mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
ed5a269ff1
Rather than adding methods for dropping these attributes in various places, add a function that returns an AttrBuilder with these attributes, which can then be used with existing methods for dropping attributes. This is with an eye on D104641, which also needs to drop them from returns, not just parameters. Also be more explicit about the semantics of the method in the documentation. Refer to UB rather than Undef, which is what this is actually about.
1934 lines
68 KiB
C++
1934 lines
68 KiB
C++
//===- Function.cpp - Implement the Global object classes -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Function class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Function.h"
|
|
#include "SymbolTableListTraitsImpl.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/AbstractCallSite.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsAArch64.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/IntrinsicsBPF.h"
|
|
#include "llvm/IR/IntrinsicsHexagon.h"
|
|
#include "llvm/IR/IntrinsicsMips.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/IntrinsicsPowerPC.h"
|
|
#include "llvm/IR/IntrinsicsR600.h"
|
|
#include "llvm/IR/IntrinsicsRISCV.h"
|
|
#include "llvm/IR/IntrinsicsS390.h"
|
|
#include "llvm/IR/IntrinsicsVE.h"
|
|
#include "llvm/IR/IntrinsicsWebAssembly.h"
|
|
#include "llvm/IR/IntrinsicsX86.h"
|
|
#include "llvm/IR/IntrinsicsXCore.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/SymbolTableListTraits.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
// Explicit instantiations of SymbolTableListTraits since some of the methods
|
|
// are not in the public header file...
|
|
template class llvm::SymbolTableListTraits<BasicBlock>;
|
|
|
|
static cl::opt<unsigned> NonGlobalValueMaxNameSize(
|
|
"non-global-value-max-name-size", cl::Hidden, cl::init(1024),
|
|
cl::desc("Maximum size for the name of non-global values."));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Argument Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
|
|
: Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
|
|
setName(Name);
|
|
}
|
|
|
|
void Argument::setParent(Function *parent) {
|
|
Parent = parent;
|
|
}
|
|
|
|
bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
|
|
(AllowUndefOrPoison ||
|
|
getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
|
|
return true;
|
|
else if (getDereferenceableBytes() > 0 &&
|
|
!NullPointerIsDefined(getParent(),
|
|
getType()->getPointerAddressSpace()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool Argument::hasByValAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::ByVal);
|
|
}
|
|
|
|
bool Argument::hasByRefAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
return hasAttribute(Attribute::ByRef);
|
|
}
|
|
|
|
bool Argument::hasSwiftSelfAttr() const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
|
|
}
|
|
|
|
bool Argument::hasSwiftErrorAttr() const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
|
|
}
|
|
|
|
bool Argument::hasInAllocaAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::InAlloca);
|
|
}
|
|
|
|
bool Argument::hasPreallocatedAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
return hasAttribute(Attribute::Preallocated);
|
|
}
|
|
|
|
bool Argument::hasPassPointeeByValueCopyAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
|
|
}
|
|
|
|
bool Argument::hasPointeeInMemoryValueAttr() const {
|
|
if (!getType()->isPointerTy())
|
|
return false;
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
|
|
}
|
|
|
|
/// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
|
|
/// parameter type.
|
|
static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
|
|
// FIXME: All the type carrying attributes are mutually exclusive, so there
|
|
// should be a single query to get the stored type that handles any of them.
|
|
if (Type *ByValTy = ParamAttrs.getByValType())
|
|
return ByValTy;
|
|
if (Type *ByRefTy = ParamAttrs.getByRefType())
|
|
return ByRefTy;
|
|
if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
|
|
return PreAllocTy;
|
|
if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
|
|
return InAllocaTy;
|
|
if (Type *SRetTy = ParamAttrs.getStructRetType())
|
|
return SRetTy;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
|
|
AttributeSet ParamAttrs =
|
|
getParent()->getAttributes().getParamAttributes(getArgNo());
|
|
if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
|
|
return DL.getTypeAllocSize(MemTy);
|
|
return 0;
|
|
}
|
|
|
|
Type *Argument::getPointeeInMemoryValueType() const {
|
|
AttributeSet ParamAttrs =
|
|
getParent()->getAttributes().getParamAttributes(getArgNo());
|
|
return getMemoryParamAllocType(ParamAttrs, getType());
|
|
}
|
|
|
|
unsigned Argument::getParamAlignment() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have alignments");
|
|
return getParent()->getParamAlignment(getArgNo());
|
|
}
|
|
|
|
MaybeAlign Argument::getParamAlign() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have alignments");
|
|
return getParent()->getParamAlign(getArgNo());
|
|
}
|
|
|
|
MaybeAlign Argument::getParamStackAlign() const {
|
|
return getParent()->getParamStackAlign(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamByValType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have byval types");
|
|
return getParent()->getParamByValType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamStructRetType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have sret types");
|
|
return getParent()->getParamStructRetType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamByRefType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have byref types");
|
|
return getParent()->getParamByRefType(getArgNo());
|
|
}
|
|
|
|
Type *Argument::getParamInAllocaType() const {
|
|
assert(getType()->isPointerTy() && "Only pointers have inalloca types");
|
|
return getParent()->getParamInAllocaType(getArgNo());
|
|
}
|
|
|
|
uint64_t Argument::getDereferenceableBytes() const {
|
|
assert(getType()->isPointerTy() &&
|
|
"Only pointers have dereferenceable bytes");
|
|
return getParent()->getParamDereferenceableBytes(getArgNo());
|
|
}
|
|
|
|
uint64_t Argument::getDereferenceableOrNullBytes() const {
|
|
assert(getType()->isPointerTy() &&
|
|
"Only pointers have dereferenceable bytes");
|
|
return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
|
|
}
|
|
|
|
bool Argument::hasNestAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::Nest);
|
|
}
|
|
|
|
bool Argument::hasNoAliasAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoAlias);
|
|
}
|
|
|
|
bool Argument::hasNoCaptureAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoCapture);
|
|
}
|
|
|
|
bool Argument::hasNoFreeAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::NoFree);
|
|
}
|
|
|
|
bool Argument::hasStructRetAttr() const {
|
|
if (!getType()->isPointerTy()) return false;
|
|
return hasAttribute(Attribute::StructRet);
|
|
}
|
|
|
|
bool Argument::hasInRegAttr() const {
|
|
return hasAttribute(Attribute::InReg);
|
|
}
|
|
|
|
bool Argument::hasReturnedAttr() const {
|
|
return hasAttribute(Attribute::Returned);
|
|
}
|
|
|
|
bool Argument::hasZExtAttr() const {
|
|
return hasAttribute(Attribute::ZExt);
|
|
}
|
|
|
|
bool Argument::hasSExtAttr() const {
|
|
return hasAttribute(Attribute::SExt);
|
|
}
|
|
|
|
bool Argument::onlyReadsMemory() const {
|
|
AttributeList Attrs = getParent()->getAttributes();
|
|
return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
|
|
Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
|
|
}
|
|
|
|
void Argument::addAttrs(AttrBuilder &B) {
|
|
AttributeList AL = getParent()->getAttributes();
|
|
AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
|
|
getParent()->setAttributes(AL);
|
|
}
|
|
|
|
void Argument::addAttr(Attribute::AttrKind Kind) {
|
|
getParent()->addParamAttr(getArgNo(), Kind);
|
|
}
|
|
|
|
void Argument::addAttr(Attribute Attr) {
|
|
getParent()->addParamAttr(getArgNo(), Attr);
|
|
}
|
|
|
|
void Argument::removeAttr(Attribute::AttrKind Kind) {
|
|
getParent()->removeParamAttr(getArgNo(), Kind);
|
|
}
|
|
|
|
void Argument::removeAttrs(const AttrBuilder &B) {
|
|
AttributeList AL = getParent()->getAttributes();
|
|
AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
|
|
getParent()->setAttributes(AL);
|
|
}
|
|
|
|
bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
|
|
return getParent()->hasParamAttribute(getArgNo(), Kind);
|
|
}
|
|
|
|
Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
|
|
return getParent()->getParamAttribute(getArgNo(), Kind);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Methods in Function
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LLVMContext &Function::getContext() const {
|
|
return getType()->getContext();
|
|
}
|
|
|
|
unsigned Function::getInstructionCount() const {
|
|
unsigned NumInstrs = 0;
|
|
for (const BasicBlock &BB : BasicBlocks)
|
|
NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
|
|
BB.instructionsWithoutDebug().end());
|
|
return NumInstrs;
|
|
}
|
|
|
|
Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
|
|
const Twine &N, Module &M) {
|
|
return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
|
|
}
|
|
|
|
Function *Function::createWithDefaultAttr(FunctionType *Ty,
|
|
LinkageTypes Linkage,
|
|
unsigned AddrSpace, const Twine &N,
|
|
Module *M) {
|
|
auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
|
|
AttrBuilder B;
|
|
if (M->getUwtable())
|
|
B.addAttribute(Attribute::UWTable);
|
|
switch (M->getFramePointer()) {
|
|
case FramePointerKind::None:
|
|
// 0 ("none") is the default.
