1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/CodeGen/RegAllocGreedy.cpp
Sanne Wouda c3891ab46d [RAGreedy] Enable -consider-local-interval-cost for AArch64
Summary:
The greedy register allocator occasionally decides to insert a large number of
unnecessary copies, see below for an example.  The -consider-local-interval-cost
option (which X86 already enables by default) fixes this.  We enable this option
for AArch64 only after receiving feedback that this change is not beneficial for
PowerPC.

We evaluated the impact of this change on compile time, code size and
performance benchmarks.

This option has a small impact on compile time, measured on CTMark. A 0.1%
geomean regression on -O1 and -O2, and 0.2% geomean for -O3, with at most 0.5%
on individual benchmarks.

The effect on both code size and performance on AArch64 for the LLVM test suite
is nil on the geomean with individual outliers (ignoring short exec_times)
between:

                 best     worst
  size..text     -3.3%    +0.0%
  exec_time      -5.8%    +2.3%

On SPEC CPU® 2017 (compiled for AArch64) there is a minor reduction (-0.2% at
most) in code size on some benchmarks, with a tiny movement (-0.01%) on the
geomean.  Neither intrate nor fprate show any change in performance.

This patch makes the following changes.

- For the AArch64 target, enableAdvancedRASplitCost() now returns true.

- Ensures that -consider-local-interval-cost=false can disable the new
  behaviour if necessary.

This matrix multiply example:

   $ cat test.c
   long A[8][8];
   long B[8][8];
   long C[8][8];

   void run_test() {
     for (int k = 0; k < 8; k++) {
       for (int i = 0; i < 8; i++) {
	 for (int j = 0; j < 8; j++) {
	   C[i][j] += A[i][k] * B[k][j];
	 }
       }
     }
   }

results in the following generated code on AArch64:

  $ clang --target=aarch64-arm-none-eabi -O3 -S test.c -o -
  [...]
                                        // %for.cond1.preheader
                                        // =>This Inner Loop Header: Depth=1
        add     x14, x11, x9
        str     q0, [sp, #16]           // 16-byte Folded Spill
        ldr     q0, [x14]
        mov     v2.16b, v15.16b
        mov     v15.16b, v14.16b
        mov     v14.16b, v13.16b
        mov     v13.16b, v12.16b
        mov     v12.16b, v11.16b
        mov     v11.16b, v10.16b
        mov     v10.16b, v9.16b
        mov     v9.16b, v8.16b
        mov     v8.16b, v31.16b
        mov     v31.16b, v30.16b
        mov     v30.16b, v29.16b
        mov     v29.16b, v28.16b
        mov     v28.16b, v27.16b
        mov     v27.16b, v26.16b
        mov     v26.16b, v25.16b
        mov     v25.16b, v24.16b
        mov     v24.16b, v23.16b
        mov     v23.16b, v22.16b
        mov     v22.16b, v21.16b
        mov     v21.16b, v20.16b
        mov     v20.16b, v19.16b
        mov     v19.16b, v18.16b
        mov     v18.16b, v17.16b
        mov     v17.16b, v16.16b
        mov     v16.16b, v7.16b
        mov     v7.16b, v6.16b
        mov     v6.16b, v5.16b
        mov     v5.16b, v4.16b
        mov     v4.16b, v3.16b
        mov     v3.16b, v1.16b
        mov     x12, v0.d[1]
        fmov    x15, d0
        ldp     q1, q0, [x14, #16]
        ldur    x1, [x10, #-256]
        ldur    x2, [x10, #-192]
        add     x9, x9, #64             // =64
        mov     x13, v1.d[1]
        fmov    x16, d1
        ldr     q1, [x14, #48]
        mul     x3, x15, x1
        mov     x14, v0.d[1]
        fmov    x17, d0
        mov     x18, v1.d[1]
        fmov    x0, d1
        mov     v1.16b, v3.16b
        mov     v3.16b, v4.16b
        mov     v4.16b, v5.16b
        mov     v5.16b, v6.16b
        mov     v6.16b, v7.16b
        mov     v7.16b, v16.16b
        mov     v16.16b, v17.16b
        mov     v17.16b, v18.16b
        mov     v18.16b, v19.16b
        mov     v19.16b, v20.16b
        mov     v20.16b, v21.16b
        mov     v21.16b, v22.16b
        mov     v22.16b, v23.16b
        mov     v23.16b, v24.16b
        mov     v24.16b, v25.16b
        mov     v25.16b, v26.16b
        mov     v26.16b, v27.16b
        mov     v27.16b, v28.16b
        mov     v28.16b, v29.16b
        mov     v29.16b, v30.16b
        mov     v30.16b, v31.16b
        mov     v31.16b, v8.16b
        mov     v8.16b, v9.16b
        mov     v9.16b, v10.16b
        mov     v10.16b, v11.16b
        mov     v11.16b, v12.16b
        mov     v12.16b, v13.16b
        mov     v13.16b, v14.16b
        mov     v14.16b, v15.16b
        mov     v15.16b, v2.16b
        ldr     q2, [sp]                // 16-byte Folded Reload
        fmov    d0, x3
        mul     x3, x12, x1
  [...]

