mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
e64219b8ab
Summary: This switches us to use a different, more powerful algorithm for address space inference. I've tested this locally and it seems to work great. Once we're more confident in it, we can remove the old pass altogether. Reviewers: jingyue Subscribers: llvm-commits, tra, jholewinski Differential Revision: https://reviews.llvm.org/D23694 llvm-svn: 279317
584 lines
23 KiB
C++
584 lines
23 KiB
C++
//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// CUDA C/C++ includes memory space designation as variable type qualifers (such
|
|
// as __global__ and __shared__). Knowing the space of a memory access allows
|
|
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
|
|
// shared memory can be translated to `ld.shared` which is roughly 10% faster
|
|
// than a generic `ld` on an NVIDIA Tesla K40c.
|
|
//
|
|
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
|
|
// compilers must infer the memory space of an address expression from
|
|
// type-qualified variables.
|
|
//
|
|
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
|
|
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
|
|
// places only type-qualified variables in specific address spaces, and then
|
|
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
|
|
// (so-called the generic address space) for other instructions to use.
|
|
//
|
|
// For example, the Clang translates the following CUDA code
|
|
// __shared__ float a[10];
|
|
// float v = a[i];
|
|
// to
|
|
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
|
|
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
|
|
// %v = load float, float* %1 ; emits ld.f32
|
|
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
|
|
// redirected to %0 (the generic version of @a).
|
|
//
|
|
// The optimization implemented in this file propagates specific address spaces
|
|
// from type-qualified variable declarations to its users. For example, it
|
|
// optimizes the above IR to
|
|
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
|
|
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
|
|
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
|
|
// codegen is able to emit ld.shared.f32 for %v.
|
|
//
|
|
// Address space inference works in two steps. First, it uses a data-flow
|
|
// analysis to infer as many generic pointers as possible to point to only one
|
|
// specific address space. In the above example, it can prove that %1 only
|
|
// points to addrspace(3). This algorithm was published in
|
|
// CUDA: Compiling and optimizing for a GPU platform
|
|
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
|
|
// ICCS 2012
|
|
//
|
|
// Then, address space inference replaces all refinable generic pointers with
|
|
// equivalent specific pointers.
|
|
//
|
|
// The major challenge of implementing this optimization is handling PHINodes,
|
|
// which may create loops in the data flow graph. This brings two complications.
|
|
//
|
|
// First, the data flow analysis in Step 1 needs to be circular. For example,
|
|
// %generic.input = addrspacecast float addrspace(3)* %input to float*
|
|
// loop:
|
|
// %y = phi [ %generic.input, %y2 ]
|
|
// %y2 = getelementptr %y, 1
|
|
// %v = load %y2
|
|
// br ..., label %loop, ...
|
|
// proving %y specific requires proving both %generic.input and %y2 specific,
|
|
// but proving %y2 specific circles back to %y. To address this complication,
|
|
// the data flow analysis operates on a lattice:
|
|
// uninitialized > specific address spaces > generic.
|
|
// All address expressions (our implementation only considers phi, bitcast,
|
|
// addrspacecast, and getelementptr) start with the uninitialized address space.
|
|
// The monotone transfer function moves the address space of a pointer down a
|
|
// lattice path from uninitialized to specific and then to generic. A join
|
|
// operation of two different specific address spaces pushes the expression down
|
|
// to the generic address space. The analysis completes once it reaches a fixed
|
|
// point.
|
|
//
|
|
// Second, IR rewriting in Step 2 also needs to be circular. For example,
|
|
// converting %y to addrspace(3) requires the compiler to know the converted
|
|
// %y2, but converting %y2 needs the converted %y. To address this complication,
|
|
// we break these cycles using "undef" placeholders. When converting an
|
|
// instruction `I` to a new address space, if its operand `Op` is not converted
|
|
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
|
|
// For instance, our algorithm first converts %y to
|
|
// %y' = phi float addrspace(3)* [ %input, undef ]
|
|
// Then, it converts %y2 to
|
|
// %y2' = getelementptr %y', 1
|
|
// Finally, it fixes the undef in %y' so that
|
|
// %y' = phi float addrspace(3)* [ %input, %y2' ]
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "nvptx-infer-addrspace"
|
|
|
|
#include "NVPTX.h"
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
|
|
|
|
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
|
|
|
|
/// \brief NVPTXInferAddressSpaces
|
|
class NVPTXInferAddressSpaces: public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
NVPTXInferAddressSpaces() : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// Returns the new address space of V if updated; otherwise, returns None.