|
|
break;
|
|
case FramePointerKind::NonLeaf:
|
|
B.addAttribute("frame-pointer", "non-leaf");
|
|
break;
|
|
case FramePointerKind::All:
|
|
B.addAttribute("frame-pointer", "all");
|
|
break;
|
|
}
|
|
F->addAttributes(AttributeList::FunctionIndex, B);
|
|
return F;
|
|
}
|
|
|
|
void Function::removeFromParent() {
|
|
getParent()->getFunctionList().remove(getIterator());
|
|
}
|
|
|
|
void Function::eraseFromParent() {
|
|
getParent()->getFunctionList().erase(getIterator());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
|
|
// If AS == -1 and we are passed a valid module pointer we place the function
|
|
// in the program address space. Otherwise we default to AS0.
|
|
if (AddrSpace == static_cast<unsigned>(-1))
|
|
return M ? M->getDataLayout().getProgramAddressSpace() : 0;
|
|
return AddrSpace;
|
|
}
|
|
|
|
Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
|
|
const Twine &name, Module *ParentModule)
|
|
: GlobalObject(Ty, Value::FunctionVal,
|
|
OperandTraits<Function>::op_begin(this), 0, Linkage, name,
|
|
computeAddrSpace(AddrSpace, ParentModule)),
|
|
NumArgs(Ty->getNumParams()) {
|
|
assert(FunctionType::isValidReturnType(getReturnType()) &&
|
|
"invalid return type");
|
|
setGlobalObjectSubClassData(0);
|
|
|
|
// We only need a symbol table for a function if the context keeps value names
|
|
if (!getContext().shouldDiscardValueNames())
|
|
SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
|
|
|
|
// If the function has arguments, mark them as lazily built.
|
|
if (Ty->getNumParams())
|
|
setValueSubclassData(1); // Set the "has lazy arguments" bit.
|
|
|
|
if (ParentModule)
|
|
ParentModule->getFunctionList().push_back(this);
|
|
|
|
HasLLVMReservedName = getName().startswith("llvm.");
|
|
// Ensure intrinsics have the right parameter attributes.
|
|
// Note, the IntID field will have been set in Value::setName if this function
|
|
// name is a valid intrinsic ID.
|
|
if (IntID)
|
|
setAttributes(Intrinsic::getAttributes(getContext(), IntID));
|
|
}
|
|
|
|
Function::~Function() {
|
|
dropAllReferences(); // After this it is safe to delete instructions.
|
|
|
|
// Delete all of the method arguments and unlink from symbol table...
|
|
if (Arguments)
|
|
clearArguments();
|
|
|
|
// Remove the function from the on-the-side GC table.
|
|
clearGC();
|
|
}
|
|
|
|
void Function::BuildLazyArguments() const {
|
|
// Create the arguments vector, all arguments start out unnamed.
|
|
auto *FT = getFunctionType();
|
|
if (NumArgs > 0) {
|
|
Arguments = std::allocator<Argument>().allocate(NumArgs);
|
|
for (unsigned i = 0, e = NumArgs; i != e; ++i) {
|
|
Type *ArgTy = FT->getParamType(i);
|
|
assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
|
|
new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
|
|
}
|
|
}
|
|
|
|
// Clear the lazy arguments bit.
|
|
unsigned SDC = getSubclassDataFromValue();
|
|
SDC &= ~(1 << 0);
|
|
const_cast<Function*>(this)->setValueSubclassData(SDC);
|
|
assert(!hasLazyArguments());
|
|
}
|
|
|
|
static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
|
|
return MutableArrayRef<Argument>(Args, Count);
|
|
}
|
|
|
|
bool Function::isConstrainedFPIntrinsic() const {
|
|
switch (getIntrinsicID()) {
|
|
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
|
|
case Intrinsic::INTRINSIC:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
return true;
|
|
#undef INSTRUCTION
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void Function::clearArguments() {
|
|
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
|
|
A.setName("");
|
|
A.~Argument();
|
|
}
|
|
std::allocator<Argument>().deallocate(Arguments, NumArgs);
|
|
Arguments = nullptr;
|
|
}
|
|
|
|
void Function::stealArgumentListFrom(Function &Src) {
|
|
assert(isDeclaration() && "Expected no references to current arguments");
|
|
|
|
// Drop the current arguments, if any, and set the lazy argument bit.
|
|
if (!hasLazyArguments()) {
|
|
assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
|
|
[](const Argument &A) { return A.use_empty(); }) &&
|
|
"Expected arguments to be unused in declaration");
|
|
clearArguments();
|
|
setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
|
|
}
|
|
|
|
// Nothing to steal if Src has lazy arguments.
|
|
if (Src.hasLazyArguments())
|
|
return;
|
|
|
|
// Steal arguments from Src, and fix the lazy argument bits.
|
|
assert(arg_size() == Src.arg_size());
|
|
Arguments = Src.Arguments;
|
|
Src.Arguments = nullptr;
|
|
for (Argument &A : makeArgArray(Arguments, NumArgs)) {
|
|
// FIXME: This does the work of transferNodesFromList inefficiently.