With -consider-local-interval-cost the same section of code results in the
following:

  $ clang --target=aarch64-arm-none-eabi -mllvm -consider-local-interval-cost -O3 -S test.c -o -
  [...]
  .LBB0_1:                              // %for.cond1.preheader
                                        // =>This Inner Loop Header: Depth=1
        add     x14, x11, x9
        ldp     q0, q1, [x14]
        ldur    x1, [x10, #-256]
        ldur    x2, [x10, #-192]
        add     x9, x9, #64             // =64
        mov     x12, v0.d[1]
        fmov    x15, d0
        mov     x13, v1.d[1]
        fmov    x16, d1
        ldp     q0, q1, [x14, #32]
        mul     x3, x15, x1
        cmp     x9, #512                // =512
        mov     x14, v0.d[1]
        fmov    x17, d0
        fmov    d0, x3
        mul     x3, x12, x1
  [...]

Reviewers: SjoerdMeijer, samparker, dmgreen, qcolombet

Reviewed By: dmgreen

Subscribers: ZhangKang, jsji, wuzish, ppc-slack, lkail, steven.zhang, MatzeB, qcolombet, kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69437
2019-11-08 10:20:28 +00:00

3274 lines
124 KiB
C++

//===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#include "AllocationOrder.h"
#include "InterferenceCache.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "SpillPlacement.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalUnion.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <queue>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits, "Number of split local live ranges");
STATISTIC(NumEvicted, "Number of interferences evicted");
static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
"split-spill-mode", cl::Hidden,
cl::desc("Spill mode for splitting live ranges"),
cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
cl::init(SplitEditor::SM_Speed));
static cl::opt<unsigned>
LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
cl::desc("Last chance recoloring max depth"),
cl::init(5));
static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
"lcr-max-interf", cl::Hidden,
cl::desc("Last chance recoloring maximum number of considered"
" interference at a time"),
cl::init(8));
static cl::opt<bool> ExhaustiveSearch(
"exhaustive-register-search", cl::NotHidden,
cl::desc("Exhaustive Search for registers bypassing the depth "
"and interference cutoffs of last chance recoloring"),
cl::Hidden);
static cl::opt<bool> EnableLocalReassignment(
"enable-local-reassign", cl::Hidden,
cl::desc("Local reassignment can yield better allocation decisions, but "
"may be compile time intensive"),
cl::init(false));
static cl::opt<bool> EnableDeferredSpilling(
"enable-deferred-spilling", cl::Hidden,
cl::desc("Instead of spilling a variable right away, defer the actual "
"code insertion to the end of the allocation. That way the "
"allocator might still find a suitable coloring for this "
"variable because of other evicted variables."),
cl::init(false));
static cl::opt<unsigned>
HugeSizeForSplit("huge-size-for-split", cl::Hidden,
cl::desc("A threshold of live range size which may cause "
"high compile time cost in global splitting."),
cl::init(5000));
// FIXME: Find a good default for this flag and remove the flag.
static cl::opt<unsigned>
CSRFirstTimeCost("regalloc-csr-first-time-cost",
cl::desc("Cost for first time use of callee-saved register."),
cl::init(0), cl::Hidden);
static cl::opt<bool> ConsiderLocalIntervalCost(
"consider-local-interval-cost", cl::Hidden,
cl::desc("Consider the cost of local intervals created by a split "
"candidate when choosing the best split candidate."),
cl::init(false));
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass,
public RegAllocBase,
private LiveRangeEdit::Delegate {
// Convenient shortcuts.
using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
using SmallVirtRegSet = SmallSet<unsigned, 16>;
// context
MachineFunction *MF;
// Shortcuts to some useful interface.
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
RegisterClassInfo RCI;
// analyses
SlotIndexes *Indexes;
