1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 12:41:49 +01:00
llvm-mirror/lib/DebugInfo/DWARF/DWARFDebugFrame.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

688 lines
24 KiB
C++

//===- DWARFDebugFrame.h - Parsing of .debug_frame ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <string>
#include <vector>
using namespace llvm;
using namespace dwarf;
/// \brief Abstract frame entry defining the common interface concrete
/// entries implement.
class llvm::FrameEntry {
public:
enum FrameKind {FK_CIE, FK_FDE};
FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length)
: Kind(K), Offset(Offset), Length(Length) {}
virtual ~FrameEntry() = default;
FrameKind getKind() const { return Kind; }
virtual uint64_t getOffset() const { return Offset; }
/// \brief Parse and store a sequence of CFI instructions from Data,
/// starting at *Offset and ending at EndOffset. If everything
/// goes well, *Offset should be equal to EndOffset when this method
/// returns. Otherwise, an error occurred.
virtual void parseInstructions(DataExtractor Data, uint32_t *Offset,
uint32_t EndOffset);
/// \brief Dump the entry header to the given output stream.
virtual void dumpHeader(raw_ostream &OS) const = 0;
/// \brief Dump the entry's instructions to the given output stream.
virtual void dumpInstructions(raw_ostream &OS) const;
protected:
const FrameKind Kind;
/// \brief Offset of this entry in the section.
uint64_t Offset;
/// \brief Entry length as specified in DWARF.
uint64_t Length;
/// An entry may contain CFI instructions. An instruction consists of an
/// opcode and an optional sequence of operands.
typedef std::vector<uint64_t> Operands;
struct Instruction {
Instruction(uint8_t Opcode)
: Opcode(Opcode)
{}
uint8_t Opcode;
Operands Ops;
};
std::vector<Instruction> Instructions;
/// Convenience methods to add a new instruction with the given opcode and
/// operands to the Instructions vector.
void addInstruction(uint8_t Opcode) {
Instructions.push_back(Instruction(Opcode));
}
void addInstruction(uint8_t Opcode, uint64_t Operand1) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
}
void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
Instructions.push_back(Instruction(Opcode));
Instructions.back().Ops.push_back(Operand1);
Instructions.back().Ops.push_back(Operand2);
}
};
// See DWARF standard v3, section 7.23
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset,
uint32_t EndOffset) {
while (*Offset < EndOffset) {
uint8_t Opcode = Data.getU8(Offset);
// Some instructions have a primary opcode encoded in the top bits.
uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
if (Primary) {
// If it's a primary opcode, the first operand is encoded in the bottom
// bits of the opcode itself.
uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
switch (Primary) {
default: llvm_unreachable("Impossible primary CFI opcode");
case DW_CFA_advance_loc:
case DW_CFA_restore:
addInstruction(Primary, Op1);
break;
case DW_CFA_offset:
addInstruction(Primary, Op1, Data.getULEB128(Offset));
break;
}
} else {
// Extended opcode - its value is Opcode itself.
switch (Opcode) {
default: llvm_unreachable("Invalid extended CFI opcode");
case DW_CFA_nop:
case DW_CFA_remember_state:
case DW_CFA_restore_state:
case DW_CFA_GNU_window_save:
// No operands
addInstruction(Opcode);
break;
case DW_CFA_set_loc:
// Operands: Address
addInstruction(Opcode, Data.getAddress(Offset));
break;
case DW_CFA_advance_loc1:
// Operands: 1-byte delta
addInstruction(Opcode, Data.getU8(Offset));
break;
case DW_CFA_advance_loc2:
// Operands: 2-byte delta
addInstruction(Opcode, Data.getU16(Offset));
break;
case DW_CFA_advance_loc4:
// Operands: 4-byte delta
addInstruction(Opcode, Data.getU32(Offset));
break;
case DW_CFA_restore_extended:
case DW_CFA_undefined:
case DW_CFA_same_value:
case DW_CFA_def_cfa_register:
case DW_CFA_def_cfa_offset:
// Operands: ULEB128
addInstruction(Opcode, Data.getULEB128(Offset));
break;
case DW_CFA_def_cfa_offset_sf:
// Operands: SLEB128
addInstruction(Opcode, Data.getSLEB128(Offset));
break;
case DW_CFA_offset_extended:
case DW_CFA_register:
case DW_CFA_def_cfa:
case DW_CFA_val_offset: {
// Operands: ULEB128, ULEB128
// Note: We can not embed getULEB128 directly into function
// argument list. getULEB128 changes Offset and order of evaluation
// for arguments is unspecified.