|
|
SmallString<128> Name;
|
|
if (A.hasName())
|
|
Name = A.getName();
|
|
if (!Name.empty())
|
|
A.setName("");
|
|
A.setParent(this);
|
|
if (!Name.empty())
|
|
A.setName(Name);
|
|
}
|
|
|
|
setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
|
|
assert(!hasLazyArguments());
|
|
Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
|
|
}
|
|
|
|
// dropAllReferences() - This function causes all the subinstructions to "let
|
|
// go" of all references that they are maintaining. This allows one to
|
|
// 'delete' a whole class at a time, even though there may be circular
|
|
// references... first all references are dropped, and all use counts go to
|
|
// zero. Then everything is deleted for real. Note that no operations are
|
|
// valid on an object that has "dropped all references", except operator
|
|
// delete.
|
|
//
|
|
void Function::dropAllReferences() {
|
|
setIsMaterializable(false);
|
|
|
|
for (BasicBlock &BB : *this)
|
|
BB.dropAllReferences();
|
|
|
|
// Delete all basic blocks. They are now unused, except possibly by
|
|
// blockaddresses, but BasicBlock's destructor takes care of those.
|
|
while (!BasicBlocks.empty())
|
|
BasicBlocks.begin()->eraseFromParent();
|
|
|
|
// Drop uses of any optional data (real or placeholder).
|
|
if (getNumOperands()) {
|
|
User::dropAllReferences();
|
|
setNumHungOffUseOperands(0);
|
|
setValueSubclassData(getSubclassDataFromValue() & ~0xe);
|
|
}
|
|
|
|
// Metadata is stored in a side-table.
|
|
clearMetadata();
|
|
}
|
|
|
|
void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addAttribute(getContext(), i, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addAttribute(unsigned i, Attribute Attr) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addAttribute(getContext(), i, Attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addAttributes(getContext(), i, Attrs);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeAttribute(getContext(), i, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeAttribute(unsigned i, StringRef Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeAttribute(getContext(), i, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeAttributes(getContext(), i, Attrs);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
|
|
uint64_t Bytes) {
|
|
AttributeList PAL = getAttributes();
|
|
PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
|
|
setAttributes(PAL);
|
|
}
|
|
|
|
DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
|
|
if (&FPType == &APFloat::IEEEsingle()) {
|
|
Attribute Attr = getFnAttribute("denormal-fp-math-f32");
|
|
StringRef Val = Attr.getValueAsString();
|
|
if (!Val.empty())
|
|
return parseDenormalFPAttribute(Val);
|
|
|
|
// If the f32 variant of the attribute isn't specified, try to use the
|
|
// generic one.
|
|
}
|
|
|
|
Attribute Attr = getFnAttribute("denormal-fp-math");
|
|
return parseDenormalFPAttribute(Attr.getValueAsString());
|
|
}
|
|
|
|
const std::string &Function::getGC() const {
|
|
assert(hasGC() && "Function has no collector");
|
|
return getContext().getGC(*this);
|
|
}
|
|
|
|
void Function::setGC(std::string Str) {
|
|
setValueSubclassDataBit(14, !Str.empty());
|
|
getContext().setGC(*this, std::move(Str));
|
|
}
|
|
|
|
void Function::clearGC() {
|
|
if (!hasGC())
|
|
return;
|
|
getContext().deleteGC(*this);
|
|
setValueSubclassDataBit(14, false);
|
|
}
|
|
|
|
bool Function::hasStackProtectorFnAttr() const {
|
|
return hasFnAttribute(Attribute::StackProtect) ||
|
|
hasFnAttribute(Attribute::StackProtectStrong) ||
|
|
hasFnAttribute(Attribute::StackProtectReq);
|
|
}
|
|
|
|
/// Copy all additional attributes (those not needed to create a Function) from
|
|
/// the Function Src to this one.
|
|
void Function::copyAttributesFrom(const Function *Src) {
|
|
GlobalObject::copyAttributesFrom(Src);
|
|
setCallingConv(Src->getCallingConv());
|
|
setAttributes(Src->getAttributes());
|
|
if (Src->hasGC())
|
|
setGC(Src->getGC());
|
|
else
|
|
clearGC();
|
|
if (Src->hasPersonalityFn())
|
|
setPersonalityFn(Src->getPersonalityFn());
|
|
if (Src->hasPrefixData())
|
|
setPrefixData(Src->getPrefixData());
|
|
if (Src->hasPrologueData())
|
|
setPrologueData(Src->getPrologueData());
|
|
}
|
|
|
|
/// Table of string intrinsic names indexed by enum value.
|
|
static const char * const IntrinsicNameTable[] = {
|
|
"not_intrinsic",
|
|
#define GET_INTRINSIC_NAME_TABLE
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_NAME_TABLE
|
|
};
|
|
|
|
/// Table of per-target intrinsic name tables.
|
|
#define GET_INTRINSIC_TARGET_DATA
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_TARGET_DATA
|
|
|
|
bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
|
|
return IID > TargetInfos[0].Count;
|
|
}
|
|
|
|
bool Function::isTargetIntrinsic() const {
|
|
return isTargetIntrinsic(IntID);
|
|
}
|
|
|
|
/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
|
|
/// target as \c Name, or the generic table if \c Name is not target specific.
|
|
///
|
|
/// Returns the relevant slice of \c IntrinsicNameTable
|
|
static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
|
|
assert(Name.startswith("llvm."));
|
|
|
|
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
|
|
// Drop "llvm." and take the first dotted component. That will be the target
|
|
// if this is target specific.
|
|
StringRef Target = Name.drop_front(5).split('.').first;
|
|
auto It = partition_point(
|
|
Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
|
|
// We've either found the target or just fall back to the generic set, which
|
|
// is always first.
|
|
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
|
|
return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
|
|
}
|
|
|
|
/// This does the actual lookup of an intrinsic ID which
|
|
/// matches the given function name.
|
|
Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
|
|
ArrayRef<const char *> NameTable = findTargetSubtable(Name);
|
|
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
|
|
if (Idx == -1)
|
|
return Intrinsic::not_intrinsic;
|
|
|
|
// Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
|
|
// an index into a sub-table.
|
|
int Adjust = NameTable.data() - IntrinsicNameTable;
|
|
Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
|
|
|
|
// If the intrinsic is not overloaded, require an exact match. If it is
|
|
// overloaded, require either exact or prefix match.
|
|
const auto MatchSize = strlen(NameTable[Idx]);
|
|
assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
|
|
bool IsExactMatch = Name.size() == MatchSize;
|
|
return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
|
|
: Intrinsic::not_intrinsic;
|
|
}
|
|
|
|
void Function::recalculateIntrinsicID() {
|
|
StringRef Name = getName();
|
|
if (!Name.startswith("llvm.")) {
|
|
HasLLVMReservedName = false;
|
|
IntID = Intrinsic::not_intrinsic;
|
|
return;
|
|
}
|
|
HasLLVMReservedName = true;
|
|
IntID = lookupIntrinsicID(Name);
|
|
}
|
|
|
|
/// Returns a stable mangling for the type specified for use in the name
|
|
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
|
|
/// of named types is simply their name. Manglings for unnamed types consist
|
|
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
|
|
/// combined with the mangling of their component types. A vararg function
|
|
/// type will have a suffix of 'vararg'. Since function types can contain
|
|
/// other function types, we close a function type mangling with suffix 'f'
|
|
/// which can't be confused with it's prefix. This ensures we don't have
|
|
/// collisions between two unrelated function types. Otherwise, you might
|
|
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
|
|
/// The HasUnnamedType boolean is set if an unnamed type was encountered,
|
|
/// indicating that extra care must be taken to ensure a unique name.