MachineBlockFrequencyInfo *MBFI;
MachineDominatorTree *DomTree;
MachineLoopInfo *Loops;
MachineOptimizationRemarkEmitter *ORE;
EdgeBundles *Bundles;
SpillPlacement *SpillPlacer;
LiveDebugVariables *DebugVars;
AliasAnalysis *AA;
// state
std::unique_ptr<Spiller> SpillerInstance;
PQueue Queue;
unsigned NextCascade;
// Live ranges pass through a number of stages as we try to allocate them.
// Some of the stages may also create new live ranges:
//
// - Region splitting.
// - Per-block splitting.
// - Local splitting.
// - Spilling.
//
// Ranges produced by one of the stages skip the previous stages when they are
// dequeued. This improves performance because we can skip interference checks
// that are unlikely to give any results. It also guarantees that the live
// range splitting algorithm terminates, something that is otherwise hard to
// ensure.
enum LiveRangeStage {
/// Newly created live range that has never been queued.
RS_New,
/// Only attempt assignment and eviction. Then requeue as RS_Split.
RS_Assign,
/// Attempt live range splitting if assignment is impossible.
RS_Split,
/// Attempt more aggressive live range splitting that is guaranteed to make
/// progress. This is used for split products that may not be making
/// progress.
RS_Split2,
/// Live range will be spilled. No more splitting will be attempted.
RS_Spill,
/// Live range is in memory. Because of other evictions, it might get moved
/// in a register in the end.
RS_Memory,
/// There is nothing more we can do to this live range. Abort compilation
/// if it can't be assigned.
RS_Done
};
// Enum CutOffStage to keep a track whether the register allocation failed
// because of the cutoffs encountered in last chance recoloring.
// Note: This is used as bitmask. New value should be next power of 2.
enum CutOffStage {
// No cutoffs encountered
CO_None = 0,
// lcr-max-depth cutoff encountered
CO_Depth = 1,
// lcr-max-interf cutoff encountered
CO_Interf = 2
};
uint8_t CutOffInfo;
#ifndef NDEBUG
static const char *const StageName[];
#endif
// RegInfo - Keep additional information about each live range.
struct RegInfo {
LiveRangeStage Stage = RS_New;
// Cascade - Eviction loop prevention. See canEvictInterference().
unsigned Cascade = 0;
RegInfo() = default;
};
IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
LiveRangeStage getStage(const LiveInterval &VirtReg) const {
return ExtraRegInfo[VirtReg.reg].Stage;
}
void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
ExtraRegInfo[VirtReg.reg].Stage = Stage;
}
template<typename Iterator>
void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
ExtraRegInfo.resize(MRI->getNumVirtRegs());
for (;Begin != End; ++Begin) {
unsigned Reg = *Begin;
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = NewStage;
}
}
/// Cost of evicting interference.
struct EvictionCost {
unsigned BrokenHints = 0; ///< Total number of broken hints.
float MaxWeight = 0; ///< Maximum spill weight evicted.
EvictionCost() = default;
bool isMax() const { return BrokenHints == ~0u; }
void setMax() { BrokenHints = ~0u; }
void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
bool operator<(const EvictionCost &O) const {
return std::tie(BrokenHints, MaxWeight) <
std::tie(O.BrokenHints, O.MaxWeight);
}
};
/// EvictionTrack - Keeps track of past evictions in order to optimize region
/// split decision.
class EvictionTrack {
public:
using EvictorInfo =
std::pair<unsigned /* evictor */, unsigned /* physreg */>;
using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
private:
/// Each Vreg that has been evicted in the last stage of selectOrSplit will
/// be mapped to the evictor Vreg and the PhysReg it was evicted from.
EvicteeInfo Evictees;
public:
/// Clear all eviction information.
void clear() { Evictees.clear(); }
/// Clear eviction information for the given evictee Vreg.
/// E.g. when Vreg get's a new allocation, the old eviction info is no
/// longer relevant.
/// \param Evictee The evictee Vreg for whom we want to clear collected