|
|
Optional<unsigned>
|
|
updateAddressSpace(const Value &V,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace);
|
|
|
|
// Tries to infer the specific address space of each address expression in
|
|
// Postorder.
|
|
void inferAddressSpaces(const std::vector<Value *> &Postorder,
|
|
ValueToAddrSpaceMapTy *InferredAddrSpace);
|
|
|
|
// Changes the generic address expressions in function F to point to specific
|
|
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
|
|
// all generic address expressions in the use-def graph of function F.
|
|
bool
|
|
rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace,
|
|
Function *F);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char NVPTXInferAddressSpaces::ID = 0;
|
|
|
|
namespace llvm {
|
|
void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
|
|
}
|
|
INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
|
|
"Infer address spaces",
|
|
false, false)
|
|
|
|
// Returns true if V is an address expression.
|
|
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
|
|
// getelementptr operators.
|
|
static bool isAddressExpression(const Value &V) {
|
|
if (!isa<Operator>(V))
|
|
return false;
|
|
|
|
switch (cast<Operator>(V).getOpcode()) {
|
|
case Instruction::PHI:
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::GetElementPtr:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Returns the pointer operands of V.
|
|
//
|
|
// Precondition: V is an address expression.
|
|
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
|
|
assert(isAddressExpression(V));
|
|
const Operator& Op = cast<Operator>(V);
|
|
switch (Op.getOpcode()) {
|
|
case Instruction::PHI: {
|
|
auto IncomingValues = cast<PHINode>(Op).incoming_values();
|
|
return SmallVector<Value *, 2>(IncomingValues.begin(),
|
|
IncomingValues.end());
|
|
}
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::GetElementPtr:
|
|
return {Op.getOperand(0)};
|
|
default:
|
|
llvm_unreachable("Unexpected instruction type.");
|
|
}
|
|
}
|
|
|
|
// If V is an unvisited generic address expression, appends V to PostorderStack
|
|
// and marks it as visited.
|
|
static void appendsGenericAddressExpressionToPostorderStack(
|
|
Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
|
|
DenseSet<Value *> *Visited) {
|
|
assert(V->getType()->isPointerTy());
|
|
if (isAddressExpression(*V) &&
|
|
V->getType()->getPointerAddressSpace() ==
|
|
AddressSpace::ADDRESS_SPACE_GENERIC) {
|
|
if (Visited->insert(V).second)
|
|
PostorderStack->push_back(std::make_pair(V, false));
|
|
}
|
|
}
|
|
|
|
// Returns all generic address expressions in function F. The elements are
|
|
// ordered in postorder.
|
|
static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
|
|
// This function implements a non-recursive postorder traversal of a partial
|
|
// use-def graph of function F.
|
|
std::vector<std::pair<Value*, bool>> PostorderStack;
|
|
// The set of visited expressions.
|
|
DenseSet<Value*> Visited;
|
|
// We only explore address expressions that are reachable from loads and
|
|
// stores for now because we aim at generating faster loads and stores.
|
|
for (Instruction &I : instructions(F)) {
|
|
if (isa<LoadInst>(I)) {
|
|
appendsGenericAddressExpressionToPostorderStack(
|
|
I.getOperand(0), &PostorderStack, &Visited);
|
|
} else if (isa<StoreInst>(I)) {
|
|
appendsGenericAddressExpressionToPostorderStack(
|
|
I.getOperand(1), &PostorderStack, &Visited);
|
|
}
|
|
}
|
|
|
|
std::vector<Value *> Postorder; // The resultant postorder.
|
|
while (!PostorderStack.empty()) {
|
|
// If the operands of the expression on the top are already explored,
|
|
// adds that expression to the resultant postorder.
