you can trivially match its semantics with:

        MDNode *N = foo();
        bar(mdconst::hasa               <ConstantInt>(N->getOperand(0)));
        baz(mdconst::extract            <ConstantInt>(N->getOperand(1)));
        bak(mdconst::extract_or_null    <ConstantInt>(N->getOperand(2)));
        bat(mdconst::dyn_extract        <ConstantInt>(N->getOperand(3)));
        bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));

    and when you transition your metadata schema to `MDInt`:

        MDNode *N = foo();
        bar(isa             <MDInt>(N->getOperand(0)));
        baz(cast            <MDInt>(N->getOperand(1)));
        bak(cast_or_null    <MDInt>(N->getOperand(2)));
        bat(dyn_cast        <MDInt>(N->getOperand(3)));
        bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));

  - A `CallInst` -- specifically, intrinsic instructions -- can refer to
    metadata through a bridge called `MetadataAsValue`.  This is a
    subclass of `Value` where `getType()->isMetadataTy()`.

    `MetadataAsValue` is the *only* class that can legally refer to a
    `LocalAsMetadata`, which is a bridged form of non-`Constant` values
    like `Argument` and `Instruction`.  It can also refer to any other
    `Metadata` subclass.

(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)

llvm-svn: 223802
2014-12-09 18:38:53 +00:00

665 lines
21 KiB
C++

//===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "branch-prob"
INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
"Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
"Branch Probability Analysis", false, true)
char BranchProbabilityInfo::ID = 0;
// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
// ...
// |
// V
// BB1<-+
// | |
// | | (Weight = 124)
// V |
// BB2--+
// |
// | (Weight = 4)
// V
// BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
/// \brief Unreachable-terminating branch taken weight.
///
/// This is the weight for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
static const uint32_t UR_TAKEN_WEIGHT = 1;
/// \brief Unreachable-terminating branch not-taken weight.
///
/// This is the weight for a branch not being taken toward a block that
/// terminates (eventually) in unreachable. Such a branch is essentially never
/// taken. Set the weight to an absurdly high value so that nested loops don't
/// easily subsume it.
static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
/// \brief Weight for a branch taken going into a cold block.
///
/// This is the weight for a branch taken toward a block marked
/// cold. A block is marked cold if it's postdominated by a
/// block containing a call to a cold function. Cold functions
/// are those marked with attribute 'cold'.
static const uint32_t CC_TAKEN_WEIGHT = 4;
/// \brief Weight for a branch not-taken into a cold block.
///
/// This is the weight for a branch not taken toward a block marked
/// cold.
static const uint32_t CC_NONTAKEN_WEIGHT = 64;
static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
/// \brief Invoke-terminating normal branch taken weight
///
/// This is the weight for branching to the normal destination of an invoke
/// instruction. We expect this to happen most of the time. Set the weight to an
/// absurdly high value so that nested loops subsume it.
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
/// \brief Invoke-terminating normal branch not-taken weight.
///
/// This is the weight for branching to the unwind destination of an invoke
/// instruction. This is essentially never taken.
static const uint32_t IH_NONTAKEN_WEIGHT = 1;
// Standard weight value. Used when none of the heuristics set weight for
// the edge.
static const uint32_t NORMAL_WEIGHT = 16;
// Minimum weight of an edge. Please note, that weight is NEVER 0.
static const uint32_t MIN_WEIGHT = 1;
static uint32_t getMaxWeightFor(BasicBlock *BB) {
return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
}
/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
if (isa<UnreachableInst>(TI))
PostDominatedByUnreachable.insert(BB);
return false;
}
SmallVector<unsigned, 4> UnreachableEdges;
SmallVector<unsigned, 4> ReachableEdges;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
if (PostDominatedByUnreachable.count(*I))
UnreachableEdges.push_back(I.getSuccessorIndex());
else
ReachableEdges.push_back(I.getSuccessorIndex());
}
// If all successors are in the set of blocks post-dominated by unreachable,
// this block is too.
if (UnreachableEdges.size() == TI->getNumSuccessors())
PostDominatedByUnreachable.insert(BB);
// Skip probabilities if this block has a single successor or if all were
// reachable.
if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
return false;
uint32_t UnreachableWeight =
std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT);
for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(),
E = UnreachableEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, UnreachableWeight);
if (ReachableEdges.empty())
return true;
uint32_t ReachableWeight =
std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(),
NORMAL_WEIGHT);
for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(),
E = ReachableEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, ReachableWeight);
return true;
}
// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing.
bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 1)
return false;
if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
return false;
MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
if (!WeightsNode)
return false;
// Ensure there are weights for all of the successors. Note that the first
// operand to the metadata node is a name, not a weight.