/// eviction info.
void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
/// Track new eviction.
/// The Evictor vreg has evicted the Evictee vreg from Physreg.
/// \param PhysReg The physical register Evictee was evicted from.
/// \param Evictor The evictor Vreg that evicted Evictee.
/// \param Evictee The evictee Vreg.
void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
Evictees[Evictee].first = Evictor;
Evictees[Evictee].second = PhysReg;
}
/// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
/// \param Evictee The evictee vreg.
/// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
/// nobody has evicted Evictee from PhysReg.
EvictorInfo getEvictor(unsigned Evictee) {
if (Evictees.count(Evictee)) {
return Evictees[Evictee];
}
return EvictorInfo(0, 0);
}
};
// Keeps track of past evictions in order to optimize region split decision.
EvictionTrack LastEvicted;
// splitting state.
std::unique_ptr<SplitAnalysis> SA;
std::unique_ptr<SplitEditor> SE;
/// Cached per-block interference maps
InterferenceCache IntfCache;
/// All basic blocks where the current register has uses.
SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
/// Global live range splitting candidate info.
struct GlobalSplitCandidate {
// Register intended for assignment, or 0.
unsigned PhysReg;
// SplitKit interval index for this candidate.
unsigned IntvIdx;
// Interference for PhysReg.
InterferenceCache::Cursor Intf;
// Bundles where this candidate should be live.
BitVector LiveBundles;
SmallVector<unsigned, 8> ActiveBlocks;
void reset(InterferenceCache &Cache, unsigned Reg) {
PhysReg = Reg;
IntvIdx = 0;
Intf.setPhysReg(Cache, Reg);
LiveBundles.clear();
ActiveBlocks.clear();
}
// Set B[i] = C for every live bundle where B[i] was NoCand.
unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
unsigned Count = 0;
for (unsigned i : LiveBundles.set_bits())
if (B[i] == NoCand) {
B[i] = C;
Count++;
}
return Count;
}
};
/// Candidate info for each PhysReg in AllocationOrder.
/// This vector never shrinks, but grows to the size of the largest register
/// class.
SmallVector<GlobalSplitCandidate, 32> GlobalCand;
enum : unsigned { NoCand = ~0u };
/// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
/// NoCand which indicates the stack interval.
SmallVector<unsigned, 32> BundleCand;
/// Callee-save register cost, calculated once per machine function.
BlockFrequency CSRCost;
/// Run or not the local reassignment heuristic. This information is
/// obtained from the TargetSubtargetInfo.
bool EnableLocalReassign;
/// Enable or not the consideration of the cost of local intervals created
/// by a split candidate when choosing the best split candidate.
bool EnableAdvancedRASplitCost;
/// Set of broken hints that may be reconciled later because of eviction.
SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
public:
RAGreedy();
/// Return the pass name.
StringRef getPassName() const override { return "Greedy Register Allocator"; }
/// RAGreedy analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
Spiller &spiller() override { return *SpillerInstance; }
void enqueue(LiveInterval *LI) override;
LiveInterval *dequeue() override;
unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
void aboutToRemoveInterval(LiveInterval &) override;
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
static char ID;
private:
unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned = 0);
bool LRE_CanEraseVirtReg(unsigned) override;
void LRE_WillShrinkVirtReg(unsigned) override;
void LRE_DidCloneVirtReg(unsigned, unsigned) override;
void enqueue(PQueue &CurQueue, LiveInterval *LI);
LiveInterval *dequeue(PQueue &CurQueue);
BlockFrequency calcSpillCost();
bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
bool growRegion(GlobalSplitCandidate &Cand);
bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
unsigned BBNumber,
const AllocationOrder &Order);
bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
GlobalSplitCandidate &Cand, unsigned BBNumber,