|
|
static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
|
|
std::string Result;
|
|
if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
|
|
Result += "p" + utostr(PTyp->getAddressSpace());
|
|
// Opaque pointer doesn't have pointee type information, so we just mangle
|
|
// address space for opaque pointer.
|
|
if (!PTyp->isOpaque())
|
|
Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
|
|
} else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
|
|
Result += "a" + utostr(ATyp->getNumElements()) +
|
|
getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
|
|
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
|
|
if (!STyp->isLiteral()) {
|
|
Result += "s_";
|
|
if (STyp->hasName())
|
|
Result += STyp->getName();
|
|
else
|
|
HasUnnamedType = true;
|
|
} else {
|
|
Result += "sl_";
|
|
for (auto Elem : STyp->elements())
|
|
Result += getMangledTypeStr(Elem, HasUnnamedType);
|
|
}
|
|
// Ensure nested structs are distinguishable.
|
|
Result += "s";
|
|
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
|
|
Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
|
|
for (size_t i = 0; i < FT->getNumParams(); i++)
|
|
Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
|
|
if (FT->isVarArg())
|
|
Result += "vararg";
|
|
// Ensure nested function types are distinguishable.
|
|
Result += "f";
|
|
} else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
ElementCount EC = VTy->getElementCount();
|
|
if (EC.isScalable())
|
|
Result += "nx";
|
|
Result += "v" + utostr(EC.getKnownMinValue()) +
|
|
getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
|
|
} else if (Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
default: llvm_unreachable("Unhandled type");
|
|
case Type::VoidTyID: Result += "isVoid"; break;
|
|
case Type::MetadataTyID: Result += "Metadata"; break;
|
|
case Type::HalfTyID: Result += "f16"; break;
|
|
case Type::BFloatTyID: Result += "bf16"; break;
|
|
case Type::FloatTyID: Result += "f32"; break;
|
|
case Type::DoubleTyID: Result += "f64"; break;
|
|
case Type::X86_FP80TyID: Result += "f80"; break;
|
|
case Type::FP128TyID: Result += "f128"; break;
|
|
case Type::PPC_FP128TyID: Result += "ppcf128"; break;
|
|
case Type::X86_MMXTyID: Result += "x86mmx"; break;
|
|
case Type::X86_AMXTyID: Result += "x86amx"; break;
|
|
case Type::IntegerTyID:
|
|
Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
StringRef Intrinsic::getBaseName(ID id) {
|
|
assert(id < num_intrinsics && "Invalid intrinsic ID!");
|
|
return IntrinsicNameTable[id];
|
|
}
|
|
|
|
StringRef Intrinsic::getName(ID id) {
|
|
assert(id < num_intrinsics && "Invalid intrinsic ID!");
|
|
assert(!Intrinsic::isOverloaded(id) &&
|
|
"This version of getName does not support overloading");
|
|
return getBaseName(id);
|
|
}
|
|
|
|
static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
|
|
Module *M, FunctionType *FT,
|
|
bool EarlyModuleCheck) {
|
|
|
|
assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
|
|
assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
|
|
"This version of getName is for overloaded intrinsics only");
|
|
(void)EarlyModuleCheck;
|
|
assert((!EarlyModuleCheck || M ||
|
|
!any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
|
|
"Intrinsic overloading on pointer types need to provide a Module");
|
|
bool HasUnnamedType = false;
|
|
std::string Result(Intrinsic::getBaseName(Id));
|
|
for (Type *Ty : Tys)
|
|
Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
|
|
if (HasUnnamedType) {
|
|
assert(M && "unnamed types need a module");
|
|
if (!FT)
|
|
FT = Intrinsic::getType(M->getContext(), Id, Tys);
|
|
else
|
|
assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
|
|
"Provided FunctionType must match arguments");
|
|
return M->getUniqueIntrinsicName(Result, Id, FT);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
|
|
FunctionType *FT) {
|
|
assert(M && "We need to have a Module");
|
|
return getIntrinsicNameImpl(Id, Tys, M, FT, true);
|
|
}
|
|
|
|
std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
|
|
return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
|
|
}
|
|
|
|
/// IIT_Info - These are enumerators that describe the entries returned by the
|
|
/// getIntrinsicInfoTableEntries function.
|
|
///
|
|
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
|
|
enum IIT_Info {
|
|
// Common values should be encoded with 0-15.
|
|
IIT_Done = 0,
|
|
IIT_I1 = 1,
|
|
IIT_I8 = 2,
|
|
IIT_I16 = 3,
|
|
IIT_I32 = 4,
|
|
IIT_I64 = 5,
|
|
IIT_F16 = 6,
|
|
IIT_F32 = 7,
|
|
IIT_F64 = 8,
|
|
IIT_V2 = 9,
|
|
IIT_V4 = 10,
|
|
IIT_V8 = 11,
|
|
IIT_V16 = 12,
|
|
IIT_V32 = 13,
|
|
IIT_PTR = 14,
|
|
IIT_ARG = 15,
|
|
|
|
// Values from 16+ are only encodable with the inefficient encoding.