auto op1 = Data.getULEB128(Offset);
auto op2 = Data.getULEB128(Offset);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_offset_extended_sf:
case DW_CFA_def_cfa_sf:
case DW_CFA_val_offset_sf: {
// Operands: ULEB128, SLEB128
// Note: see comment for the previous case
auto op1 = Data.getULEB128(Offset);
auto op2 = (uint64_t)Data.getSLEB128(Offset);
addInstruction(Opcode, op1, op2);
break;
}
case DW_CFA_def_cfa_expression:
case DW_CFA_expression:
case DW_CFA_val_expression:
// TODO: implement this
report_fatal_error("Values with expressions not implemented yet!");
}
}
}
}
namespace {
/// \brief DWARF Common Information Entry (CIE)
class CIE : public FrameEntry {
public:
// CIEs (and FDEs) are simply container classes, so the only sensible way to
// create them is by providing the full parsed contents in the constructor.
CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
SmallString<8> Augmentation, uint8_t AddressSize,
uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
uint32_t LSDAPointerEncoding)
: FrameEntry(FK_CIE, Offset, Length), Version(Version),
Augmentation(std::move(Augmentation)), AddressSize(AddressSize),
SegmentDescriptorSize(SegmentDescriptorSize),
CodeAlignmentFactor(CodeAlignmentFactor),
DataAlignmentFactor(DataAlignmentFactor),
ReturnAddressRegister(ReturnAddressRegister),
AugmentationData(std::move(AugmentationData)),
FDEPointerEncoding(FDEPointerEncoding),
LSDAPointerEncoding(LSDAPointerEncoding) {}
~CIE() override = default;
StringRef getAugmentationString() const { return Augmentation; }
uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
uint32_t getFDEPointerEncoding() const {
return FDEPointerEncoding;
}
uint32_t getLSDAPointerEncoding() const {
return LSDAPointerEncoding;
}
void dumpHeader(raw_ostream &OS) const override {
OS << format("%08x %08x %08x CIE",
(uint32_t)Offset, (uint32_t)Length, DW_CIE_ID)
<< "\n";
OS << format(" Version: %d\n", Version);
OS << " Augmentation: \"" << Augmentation << "\"\n";
if (Version >= 4) {
OS << format(" Address size: %u\n",
(uint32_t)AddressSize);
OS << format(" Segment desc size: %u\n",
(uint32_t)SegmentDescriptorSize);
}
OS << format(" Code alignment factor: %u\n",
(uint32_t)CodeAlignmentFactor);
OS << format(" Data alignment factor: %d\n",
(int32_t)DataAlignmentFactor);
OS << format(" Return address column: %d\n",
(int32_t)ReturnAddressRegister);
if (!AugmentationData.empty()) {
OS << " Augmentation data: ";
for (uint8_t Byte : AugmentationData)
OS << ' ' << hexdigit(Byte >> 4) << hexdigit(Byte & 0xf);
OS << "\n";
}
OS << "\n";
}
static bool classof(const FrameEntry *FE) {
return FE->getKind() == FK_CIE;
}
private:
/// The following fields are defined in section 6.4.1 of the DWARF standard v4
uint8_t Version;
SmallString<8> Augmentation;
uint8_t AddressSize;
uint8_t SegmentDescriptorSize;
uint64_t CodeAlignmentFactor;
int64_t DataAlignmentFactor;
uint64_t ReturnAddressRegister;
// The following are used when the CIE represents an EH frame entry.