|
|
if (PostorderStack.back().second) {
|
|
Postorder.push_back(PostorderStack.back().first);
|
|
PostorderStack.pop_back();
|
|
continue;
|
|
}
|
|
// Otherwise, adds its operands to the stack and explores them.
|
|
PostorderStack.back().second = true;
|
|
for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
|
|
appendsGenericAddressExpressionToPostorderStack(
|
|
PtrOperand, &PostorderStack, &Visited);
|
|
}
|
|
}
|
|
return Postorder;
|
|
}
|
|
|
|
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
|
|
// of OperandUse.get() in the new address space. If the clone is not ready yet,
|
|
// returns an undef in the new address space as a placeholder.
|
|
static Value *operandWithNewAddressSpaceOrCreateUndef(
|
|
const Use &OperandUse, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
|
Value *Operand = OperandUse.get();
|
|
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
|
|
return NewOperand;
|
|
|
|
UndefUsesToFix->push_back(&OperandUse);
|
|
return UndefValue::get(
|
|
Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
|
|
}
|
|
|
|
// Returns a clone of `I` with its operands converted to those specified in
|
|
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
|
|
// operand whose address space needs to be modified might not exist in
|
|
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
|
|
// adds that operand use to UndefUsesToFix so that caller can fix them later.
|
|
//
|
|
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
|
|
// from a pointer whose type already matches. Therefore, this function returns a
|
|
// Value* instead of an Instruction*.
|
|
static Value *cloneInstructionWithNewAddressSpace(
|
|
Instruction *I, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
|
Type *NewPtrType =
|
|
I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
|
|
|
if (I->getOpcode() == Instruction::AddrSpaceCast) {
|
|
Value *Src = I->getOperand(0);
|
|
// Because `I` is generic, the source address space must be specific.
|
|
// Therefore, the inferred address space must be the source space, according
|
|
// to our algorithm.
|
|
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
|
|
if (Src->getType() != NewPtrType)
|
|
return new BitCastInst(Src, NewPtrType);
|
|
return Src;
|
|
}
|
|
|
|
// Computes the converted pointer operands.
|
|
SmallVector<Value *, 4> NewPointerOperands;
|
|
for (const Use &OperandUse : I->operands()) {
|
|
if (!OperandUse.get()->getType()->isPointerTy())
|
|
NewPointerOperands.push_back(nullptr);
|
|
else
|
|
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
|
|
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::BitCast:
|
|
return new BitCastInst(NewPointerOperands[0], NewPtrType);
|
|
case Instruction::PHI: {
|
|
assert(I->getType()->isPointerTy());
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
|
|
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
|
|
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
|
|
NewPHI->addIncoming(NewPointerOperands[OperandNo],
|
|
PHI->getIncomingBlock(Index));
|
|
}
|
|
return NewPHI;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
|
|
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
|
|
GEP->getSourceElementType(), NewPointerOperands[0],
|
|
SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
|
|
NewGEP->setIsInBounds(GEP->isInBounds());
|
|
return NewGEP;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
|
|
// constant expression `CE` with its operands replaced as specified in
|
|
// ValueWithNewAddrSpace.
|
|
static Value *cloneConstantExprWithNewAddressSpace(
|
|
ConstantExpr *CE, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace) {
|
|
Type *TargetType =
|
|
CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
|
|
|
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
|
|
// Because CE is generic, the source address space must be specific.
|
|
// Therefore, the inferred address space must be the source space according
|
|
// to our algorithm.
|
|
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
|
|
NewAddrSpace);
|
|
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
|
|
}
|
|
|
|
// Computes the operands of the new constant expression.
|
|
SmallVector<Constant *, 4> NewOperands;
|
|
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
|
|
Constant *Operand = CE->getOperand(Index);
|
|
// If the address space of `Operand` needs to be modified, the new operand
|
|
// with the new address space should already be in ValueWithNewAddrSpace
|
|
// because (1) the constant expressions we consider (i.e. addrspacecast,
|
|
// bitcast, and getelementptr) do not incur cycles in the data flow graph
|
|
// and (2) this function is called on constant expressions in postorder.