|
|
IIT_V64 = 16,
|
|
IIT_MMX = 17,
|
|
IIT_TOKEN = 18,
|
|
IIT_METADATA = 19,
|
|
IIT_EMPTYSTRUCT = 20,
|
|
IIT_STRUCT2 = 21,
|
|
IIT_STRUCT3 = 22,
|
|
IIT_STRUCT4 = 23,
|
|
IIT_STRUCT5 = 24,
|
|
IIT_EXTEND_ARG = 25,
|
|
IIT_TRUNC_ARG = 26,
|
|
IIT_ANYPTR = 27,
|
|
IIT_V1 = 28,
|
|
IIT_VARARG = 29,
|
|
IIT_HALF_VEC_ARG = 30,
|
|
IIT_SAME_VEC_WIDTH_ARG = 31,
|
|
IIT_PTR_TO_ARG = 32,
|
|
IIT_PTR_TO_ELT = 33,
|
|
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
|
|
IIT_I128 = 35,
|
|
IIT_V512 = 36,
|
|
IIT_V1024 = 37,
|
|
IIT_STRUCT6 = 38,
|
|
IIT_STRUCT7 = 39,
|
|
IIT_STRUCT8 = 40,
|
|
IIT_F128 = 41,
|
|
IIT_VEC_ELEMENT = 42,
|
|
IIT_SCALABLE_VEC = 43,
|
|
IIT_SUBDIVIDE2_ARG = 44,
|
|
IIT_SUBDIVIDE4_ARG = 45,
|
|
IIT_VEC_OF_BITCASTS_TO_INT = 46,
|
|
IIT_V128 = 47,
|
|
IIT_BF16 = 48,
|
|
IIT_STRUCT9 = 49,
|
|
IIT_V256 = 50,
|
|
IIT_AMX = 51
|
|
};
|
|
|
|
static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
|
|
IIT_Info LastInfo,
|
|
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
|
|
using namespace Intrinsic;
|
|
|
|
bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
|
|
|
|
IIT_Info Info = IIT_Info(Infos[NextElt++]);
|
|
unsigned StructElts = 2;
|
|
|
|
switch (Info) {
|
|
case IIT_Done:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
|
|
return;
|
|
case IIT_VARARG:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
|
|
return;
|
|
case IIT_MMX:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
|
|
return;
|
|
case IIT_AMX:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
|
|
return;
|
|
case IIT_TOKEN:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
|
|
return;
|
|
case IIT_METADATA:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
|
|
return;
|
|
case IIT_F16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
|
|
return;
|
|
case IIT_BF16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
|
|
return;
|
|
case IIT_F32:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
|
|
return;
|
|
case IIT_F64:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
|
|
return;
|
|
case IIT_F128:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
|
|
return;
|
|
case IIT_I1:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
|
|
return;
|
|
case IIT_I8:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
|
|
return;
|
|
case IIT_I16:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
|
|
return;
|
|
case IIT_I32:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
|
|
return;
|
|
case IIT_I64:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
|
|
return;
|
|
case IIT_I128:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
|
|
return;
|
|
case IIT_V1:
|
|
OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V2:
|
|
OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V4:
|
|
OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V8:
|
|
OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V16:
|
|
OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V32:
|
|
OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V64:
|
|
OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V128:
|
|
OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V256:
|
|
OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V512:
|
|
OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_V1024:
|
|
OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_PTR:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
|
|
Infos[NextElt++]));
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_EXTEND_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_TRUNC_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_HALF_VEC_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SAME_VEC_WIDTH_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_PTR_TO_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_PTR_TO_ELT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
|
|
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(
|
|
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
|
|
return;
|
|
}
|
|
case IIT_EMPTYSTRUCT:
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
|
|
return;
|
|
case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
|
|
case IIT_STRUCT2: {
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
|
|
|
|
for (unsigned i = 0; i != StructElts; ++i)
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_SUBDIVIDE2_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SUBDIVIDE4_ARG: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_VEC_ELEMENT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
case IIT_SCALABLE_VEC: {
|
|
DecodeIITType(NextElt, Infos, Info, OutputTable);
|
|
return;
|
|
}
|
|
case IIT_VEC_OF_BITCASTS_TO_INT: {
|
|
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
|
|
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
|
|
ArgInfo));
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
#define GET_INTRINSIC_GENERATOR_GLOBAL
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_GENERATOR_GLOBAL
|
|
|
|
void Intrinsic::getIntrinsicInfoTableEntries(ID id,
|
|
SmallVectorImpl<IITDescriptor> &T){
|
|
// Check to see if the intrinsic's type was expressible by the table.
|
|
unsigned TableVal = IIT_Table[id-1];
|
|
|
|
// Decode the TableVal into an array of IITValues.
|
|
SmallVector<unsigned char, 8> IITValues;
|
|
ArrayRef<unsigned char> IITEntries;
|
|
unsigned NextElt = 0;
|
|
if ((TableVal >> 31) != 0) {
|
|
// This is an offset into the IIT_LongEncodingTable.
|
|
IITEntries = IIT_LongEncodingTable;
|
|
|
|
// Strip sentinel bit.
|
|
NextElt = (TableVal << 1) >> 1;
|
|
} else {
|
|
// Decode the TableVal into an array of IITValues. If the entry was encoded
|
|
// into a single word in the table itself, decode it now.
|
|
do {
|
|
IITValues.push_back(TableVal & 0xF);
|
|
TableVal >>= 4;
|
|
} while (TableVal);
|
|
|
|
IITEntries = IITValues;
|
|
NextElt = 0;
|
|
}
|
|
|
|
// Okay, decode the table into the output vector of IITDescriptors.
|
|
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
|
|
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
|
|
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
|
|
}
|
|
|
|
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
ArrayRef<Type*> Tys, LLVMContext &Context) {
|
|
using namespace Intrinsic;
|
|
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
|
|
switch (D.Kind) {
|
|
case IITDescriptor::Void: return Type::getVoidTy(Context);
|
|
case IITDescriptor::VarArg: return Type::getVoidTy(Context);
|
|
case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
|
|
case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
|
|
case IITDescriptor::Token: return Type::getTokenTy(Context);
|
|
case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
|
|
case IITDescriptor::Half: return Type::getHalfTy(Context);
|
|
case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
|
|
case IITDescriptor::Float: return Type::getFloatTy(Context);
|
|
case IITDescriptor::Double: return Type::getDoubleTy(Context);
|
|
case IITDescriptor::Quad: return Type::getFP128Ty(Context);
|
|
|
|
case IITDescriptor::Integer:
|
|
return IntegerType::get(Context, D.Integer_Width);
|
|
case IITDescriptor::Vector:
|
|
return VectorType::get(DecodeFixedType(Infos, Tys, Context),
|
|
D.Vector_Width);
|
|
case IITDescriptor::Pointer:
|
|
return PointerType::get(DecodeFixedType(Infos, Tys, Context),
|
|
D.Pointer_AddressSpace);
|
|
case IITDescriptor::Struct: {
|
|
SmallVector<Type *, 8> Elts;
|
|
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
|
|
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
|
|
return StructType::get(Context, Elts);
|
|
}
|
|
case IITDescriptor::Argument:
|
|
return Tys[D.getArgumentNumber()];
|
|
case IITDescriptor::ExtendArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::getExtendedElementVectorType(VTy);
|
|
|
|
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
|
|
}
|
|
case IITDescriptor::TruncArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::getTruncatedElementVectorType(VTy);
|
|
|
|
IntegerType *ITy = cast<IntegerType>(Ty);
|
|
assert(ITy->getBitWidth() % 2 == 0);
|
|
return IntegerType::get(Context, ITy->getBitWidth() / 2);
|
|
}
|
|
case IITDescriptor::Subdivide2Argument:
|
|
case IITDescriptor::Subdivide4Argument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
assert(VTy && "Expected an argument of Vector Type");
|
|
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
|
|
return VectorType::getSubdividedVectorType(VTy, SubDivs);
|
|
}
|
|
case IITDescriptor::HalfVecArgument:
|
|
return VectorType::getHalfElementsVectorType(cast<VectorType>(
|
|
Tys[D.getArgumentNumber()]));
|
|
case IITDescriptor::SameVecWidthArgument: {
|
|
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (auto *VTy = dyn_cast<VectorType>(Ty))
|
|
return VectorType::get(EltTy, VTy->getElementCount());
|
|
return EltTy;
|
|
}
|
|
case IITDescriptor::PtrToArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
return PointerType::getUnqual(Ty);
|
|
}
|
|
case IITDescriptor::PtrToElt: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
if (!VTy)
|
|
llvm_unreachable("Expected an argument of Vector Type");
|
|
Type *EltTy = VTy->getElementType();
|
|
return PointerType::getUnqual(EltTy);
|
|
}
|
|
case IITDescriptor::VecElementArgument: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
|
|
return VTy->getElementType();
|
|
llvm_unreachable("Expected an argument of Vector Type");
|
|
}
|
|
case IITDescriptor::VecOfBitcastsToInt: {
|
|
Type *Ty = Tys[D.getArgumentNumber()];
|
|
VectorType *VTy = dyn_cast<VectorType>(Ty);
|
|
assert(VTy && "Expected an argument of Vector Type");
|
|
return VectorType::getInteger(VTy);
|
|
}
|
|
case IITDescriptor::VecOfAnyPtrsToElt:
|
|
// Return the overloaded type (which determines the pointers address space)
|
|
return Tys[D.getOverloadArgNumber()];
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
FunctionType *Intrinsic::getType(LLVMContext &Context,
|
|
ID id, ArrayRef<Type*> Tys) {
|
|
SmallVector<IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(id, Table);
|
|
|
|
ArrayRef<IITDescriptor> TableRef = Table;
|
|
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
|
|
|
|
SmallVector<Type*, 8> ArgTys;
|
|
while (!TableRef.empty())
|
|
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
|
|
|
|
// DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
|
|
// If we see void type as the type of the last argument, it is vararg intrinsic
|
|
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
|
|
ArgTys.pop_back();
|
|
return FunctionType::get(ResultTy, ArgTys, true);
|
|
}
|
|
return FunctionType::get(ResultTy, ArgTys, false);
|
|
}
|
|
|
|
bool Intrinsic::isOverloaded(ID id) {
|
|
#define GET_INTRINSIC_OVERLOAD_TABLE
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_OVERLOAD_TABLE
|
|
}
|
|
|
|
bool Intrinsic::isLeaf(ID id) {
|
|
switch (id) {
|
|
default:
|
|
return true;
|
|
|
|
case Intrinsic::experimental_gc_statepoint:
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// This defines the "Intrinsic::getAttributes(ID id)" method.