SmallString<8> AugmentationData;
uint32_t FDEPointerEncoding;
uint32_t LSDAPointerEncoding;
};
/// \brief DWARF Frame Description Entry (FDE)
class FDE : public FrameEntry {
public:
// Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
// an offset to the CIE (provided by parsing the FDE header). The CIE itself
// is obtained lazily once it's actually required.
FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
uint64_t InitialLocation, uint64_t AddressRange,
CIE *Cie)
: FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset),
InitialLocation(InitialLocation), AddressRange(AddressRange),
LinkedCIE(Cie) {}
~FDE() override = default;
CIE *getLinkedCIE() const { return LinkedCIE; }
void dumpHeader(raw_ostream &OS) const override {
OS << format("%08x %08x %08x FDE ",
(uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset);
OS << format("cie=%08x pc=%08x...%08x\n",
(int32_t)LinkedCIEOffset,
(uint32_t)InitialLocation,
(uint32_t)InitialLocation + (uint32_t)AddressRange);
}
static bool classof(const FrameEntry *FE) {
return FE->getKind() == FK_FDE;
}
private:
/// The following fields are defined in section 6.4.1 of the DWARF standard v3
uint64_t LinkedCIEOffset;
uint64_t InitialLocation;
uint64_t AddressRange;
CIE *LinkedCIE;
};
/// \brief Types of operands to CF instructions.
enum OperandType {
OT_Unset,
OT_None,
OT_Address,
OT_Offset,
OT_FactoredCodeOffset,
OT_SignedFactDataOffset,
OT_UnsignedFactDataOffset,
OT_Register,
OT_Expression
};
} // end anonymous namespace
/// \brief Initialize the array describing the types of operands.
static ArrayRef<OperandType[2]> getOperandTypes() {
static OperandType OpTypes[DW_CFA_restore+1][2];
#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
do { \
OpTypes[OP][0] = OPTYPE0; \
OpTypes[OP][1] = OPTYPE1; \
} while (false)
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
DECLARE_OP1(DW_CFA_set_loc, OT_Address);
DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
DECLARE_OP1(DW_CFA_undefined, OT_Register);
DECLARE_OP1(DW_CFA_same_value, OT_Register);
DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
DECLARE_OP1(DW_CFA_restore, OT_Register);
DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
DECLARE_OP0(DW_CFA_remember_state);
DECLARE_OP0(DW_CFA_restore_state);
DECLARE_OP0(DW_CFA_GNU_window_save);
DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
DECLARE_OP0(DW_CFA_nop);
#undef DECLARE_OP0
#undef DECLARE_OP1
#undef DECLARE_OP2
return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
}
static ArrayRef<OperandType[2]> OpTypes = getOperandTypes();
/// \brief Print \p Opcode's operand number \p OperandIdx which has
/// value \p Operand.
static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx,
uint64_t Operand, uint64_t CodeAlignmentFactor,
int64_t DataAlignmentFactor) {
assert(OperandIdx < 2);
OperandType Type = OpTypes[Opcode][OperandIdx];
switch (Type) {
case OT_Unset: {
OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
auto OpcodeName = CallFrameString(Opcode);
if (!OpcodeName.empty())
OS << " " << OpcodeName;
else
OS << format(" Opcode %x", Opcode);
break;
}
case OT_None:
break;
case OT_Address:
OS << format(" %" PRIx64, Operand);
break;
case OT_Offset:
// The offsets are all encoded in a unsigned form, but in practice
// consumers use them signed. It's most certainly legacy due to
// the lack of signed variants in the first Dwarf standards.