|
|
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
|
|
NewOperands.push_back(cast<Constant>(NewOperand));
|
|
} else {
|
|
// Otherwise, reuses the old operand.
|
|
NewOperands.push_back(Operand);
|
|
}
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// Needs to specify the source type while constructing a getelementptr
|
|
// constant expression.
|
|
return CE->getWithOperands(
|
|
NewOperands, TargetType, /*OnlyIfReduced=*/false,
|
|
NewOperands[0]->getType()->getPointerElementType());
|
|
}
|
|
|
|
return CE->getWithOperands(NewOperands, TargetType);
|
|
}
|
|
|
|
// Returns a clone of the value `V`, with its operands replaced as specified in
|
|
// ValueWithNewAddrSpace. This function is called on every generic address
|
|
// expression whose address space needs to be modified, in postorder.
|
|
//
|
|
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
|
|
static Value *
|
|
cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
|
// All values in Postorder are generic address expressions.
|
|
assert(isAddressExpression(*V) &&
|
|
V->getType()->getPointerAddressSpace() ==
|
|
AddressSpace::ADDRESS_SPACE_GENERIC);
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
Value *NewV = cloneInstructionWithNewAddressSpace(
|
|
I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
|
|
if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
|
|
if (NewI->getParent() == nullptr) {
|
|
NewI->insertBefore(I);
|
|
NewI->takeName(I);
|
|
}
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
return cloneConstantExprWithNewAddressSpace(
|
|
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
|
|
}
|
|
|
|
// Defines the join operation on the address space lattice (see the file header
|
|
// comments).
|
|
static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
|
|
if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
|
|
AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
|
|
return AddressSpace::ADDRESS_SPACE_GENERIC;
|
|
|
|
if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
|
|
return AS2;
|
|
if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
|
|
return AS1;
|
|
|
|
// The join of two different specific address spaces is generic.
|
|
return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
|
|
}
|
|
|
|
bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// Collects all generic address expressions in postorder.
|
|
std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
|
|
|
|
// Runs a data-flow analysis to refine the address spaces of every expression
|
|
// in Postorder.
|
|
ValueToAddrSpaceMapTy InferredAddrSpace;
|
|
inferAddressSpaces(Postorder, &InferredAddrSpace);
|
|
|
|
// Changes the address spaces of the generic address expressions who are
|
|
// inferred to point to a specific address space.
|
|
return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
|
|
}
|
|
|
|
void NVPTXInferAddressSpaces::inferAddressSpaces(
|
|
const std::vector<Value *> &Postorder,
|
|
ValueToAddrSpaceMapTy *InferredAddrSpace) {
|
|
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
|
|
// Initially, all expressions are in the uninitialized address space.
|
|
for (Value *V : Postorder)
|
|
(*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
|
|
|
|
while (!Worklist.empty()) {
|
|
Value* V = Worklist.pop_back_val();
|
|
|
|
// Tries to update the address space of the stack top according to the
|
|
// address spaces of its operands.
|
|
DEBUG(dbgs() << "Updating the address space of\n"
|
|
<< " " << *V << "\n");
|
|
Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
|
|
if (!NewAS.hasValue())
|
|
continue;
|
|
// If any updates are made, grabs its users to the worklist because
|
|
// their address spaces can also be possibly updated.
|
|
DEBUG(dbgs() << " to " << NewAS.getValue() << "\n");
|
|
(*InferredAddrSpace)[V] = NewAS.getValue();
|
|
|
|
for (Value *User : V->users()) {
|
|
// Skip if User is already in the worklist.
|
|
if (Worklist.count(User))
|
|
continue;
|
|
|
|
auto Pos = InferredAddrSpace->find(User);
|
|
// Our algorithm only updates the address spaces of generic address
|
|
// expressions, which are those in InferredAddrSpace.
|
|
if (Pos == InferredAddrSpace->end())
|
|
continue;
|
|
|
|
// Function updateAddressSpace moves the address space down a lattice
|
|
// path. Therefore, nothing to do if User is already inferred as
|
|
// generic (the bottom element in the lattice).