|
|
#define GET_INTRINSIC_ATTRIBUTES
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_INTRINSIC_ATTRIBUTES
|
|
|
|
Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
|
|
// There can never be multiple globals with the same name of different types,
|
|
// because intrinsics must be a specific type.
|
|
auto *FT = getType(M->getContext(), id, Tys);
|
|
return cast<Function>(
|
|
M->getOrInsertFunction(Tys.empty() ? getName(id)
|
|
: getName(id, Tys, M, FT),
|
|
getType(M->getContext(), id, Tys))
|
|
.getCallee());
|
|
}
|
|
|
|
// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
|
|
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
|
|
|
|
// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
|
|
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
|
|
#include "llvm/IR/IntrinsicImpl.inc"
|
|
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
|
|
|
|
using DeferredIntrinsicMatchPair =
|
|
std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
|
|
|
|
static bool matchIntrinsicType(
|
|
Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type *> &ArgTys,
|
|
SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
|
|
bool IsDeferredCheck) {
|
|
using namespace Intrinsic;
|
|
|
|
// If we ran out of descriptors, there are too many arguments.
|
|
if (Infos.empty()) return true;
|
|
|
|
// Do this before slicing off the 'front' part
|
|
auto InfosRef = Infos;
|
|
auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
|
|
DeferredChecks.emplace_back(T, InfosRef);
|
|
return false;
|
|
};
|
|
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
|
|
switch (D.Kind) {
|
|
case IITDescriptor::Void: return !Ty->isVoidTy();
|
|
case IITDescriptor::VarArg: return true;
|
|
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
|
|
case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
|
|
case IITDescriptor::Token: return !Ty->isTokenTy();
|
|
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
|
|
case IITDescriptor::Half: return !Ty->isHalfTy();
|
|
case IITDescriptor::BFloat: return !Ty->isBFloatTy();
|
|
case IITDescriptor::Float: return !Ty->isFloatTy();
|
|
case IITDescriptor::Double: return !Ty->isDoubleTy();
|
|
case IITDescriptor::Quad: return !Ty->isFP128Ty();
|
|
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
|
|
case IITDescriptor::Vector: {
|
|
VectorType *VT = dyn_cast<VectorType>(Ty);
|
|
return !VT || VT->getElementCount() != D.Vector_Width ||
|
|
matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
|
|
DeferredChecks, IsDeferredCheck);
|
|
}
|
|
case IITDescriptor::Pointer: {
|
|
PointerType *PT = dyn_cast<PointerType>(Ty);
|
|
if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
|
|
return true;
|
|
if (!PT->isOpaque())
|
|
return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
|
|
DeferredChecks, IsDeferredCheck);
|
|
// If typed pointers are supported, do not allow using opaque pointer in
|
|
// place of fixed pointer type. This would make the intrinsic signature
|
|
// non-unique.
|
|
if (Ty->getContext().supportsTypedPointers())
|
|
return true;
|
|
// Consume IIT descriptors relating to the pointer element type.
|
|
while (Infos.front().Kind == IITDescriptor::Pointer)
|
|
Infos = Infos.slice(1);
|
|
Infos = Infos.slice(1);
|
|
return false;
|
|
}
|
|
|
|
case IITDescriptor::Struct: {
|
|
StructType *ST = dyn_cast<StructType>(Ty);
|
|
if (!ST || ST->getNumElements() != D.Struct_NumElements)
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
|
|
if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
|
|
DeferredChecks, IsDeferredCheck))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
case IITDescriptor::Argument:
|
|
// If this is the second occurrence of an argument,
|
|
// verify that the later instance matches the previous instance.
|
|
if (D.getArgumentNumber() < ArgTys.size())
|
|
return Ty != ArgTys[D.getArgumentNumber()];
|
|
|
|
if (D.getArgumentNumber() > ArgTys.size() ||
|
|
D.getArgumentKind() == IITDescriptor::AK_MatchType)
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
|
|
"Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
|
|
switch (D.getArgumentKind()) {
|
|
case IITDescriptor::AK_Any: return false; // Success
|
|
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
|
|
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
|
|
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
|
|
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
|
|
default: break;
|
|
}
|
|
llvm_unreachable("all argument kinds not covered");
|
|
|
|
case IITDescriptor::ExtendArgument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getExtendedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::TruncArgument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
|
|
NewTy = VectorType::getTruncatedElementVectorType(VTy);
|
|
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
|
|
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
|
|
else
|
|
return true;
|
|
|
|
return Ty != NewTy;
|
|
}
|
|
case IITDescriptor::HalfVecArgument:
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
|
|
VectorType::getHalfElementsVectorType(
|
|
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
|
|
case IITDescriptor::SameVecWidthArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size()) {
|
|
// Defer check and subsequent check for the vector element type.
|
|
Infos = Infos.slice(1);
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
}
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
auto *ThisArgType = dyn_cast<VectorType>(Ty);
|
|
// Both must be vectors of the same number of elements or neither.