OS << format(" %+" PRId64, int64_t(Operand));
break;
case OT_FactoredCodeOffset: // Always Unsigned
if (CodeAlignmentFactor)
OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
else
OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
break;
case OT_SignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
break;
case OT_UnsignedFactDataOffset:
if (DataAlignmentFactor)
OS << format(" %" PRId64, Operand * DataAlignmentFactor);
else
OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
break;
case OT_Register:
OS << format(" reg%" PRId64, Operand);
break;
case OT_Expression:
OS << " expression";
break;
}
}
void FrameEntry::dumpInstructions(raw_ostream &OS) const {
uint64_t CodeAlignmentFactor = 0;
int64_t DataAlignmentFactor = 0;
const CIE *Cie = dyn_cast<CIE>(this);
if (!Cie)
Cie = cast<FDE>(this)->getLinkedCIE();
if (Cie) {
CodeAlignmentFactor = Cie->getCodeAlignmentFactor();
DataAlignmentFactor = Cie->getDataAlignmentFactor();
}
for (const auto &Instr : Instructions) {
uint8_t Opcode = Instr.Opcode;
if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
OS << " " << CallFrameString(Opcode) << ":";
for (unsigned i = 0; i < Instr.Ops.size(); ++i)
printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor,
DataAlignmentFactor);
OS << '\n';
}
}
DWARFDebugFrame::DWARFDebugFrame(bool IsEH) : IsEH(IsEH) {}
DWARFDebugFrame::~DWARFDebugFrame() = default;
static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
uint32_t Offset, int Length) {
errs() << "DUMP: ";
for (int i = 0; i < Length; ++i) {
uint8_t c = Data.getU8(&Offset);
errs().write_hex(c); errs() << " ";
}
errs() << "\n";
}
static unsigned getSizeForEncoding(const DataExtractor &Data,
unsigned symbolEncoding) {
unsigned format = symbolEncoding & 0x0f;
switch (format) {
default: llvm_unreachable("Unknown Encoding");
case DW_EH_PE_absptr:
case DW_EH_PE_signed:
return Data.getAddressSize();
case DW_EH_PE_udata2:
case DW_EH_PE_sdata2:
return 2;
case DW_EH_PE_udata4:
case DW_EH_PE_sdata4:
return 4;
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
return 8;
}
}
static uint64_t readPointer(const DataExtractor &Data, uint32_t &Offset,
unsigned Encoding) {
switch (getSizeForEncoding(Data, Encoding)) {
case 2:
return Data.getU16(&Offset);
case 4:
return Data.getU32(&Offset);
case 8:
return Data.getU64(&Offset);
default:
llvm_unreachable("Illegal data size");
}
}
void DWARFDebugFrame::parse(DataExtractor Data) {
uint32_t Offset = 0;
DenseMap<uint32_t, CIE *> CIEs;
while (Data.isValidOffset(Offset)) {
uint32_t StartOffset = Offset;
auto ReportError = [StartOffset](const char *ErrorMsg) {
std::string Str;
raw_string_ostream OS(Str);
OS << format(ErrorMsg, StartOffset);
OS.flush();
report_fatal_error(Str);
};
bool IsDWARF64 = false;
uint64_t Length = Data.getU32(&Offset);
uint64_t Id;
if (Length == UINT32_MAX) {
// DWARF-64 is distinguished by the first 32 bits of the initial length
// field being 0xffffffff. Then, the next 64 bits are the actual entry
// length.
IsDWARF64 = true;
Length = Data.getU64(&Offset);
}
// At this point, Offset points to the next field after Length.
// Length is the structure size excluding itself. Compute an offset one
// past the end of the structure (needed to know how many instructions to
// read).