if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
return false;
// Build up the final weights that will be used in a temporary buffer, but
// don't add them until all weihts are present. Each weight value is clamped
// to [1, getMaxWeightFor(BB)].
uint32_t WeightLimit = getMaxWeightFor(BB);
SmallVector<uint32_t, 2> Weights;
Weights.reserve(TI->getNumSuccessors());
for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
ConstantInt *Weight =
mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
if (!Weight)
return false;
Weights.push_back(
std::max<uint32_t>(1, Weight->getLimitedValue(WeightLimit)));
}
assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
setEdgeWeight(BB, i, Weights[i]);
return true;
}
/// \brief Calculate edge weights for edges leading to cold blocks.
///
/// A cold block is one post-dominated by a block with a call to a
/// cold function. Those edges are unlikely to be taken, so we give
/// them relatively low weight.
///
/// Return true if we could compute the weights for cold edges.
/// Return false, otherwise.
bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0)
return false;
// Determine which successors are post-dominated by a cold block.
SmallVector<unsigned, 4> ColdEdges;
SmallVector<unsigned, 4> NormalEdges;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
if (PostDominatedByColdCall.count(*I))
ColdEdges.push_back(I.getSuccessorIndex());
else
NormalEdges.push_back(I.getSuccessorIndex());
// If all successors are in the set of blocks post-dominated by cold calls,
// this block is in the set post-dominated by cold calls.
if (ColdEdges.size() == TI->getNumSuccessors())
PostDominatedByColdCall.insert(BB);
else {
// Otherwise, if the block itself contains a cold function, add it to the
// set of blocks postdominated by a cold call.
assert(!PostDominatedByColdCall.count(BB));
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I))
if (CI->hasFnAttr(Attribute::Cold)) {
PostDominatedByColdCall.insert(BB);
break;
}
}
// Skip probabilities if this block has a single successor.
if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
return false;
uint32_t ColdWeight =
std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT);
for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(),
E = ColdEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, ColdWeight);
if (NormalEdges.empty())
return true;
uint32_t NormalWeight = std::max(
CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT);
for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(),
E = NormalEdges.end();
I != E; ++I)
setEdgeWeight(BB, *I, NormalWeight);
return true;
}
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI || !CI->isEquality())
return false;
Value *LHS = CI->getOperand(0);
if (!LHS->getType()->isPointerTy())
return false;
assert(CI->getOperand(1)->getType()->isPointerTy());
// p != 0 -> isProb = true
// p == 0 -> isProb = false
// p != q -> isProb = true
// p == q -> isProb = false;
unsigned TakenIdx = 0, NonTakenIdx = 1;
bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT);
setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT);
return true;
}
// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
Loop *L = LI->getLoopFor(BB);
if (!L)
return false;
SmallVector<unsigned, 8> BackEdges;
SmallVector<unsigned, 8> ExitingEdges;
SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
if (!L->contains(*I))
ExitingEdges.push_back(I.getSuccessorIndex());
else if (L->getHeader() == *I)
BackEdges.push_back(I.getSuccessorIndex());
else
InEdges.push_back(I.getSuccessorIndex());
}
if (BackEdges.empty() && ExitingEdges.empty())
return false;
if (uint32_t numBackEdges = BackEdges.size()) {
uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
if (backWeight < NORMAL_WEIGHT)
backWeight = NORMAL_WEIGHT;
for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(),
EE = BackEdges.end(); EI != EE; ++EI) {
setEdgeWeight(BB, *EI, backWeight);
}
}
if (uint32_t numInEdges = InEdges.size()) {
uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
if (inWeight < NORMAL_WEIGHT)
inWeight = NORMAL_WEIGHT;
for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(),
EE = InEdges.end(); EI != EE; ++EI) {
setEdgeWeight(BB, *EI, inWeight);
}
}
if (uint32_t numExitingEdges = ExitingEdges.size()) {
uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
if (exitWeight < MIN_WEIGHT)
exitWeight = MIN_WEIGHT;
for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(),
EE = ExitingEdges.end(); EI != EE; ++EI) {
setEdgeWeight(BB, *EI, exitWeight);
}
}
return true;
}
bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI)
return false;
Value *RHS = CI->getOperand(1);
ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
if (!CV)
return false;
bool isProb;
if (CV->isZero()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != 0 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SLT:
// X < 0 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_SGT:
// X > 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
// InstCombine canonicalizes X <= 0 into X < 1.
// X <= 0 -> Unlikely
isProb = false;
} else if (CV->isAllOnesValue()) {
switch (CI->getPredicate()) {
case CmpInst::ICMP_EQ:
// X == -1 -> Unlikely
isProb = false;
break;
case CmpInst::ICMP_NE:
// X != -1 -> Likely
isProb = true;
break;
case CmpInst::ICMP_SGT:
// InstCombine canonicalizes X >= 0 into X > -1.
// X >= 0 -> Likely
isProb = true;
break;
default:
return false;
}
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);
return true;
}
bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) {
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || !BI->isConditional())
return false;
Value *Cond = BI->getCondition();
FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
if (!FCmp)
return false;
bool isProb;
if (FCmp->isEquality()) {
// f1 == f2 -> Unlikely
// f1 != f2 -> Likely
isProb = !FCmp->isTrueWhenEqual();
} else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
// !isnan -> Likely
isProb = true;
} else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
// isnan -> Unlikely
isProb = false;
} else {
return false;
}
unsigned TakenIdx = 0, NonTakenIdx = 1;
if (!isProb)
std::swap(TakenIdx, NonTakenIdx);
setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT);
setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT);
return true;
}
bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) {
InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
if (!II)
return false;
setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT);
setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT);
return true;
}
void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BranchProbabilityInfo::runOnFunction(Function &F) {
DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
<< " ----\n\n");
LastF = &F; // Store the last function we ran on for printing.
LI = &getAnalysis<LoopInfo>();
assert(PostDominatedByUnreachable.empty());
assert(PostDominatedByColdCall.empty());
// Walk the basic blocks in post-order so that we can build up state about
// the successors of a block iteratively.
for (po_iterator<BasicBlock *> I = po_begin(&F.getEntryBlock()),
E = po_end(&F.getEntryBlock());
I != E; ++I) {
DEBUG(dbgs() << "Computing probabilities for " << I->getName() << "\n");
if (calcUnreachableHeuristics(*I))
continue;
if (calcMetadataWeights(*I))
continue;
if (calcColdCallHeuristics(*I))
continue;
if (calcLoopBranchHeuristics(*I))
continue;
if (calcPointerHeuristics(*I))
continue;
if (calcZeroHeuristics(*I))
continue;
if (calcFloatingPointHeuristics(*I))
continue;
calcInvokeHeuristics(*I);
}
PostDominatedByUnreachable.clear();
PostDominatedByColdCall.clear();
return false;
}
void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const {
OS << "---- Branch Probabilities ----\n";
// We print the probabilities from the last function the analysis ran over,
// or the function it is currently running over.
assert(LastF && "Cannot print prior to running over a function");
for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
BI != BE; ++BI) {
for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
SI != SE; ++SI) {
printEdgeProbability(OS << " ", BI, *SI);
}
}
}
uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
uint32_t Sum = 0;
for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex());
uint32_t PrevSum = Sum;
Sum += Weight;
assert(Sum > PrevSum); (void) PrevSum;
}
return Sum;
}
bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
// Hot probability is at least 4/5 = 80%
// FIXME: Compare against a static "hot" BranchProbability.
return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}
BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
uint32_t Sum = 0;
uint32_t MaxWeight = 0;
BasicBlock *MaxSucc = nullptr;
for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
BasicBlock *Succ = *I;
uint32_t Weight = getEdgeWeight(BB, Succ);
uint32_t PrevSum = Sum;
Sum += Weight;
assert(Sum > PrevSum); (void) PrevSum;
if (Weight > MaxWeight) {
MaxWeight = Weight;
MaxSucc = Succ;
}
}
// Hot probability is at least 4/5 = 80%
if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
return MaxSucc;
return nullptr;
}
/// Get the raw edge weight for the edge. If can't find it, return
/// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index
/// to the successors.
uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
DenseMap<Edge, uint32_t>::const_iterator I =
Weights.find(std::make_pair(Src, IndexInSuccessors));
if (I != Weights.end())
return I->second;
return DEFAULT_WEIGHT;
}
uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
succ_const_iterator Dst) const {
return getEdgeWeight(Src, Dst.getSuccessorIndex());
}
/// Get the raw edge weight calculated for the block pair. This returns the sum
/// of all raw edge weights from Src to Dst.
uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
uint32_t Weight = 0;
DenseMap<Edge, uint32_t>::const_iterator MapI;
for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
if (*I == Dst) {
MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex()));
if (MapI != Weights.end())
Weight += MapI->second;
}
return (Weight == 0) ? DEFAULT_WEIGHT : Weight;
}
/// Set the edge weight for a given edge specified by PredBlock and an index
/// to the successors.
void BranchProbabilityInfo::
setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
uint32_t Weight) {
Weights[std::make_pair(Src, IndexInSuccessors)] = Weight;
DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
<< IndexInSuccessors << " successor weight to "
<< Weight << "\n");
}
/// Get an edge's probability, relative to other out-edges from Src.
BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const {
uint32_t N = getEdgeWeight(Src, IndexInSuccessors);
uint32_t D = getSumForBlock(Src);
return BranchProbability(N, D);
}
/// Get the probability of going from Src to Dst. It returns the sum of all
/// probabilities for edges from Src to Dst.
BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
uint32_t N = getEdgeWeight(Src, Dst);
uint32_t D = getSumForBlock(Src);
return BranchProbability(N, D);
}
raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
const BasicBlock *Src,
const BasicBlock *Dst) const {
const BranchProbability Prob = getEdgeProbability(Src, Dst);
OS << "edge " << Src->getName() << " -> " << Dst->getName()
<< " probability is " << Prob
<< (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
return OS;
}