|
|
if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
|
|
continue;
|
|
|
|
Worklist.insert(User);
|
|
}
|
|
}
|
|
}
|
|
|
|
Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
|
|
const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
|
|
assert(InferredAddrSpace.count(&V));
|
|
|
|
// The new inferred address space equals the join of the address spaces
|
|
// of all its pointer operands.
|
|
unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
|
|
for (Value *PtrOperand : getPointerOperands(V)) {
|
|
unsigned OperandAS;
|
|
if (InferredAddrSpace.count(PtrOperand))
|
|
OperandAS = InferredAddrSpace.lookup(PtrOperand);
|
|
else
|
|
OperandAS = PtrOperand->getType()->getPointerAddressSpace();
|
|
NewAS = joinAddressSpaces(NewAS, OperandAS);
|
|
// join(generic, *) = generic. So we can break if NewAS is already generic.
|
|
if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
|
|
break;
|
|
}
|
|
|
|
unsigned OldAS = InferredAddrSpace.lookup(&V);
|
|
assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
|
|
if (OldAS == NewAS)
|
|
return None;
|
|
return NewAS;
|
|
}
|
|
|
|
bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
|
|
const std::vector<Value *> &Postorder,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
|
|
// For each address expression to be modified, creates a clone of it with its
|
|
// pointer operands converted to the new address space. Since the pointer
|
|
// operands are converted, the clone is naturally in the new address space by
|
|
// construction.
|
|
ValueToValueMapTy ValueWithNewAddrSpace;
|
|
SmallVector<const Use *, 32> UndefUsesToFix;
|
|
for (Value* V : Postorder) {
|
|
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
|
|
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
|
|
ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
|
|
V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
|
|
}
|
|
}
|
|
|
|
if (ValueWithNewAddrSpace.empty())
|
|
return false;
|
|
|
|
// Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
|
|
for (const Use* UndefUse : UndefUsesToFix) {
|
|
User *V = UndefUse->getUser();
|
|
User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
|
|
unsigned OperandNo = UndefUse->getOperandNo();
|
|
assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
|
|
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
|
|
}
|
|
|
|
// Replaces the uses of the old address expressions with the new ones.
|
|
for (Value *V : Postorder) {
|
|
Value *NewV = ValueWithNewAddrSpace.lookup(V);
|
|
if (NewV == nullptr)
|
|
continue;
|
|
|
|
SmallVector<Use *, 4> Uses;
|
|
for (Use &U : V->uses())
|
|
Uses.push_back(&U);
|
|
DEBUG(dbgs() << "Replacing the uses of " << *V << "\n to\n " << *NewV
|
|
<< "\n");
|
|
for (Use *U : Uses) {
|
|
if (isa<LoadInst>(U->getUser()) ||
|
|
(isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
|
|
// If V is used as the pointer operand of a load/store, sets the pointer
|
|
// operand to NewV. This replacement does not change the element type,
|
|
// so the resultant load/store is still valid.
|
|
U->set(NewV);
|
|
} else if (isa<Instruction>(U->getUser())) {
|
|
// Otherwise, replaces the use with generic(NewV).
|
|
// TODO: Some optimization opportunities are missed. For example, in
|
|
// %0 = icmp eq float* %p, %q
|
|
// if both p and q are inferred to be shared, we can rewrite %0 as
|
|
// %0 = icmp eq float addrspace(3)* %new_p, %new_q
|
|
// instead of currently
|
|
// %generic_p = addrspacecast float addrspace(3)* %new_p to float*
|
|
// %generic_q = addrspacecast float addrspace(3)* %new_q to float*
|
|
// %0 = icmp eq float* %generic_p, %generic_q
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
BasicBlock::iterator InsertPos = std::next(I->getIterator());
|
|
while (isa<PHINode>(InsertPos))
|
|
++InsertPos;
|
|
U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
|
|
} else {
|
|
U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
|
|
V->getType()));
|
|
}
|
|
}
|
|
}
|
|
if (V->use_empty())
|
|
RecursivelyDeleteTriviallyDeadInstructions(V);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
|
|
return new NVPTXInferAddressSpaces();
|
|
}
|