// TODO: For honest DWARF64 support, DataExtractor will have to treat
// offset_ptr as uint64_t*
uint32_t StartStructureOffset = Offset;
uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
// The Id field's size depends on the DWARF format
Id = Data.getUnsigned(&Offset, (IsDWARF64 && !IsEH) ? 8 : 4);
bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) ||
Id == DW_CIE_ID ||
(IsEH && !Id));
if (IsCIE) {
uint8_t Version = Data.getU8(&Offset);
const char *Augmentation = Data.getCStr(&Offset);
StringRef AugmentationString(Augmentation ? Augmentation : "");
uint8_t AddressSize = Version < 4 ? Data.getAddressSize() :
Data.getU8(&Offset);
Data.setAddressSize(AddressSize);
uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
// Parse the augmentation data for EH CIEs
StringRef AugmentationData("");
uint32_t FDEPointerEncoding = DW_EH_PE_omit;
uint32_t LSDAPointerEncoding = DW_EH_PE_omit;
if (IsEH) {
Optional<uint32_t> PersonalityEncoding;
Optional<uint64_t> Personality;
Optional<uint64_t> AugmentationLength;
uint32_t StartAugmentationOffset;
uint32_t EndAugmentationOffset;
// Walk the augmentation string to get all the augmentation data.
for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) {
switch (AugmentationString[i]) {
default:
ReportError("Unknown augmentation character in entry at %lx");
case 'L':
LSDAPointerEncoding = Data.getU8(&Offset);
break;
case 'P': {
if (Personality)
ReportError("Duplicate personality in entry at %lx");
PersonalityEncoding = Data.getU8(&Offset);
Personality = readPointer(Data, Offset, *PersonalityEncoding);
break;
}
case 'R':
FDEPointerEncoding = Data.getU8(&Offset);
break;
case 'z':
if (i)
ReportError("'z' must be the first character at %lx");
// Parse the augmentation length first. We only parse it if
// the string contains a 'z'.
AugmentationLength = Data.getULEB128(&Offset);
StartAugmentationOffset = Offset;
EndAugmentationOffset = Offset +
static_cast<uint32_t>(*AugmentationLength);
}
}
if (AugmentationLength.hasValue()) {
if (Offset != EndAugmentationOffset)
ReportError("Parsing augmentation data at %lx failed");
AugmentationData = Data.getData().slice(StartAugmentationOffset,
EndAugmentationOffset);
}
}
auto Cie = llvm::make_unique<CIE>(StartOffset, Length, Version,
AugmentationString, AddressSize,
SegmentDescriptorSize,
CodeAlignmentFactor,
DataAlignmentFactor,
ReturnAddressRegister,
AugmentationData, FDEPointerEncoding,
LSDAPointerEncoding);
CIEs[StartOffset] = Cie.get();
Entries.emplace_back(std::move(Cie));
} else {
// FDE
uint64_t CIEPointer = Id;
uint64_t InitialLocation = 0;
uint64_t AddressRange = 0;
CIE *Cie = CIEs[IsEH ? (StartStructureOffset - CIEPointer) : CIEPointer];
if (IsEH) {
// The address size is encoded in the CIE we reference.
if (!Cie)
ReportError("Parsing FDE data at %lx failed due to missing CIE");
InitialLocation = readPointer(Data, Offset,
Cie->getFDEPointerEncoding());
AddressRange = readPointer(Data, Offset,
Cie->getFDEPointerEncoding());
StringRef AugmentationString = Cie->getAugmentationString();
if (!AugmentationString.empty()) {
// Parse the augmentation length and data for this FDE.
uint64_t AugmentationLength = Data.getULEB128(&Offset);
uint32_t EndAugmentationOffset =
Offset + static_cast<uint32_t>(AugmentationLength);
// Decode the LSDA if the CIE augmentation string said we should.
if (Cie->getLSDAPointerEncoding() != DW_EH_PE_omit)
readPointer(Data, Offset, Cie->getLSDAPointerEncoding());
if (Offset != EndAugmentationOffset)
ReportError("Parsing augmentation data at %lx failed");
}
} else {
InitialLocation = Data.getAddress(&Offset);
AddressRange = Data.getAddress(&Offset);
}
Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
InitialLocation, AddressRange,
Cie));
}
Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset);
if (Offset != EndStructureOffset)
ReportError("Parsing entry instructions at %lx failed");
}
}
void DWARFDebugFrame::dump(raw_ostream &OS) const {
OS << "\n";
for (const auto &Entry : Entries) {
Entry->dumpHeader(OS);
Entry->dumpInstructions(OS);
OS << "\n";
}
}