|
|
if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
|
|
return true;
|
|
Type *EltTy = Ty;
|
|
if (ThisArgType) {
|
|
if (ReferenceType->getElementCount() !=
|
|
ThisArgType->getElementCount())
|
|
return true;
|
|
EltTy = ThisArgType->getElementType();
|
|
}
|
|
return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
|
|
IsDeferredCheck);
|
|
}
|
|
case IITDescriptor::PtrToArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
Type * ReferenceType = ArgTys[D.getArgumentNumber()];
|
|
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
|
|
}
|
|
case IITDescriptor::PtrToElt: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
VectorType * ReferenceType =
|
|
dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
|
|
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
|
|
|
|
if (!ThisArgType || !ReferenceType)
|
|
return true;
|
|
if (!ThisArgType->isOpaque())
|
|
return ThisArgType->getElementType() != ReferenceType->getElementType();
|
|
// If typed pointers are supported, do not allow opaque pointer to ensure
|
|
// uniqueness.
|
|
return Ty->getContext().supportsTypedPointers();
|
|
}
|
|
case IITDescriptor::VecOfAnyPtrsToElt: {
|
|
unsigned RefArgNumber = D.getRefArgNumber();
|
|
if (RefArgNumber >= ArgTys.size()) {
|
|
if (IsDeferredCheck)
|
|
return true;
|
|
// If forward referencing, already add the pointer-vector type and
|
|
// defer the checks for later.
|
|
ArgTys.push_back(Ty);
|
|
return DeferCheck(Ty);
|
|
}
|
|
|
|
if (!IsDeferredCheck){
|
|
assert(D.getOverloadArgNumber() == ArgTys.size() &&
|
|
"Table consistency error");
|
|
ArgTys.push_back(Ty);
|
|
}
|
|
|
|
// Verify the overloaded type "matches" the Ref type.
|
|
// i.e. Ty is a vector with the same width as Ref.
|
|
// Composed of pointers to the same element type as Ref.
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
|
|
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgVecTy || !ReferenceType ||
|
|
(ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
|
|
return true;
|
|
PointerType *ThisArgEltTy =
|
|
dyn_cast<PointerType>(ThisArgVecTy->getElementType());
|
|
if (!ThisArgEltTy)
|
|
return true;
|
|
return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
|
|
ReferenceType->getElementType());
|
|
}
|
|
case IITDescriptor::VecElementArgument: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck ? true : DeferCheck(Ty);
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
return !ReferenceType || Ty != ReferenceType->getElementType();
|
|
}
|
|
case IITDescriptor::Subdivide2Argument:
|
|
case IITDescriptor::Subdivide4Argument: {
|
|
// If this is a forward reference, defer the check for later.
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
|
|
Type *NewTy = ArgTys[D.getArgumentNumber()];
|
|
if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
|
|
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
|
|
NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
|
|
return Ty != NewTy;
|
|
}
|
|
return true;
|
|
}
|
|
case IITDescriptor::VecOfBitcastsToInt: {
|
|
if (D.getArgumentNumber() >= ArgTys.size())
|
|
return IsDeferredCheck || DeferCheck(Ty);
|
|
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
|
|
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
|
|
if (!ThisArgVecTy || !ReferenceType)
|
|
return true;
|
|
return ThisArgVecTy != VectorType::getInteger(ReferenceType);
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled");
|
|
}
|
|
|
|
Intrinsic::MatchIntrinsicTypesResult
|
|
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos,
|
|
SmallVectorImpl<Type *> &ArgTys) {
|
|
SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
|
|
if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
|
|
false))
|
|
return MatchIntrinsicTypes_NoMatchRet;
|
|
|
|
unsigned NumDeferredReturnChecks = DeferredChecks.size();
|
|
|
|
for (auto Ty : FTy->params())
|
|
if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
|
|
return MatchIntrinsicTypes_NoMatchArg;
|
|
|
|
for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
|
|
DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
|
|
if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
|
|
true))
|
|
return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
|
|
: MatchIntrinsicTypes_NoMatchArg;
|
|
}
|
|
|
|
return MatchIntrinsicTypes_Match;
|
|
}
|
|
|
|
bool
|
|
Intrinsic::matchIntrinsicVarArg(bool isVarArg,
|
|
ArrayRef<Intrinsic::IITDescriptor> &Infos) {
|
|
// If there are no descriptors left, then it can't be a vararg.
|
|
if (Infos.empty())
|
|
return isVarArg;
|
|
|
|
// There should be only one descriptor remaining at this point.
|
|
if (Infos.size() != 1)
|
|
return true;
|
|
|
|
// Check and verify the descriptor.
|
|
IITDescriptor D = Infos.front();
|
|
Infos = Infos.slice(1);
|
|
if (D.Kind == IITDescriptor::VarArg)
|
|
return !isVarArg;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Intrinsic::getIntrinsicSignature(Function *F,
|
|
SmallVectorImpl<Type *> &ArgTys) {
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
if (!ID)
|
|
return false;
|
|
|
|
SmallVector<Intrinsic::IITDescriptor, 8> Table;
|
|
getIntrinsicInfoTableEntries(ID, Table);
|
|
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
|
|
|
|
if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
|
|
ArgTys) !=
|
|
Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
|
|
return false;
|
|
}
|
|
if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
|
|
TableRef))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
|
|
SmallVector<Type *, 4> ArgTys;
|
|
if (!getIntrinsicSignature(F, ArgTys))
|
|
return None;
|
|
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
StringRef Name = F->getName();
|
|
std::string WantedName =
|
|
Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
|
|
if (Name == WantedName)
|
|
return None;
|
|
|
|
Function *NewDecl = [&] {
|
|
if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
|
|
if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
|
|
if (ExistingF->getFunctionType() == F->getFunctionType())
|
|
return ExistingF;
|
|
|
|
// The name already exists, but is not a function or has the wrong
|
|
// prototype. Make place for the new one by renaming the old version.
|
|
// Either this old version will be removed later on or the module is
|
|
// invalid and we'll get an error.
|
|
ExistingGV->setName(WantedName + ".renamed");
|
|
}
|
|
return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
|
|
}();
|
|
|
|
NewDecl->setCallingConv(F->getCallingConv());
|
|
assert(NewDecl->getFunctionType() == F->getFunctionType() &&
|
|
"Shouldn't change the signature");
|
|
return NewDecl;
|
|
}
|
|
|
|
/// hasAddressTaken - returns true if there are any uses of this function
|
|
/// other than direct calls or invokes to it. Optionally ignores callback
|
|
/// uses, assume like pointer annotation calls, and references in llvm.used
|
|
/// and llvm.compiler.used variables.
|
|
bool Function::hasAddressTaken(const User **PutOffender,
|
|
bool IgnoreCallbackUses,
|
|
bool IgnoreAssumeLikeCalls,
|
|
bool IgnoreLLVMUsed) const {
|
|
for (const Use &U : uses()) {
|
|
const User *FU = U.getUser();
|
|
if (isa<BlockAddress>(FU))
|
|
continue;
|
|
|
|
if (IgnoreCallbackUses) {
|
|
AbstractCallSite ACS(&U);
|
|
if (ACS && ACS.isCallbackCall())
|
|
continue;
|
|
}
|
|
|
|
const auto *Call = dyn_cast<CallBase>(FU);
|
|
if (!Call) {
|
|
if (IgnoreAssumeLikeCalls) {
|
|
if (const auto *FI = dyn_cast<Instruction>(FU)) {
|
|
if (FI->isCast() && !FI->user_empty() &&
|
|
llvm::all_of(FU->users(), [](const User *U) {
|
|
if (const auto *I = dyn_cast<IntrinsicInst>(U))
|
|
return I->isAssumeLikeIntrinsic();
|
|
return false;
|
|
}))
|
|
continue;
|
|
}
|
|
}
|
|
if (IgnoreLLVMUsed && !FU->user_empty()) {
|
|
const User *FUU = FU;
|
|
if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
|
|
!FU->user_begin()->user_empty())
|
|
FUU = *FU->user_begin();
|
|
if (llvm::all_of(FUU->users(), [](const User *U) {
|
|
if (const auto *GV = dyn_cast<GlobalVariable>(U))
|
|
return GV->hasName() &&
|
|
(GV->getName().equals("llvm.compiler.used") ||
|
|
GV->getName().equals("llvm.used"));
|
|
return false;
|
|
}))
|
|
continue;
|
|
}
|
|
if (PutOffender)
|
|
*PutOffender = FU;
|
|
return true;
|
|
}
|
|
if (!Call->isCallee(&U)) {
|
|
if (PutOffender)
|
|
*PutOffender = FU;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Function::isDefTriviallyDead() const {
|
|
// Check the linkage
|
|
if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
|
|
!hasAvailableExternallyLinkage())
|
|
return false;
|
|
|
|
// Check if the function is used by anything other than a blockaddress.
|
|
for (const User *U : users())
|
|
if (!isa<BlockAddress>(U))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
|
|
/// setjmp or other function that gcc recognizes as "returning twice".
|
|
bool Function::callsFunctionThatReturnsTwice() const {
|
|
for (const Instruction &I : instructions(this))
|
|
if (const auto *Call = dyn_cast<CallBase>(&I))
|
|
if (Call->hasFnAttr(Attribute::ReturnsTwice))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
Constant *Function::getPersonalityFn() const {
|
|
assert(hasPersonalityFn() && getNumOperands());
|
|
return cast<Constant>(Op<0>());
|
|
}
|
|
|
|
void Function::setPersonalityFn(Constant *Fn) {
|
|
setHungoffOperand<0>(Fn);
|
|
setValueSubclassDataBit(3, Fn != nullptr);
|
|
}
|
|
|
|
Constant *Function::getPrefixData() const {
|
|
assert(hasPrefixData() && getNumOperands());
|
|
return cast<Constant>(Op<1>());
|
|
}
|
|
|
|
void Function::setPrefixData(Constant *PrefixData) {
|
|
setHungoffOperand<1>(PrefixData);
|
|
setValueSubclassDataBit(1, PrefixData != nullptr);
|
|
}
|
|
|
|
Constant *Function::getPrologueData() const {
|
|
assert(hasPrologueData() && getNumOperands());
|
|
return cast<Constant>(Op<2>());
|
|
}
|
|
|
|
void Function::setPrologueData(Constant *PrologueData) {
|
|
setHungoffOperand<2>(PrologueData);
|
|
setValueSubclassDataBit(2, PrologueData != nullptr);
|
|
}
|
|
|
|
void Function::allocHungoffUselist() {
|
|
// If we've already allocated a uselist, stop here.
|
|
if (getNumOperands())
|
|
return;
|
|
|
|
allocHungoffUses(3, /*IsPhi=*/ false);
|
|
setNumHungOffUseOperands(3);
|
|
|
|
// Initialize the uselist with placeholder operands to allow traversal.
|
|
auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
|
|
Op<0>().set(CPN);
|
|
Op<1>().set(CPN);
|
|
Op<2>().set(CPN);
|
|
}
|
|
|
|
template <int Idx>
|
|
void Function::setHungoffOperand(Constant *C) {
|
|
if (C) {
|
|
allocHungoffUselist();
|
|
Op<Idx>().set(C);
|
|
} else if (getNumOperands()) {
|
|
Op<Idx>().set(
|
|
ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
|
|
}
|
|
}
|
|
|
|
void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
|
|
assert(Bit < 16 && "SubclassData contains only 16 bits");
|
|
if (On)
|
|
setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
|
|
else
|
|
setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
|
|
}
|
|
|
|
void Function::setEntryCount(ProfileCount Count,
|
|
const DenseSet<GlobalValue::GUID> *S) {
|
|
assert(Count.hasValue());
|
|
#if !defined(NDEBUG)
|
|
auto PrevCount = getEntryCount();
|
|
assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
|
|
#endif
|
|
|
|
auto ImportGUIDs = getImportGUIDs();
|
|
if (S == nullptr && ImportGUIDs.size())
|
|
S = &ImportGUIDs;
|
|
|
|
MDBuilder MDB(getContext());
|
|
setMetadata(
|
|
LLVMContext::MD_prof,
|
|
MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
|
|
}
|
|
|
|
void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
|
|
const DenseSet<GlobalValue::GUID> *Imports) {
|
|
setEntryCount(ProfileCount(Count, Type), Imports);
|
|
}
|
|
|
|
ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
|
|
MDNode *MD = getMetadata(LLVMContext::MD_prof);
|
|
if (MD && MD->getOperand(0))
|
|
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
|
|
if (MDS->getString().equals("function_entry_count")) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
|
|
uint64_t Count = CI->getValue().getZExtValue();
|
|
// A value of -1 is used for SamplePGO when there were no samples.
|
|
// Treat this the same as unknown.
|
|
if (Count == (uint64_t)-1)
|
|
return ProfileCount::getInvalid();
|
|
return ProfileCount(Count, PCT_Real);
|
|
} else if (AllowSynthetic &&
|
|
MDS->getString().equals("synthetic_function_entry_count")) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
|
|
uint64_t Count = CI->getValue().getZExtValue();
|
|
return ProfileCount(Count, PCT_Synthetic);
|
|
}
|
|
}
|
|
return ProfileCount::getInvalid();
|
|
}
|
|
|
|
DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
|
|
DenseSet<GlobalValue::GUID> R;
|
|
if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
|
|
if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
|
|
if (MDS->getString().equals("function_entry_count"))
|
|
for (unsigned i = 2; i < MD->getNumOperands(); i++)
|
|
R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
|
|
->getValue()
|
|
.getZExtValue());
|
|
return R;
|
|
}
|
|
|
|
void Function::setSectionPrefix(StringRef Prefix) {
|
|
MDBuilder MDB(getContext());
|
|
setMetadata(LLVMContext::MD_section_prefix,
|
|
MDB.createFunctionSectionPrefix(Prefix));
|
|
}
|
|
|
|
Optional<StringRef> Function::getSectionPrefix() const {
|
|
if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
|
|
assert(cast<MDString>(MD->getOperand(0))
|
|
->getString()
|
|
.equals("function_section_prefix") &&
|
|
"Metadata not match");
|
|
return cast<MDString>(MD->getOperand(1))->getString();
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool Function::nullPointerIsDefined() const {
|
|
return hasFnAttribute(Attribute::NullPointerIsValid);
|
|
}
|
|
|
|
bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
|
|
if (F && F->nullPointerIsDefined())
|
|
return true;
|
|
|
|
if (AS != 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|