const AllocationOrder &Order);
BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
const AllocationOrder &Order,
bool *CanCauseEvictionChain);
bool calcCompactRegion(GlobalSplitCandidate&);
void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
void calcGapWeights(unsigned, SmallVectorImpl<float>&);
unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
const SmallVirtRegSet&);
bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
SlotIndex Start, SlotIndex End,
EvictionCost &MaxCost);
unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
LiveInterval &VirtReg, SlotIndex Start,
SlotIndex End, float *BestEvictWeight);
void evictInterference(LiveInterval&, unsigned,
SmallVectorImpl<unsigned>&);
bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
SmallLISet &RecoloringCandidates,
const SmallVirtRegSet &FixedRegisters);
unsigned tryAssign(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&,
const SmallVirtRegSet&);
unsigned tryEvict(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&, unsigned,
const SmallVirtRegSet&);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
/// Calculate cost of region splitting.
unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
AllocationOrder &Order,
BlockFrequency &BestCost,
unsigned &NumCands, bool IgnoreCSR,
bool *CanCauseEvictionChain = nullptr);
/// Perform region splitting.
unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
bool HasCompact,
SmallVectorImpl<unsigned> &NewVRegs);
/// Check other options before using a callee-saved register for the first
/// time.
unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
unsigned PhysReg, unsigned &CostPerUseLimit,
SmallVectorImpl<unsigned> &NewVRegs);
void initializeCSRCost();
unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<unsigned>&,
const SmallVirtRegSet&);
unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned);
bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
SmallVirtRegSet &, unsigned);
void tryHintRecoloring(LiveInterval &);
void tryHintsRecoloring();
/// Model the information carried by one end of a copy.
struct HintInfo {
/// The frequency of the copy.
BlockFrequency Freq;
/// The virtual register or physical register.
unsigned Reg;
/// Its currently assigned register.
/// In case of a physical register Reg == PhysReg.
unsigned PhysReg;
HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
: Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
};
using HintsInfo = SmallVector<HintInfo, 4>;
BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
void collectHintInfo(unsigned, HintsInfo &);
bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
/// Compute and report the number of spills and reloads for a loop.
void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
unsigned &FoldedReloads, unsigned &Spills,
unsigned &FoldedSpills);
/// Report the number of spills and reloads for each loop.
void reportNumberOfSplillsReloads() {
for (MachineLoop *L : *Loops) {
unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
FoldedSpills);
}
}
};
} // end anonymous namespace
char RAGreedy::ID = 0;
char &llvm::RAGreedyID = RAGreedy::ID;
INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
"Greedy Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(RAGreedy, "greedy",
"Greedy Register Allocator", false, false)
#ifndef NDEBUG
const char *const RAGreedy::StageName[] = {
"RS_New",
"RS_Assign",
"RS_Split",
"RS_Split2",
"RS_Spill",
"RS_Memory",
"RS_Done"
};
#endif
// Hysteresis to use when comparing floats.
// This helps stabilize decisions based on float comparisons.
const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<LiveRegMatrix>();
AU.addPreserved<LiveRegMatrix>();
AU.addRequired<EdgeBundles>();
AU.addRequired<SpillPlacement>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
//===----------------------------------------------------------------------===//
// LiveRangeEdit delegate methods
//===----------------------------------------------------------------------===//
bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
LiveInterval &LI = LIS->getInterval(VirtReg);
if (VRM->hasPhys(VirtReg)) {
Matrix->unassign(LI);
aboutToRemoveInterval(LI);
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
// Nonetheless, clear the live-range so that the debug
// dump will show the right state for that VirtReg.
LI.clear();
return false;
}
void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
// Cloning a register we haven't even heard about yet? Just ignore it.
if (!ExtraRegInfo.inBounds(Old))
return;
// LRE may clone a virtual register because dead code elimination causes it to
// be split into connected components. The new components are much smaller
// than the original, so they should get a new chance at being assigned.
// same stage as the parent.
ExtraRegInfo[Old].Stage = RS_Assign;
ExtraRegInfo.grow(New);
ExtraRegInfo[New] = ExtraRegInfo[Old];
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset();
ExtraRegInfo.clear();
GlobalCand.clear();
}
void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
// Prioritize live ranges by size, assigning larger ranges first.
// The queue holds (size, reg) pairs.
const unsigned Size = LI->getSize();
const unsigned Reg = LI->reg;
assert(Register::isVirtualRegister(Reg) &&
"Can only enqueue virtual registers");
unsigned Prio;
ExtraRegInfo.grow(Reg);
if (ExtraRegInfo[Reg].Stage == RS_New)
ExtraRegInfo[Reg].Stage = RS_Assign;
if (ExtraRegInfo[Reg].Stage == RS_Split) {
// Unsplit ranges that couldn't be allocated immediately are deferred until
// everything else has been allocated.
Prio = Size;
} else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
// Memory operand should be considered last.
// Change the priority such that Memory operand are assigned in
// the reverse order that they came in.
// TODO: Make this a member variable and probably do something about hints.
static unsigned MemOp = 0;
Prio = MemOp++;
} else {
// Giant live ranges fall back to the global assignment heuristic, which
// prevents excessive spilling in pathological cases.
bool ReverseLocal = TRI->reverseLocalAssignment();
const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
bool ForceGlobal = !ReverseLocal &&
(Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
LIS->intervalIsInOneMBB(*LI)) {
// Allocate original local ranges in linear instruction order. Since they
// are singly defined, this produces optimal coloring in the absence of
// global interference and other constraints.
if (!ReverseLocal)
Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
else {
// Allocating bottom up may allow many short LRGs to be assigned first
// to one of the cheap registers. This could be much faster for very
// large blocks on targets with many physical registers.
Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
}
Prio |= RC.AllocationPriority << 24;
} else {
// Allocate global and split ranges in long->short order. Long ranges that
// don't fit should be spilled (or split) ASAP so they don't create
// interference. Mark a bit to prioritize global above local ranges.
Prio = (1u << 29) + Size;
}
// Mark a higher bit to prioritize global and local above RS_Split.
Prio |= (1u << 31);
// Boost ranges that have a physical register hint.
if (VRM->hasKnownPreference(Reg))
Prio |= (1u << 30);
}
// The virtual register number is a tie breaker for same-sized ranges.
// Give lower vreg numbers higher priority to assign them first.
CurQueue.push(std::make_pair(Prio, ~Reg));
}
LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
if (CurQueue.empty())
return nullptr;
LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
CurQueue.pop();
return LI;
}
//===----------------------------------------------------------------------===//
// Direct Assignment
//===----------------------------------------------------------------------===//
/// tryAssign - Try to assign VirtReg to an available register.
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
const SmallVirtRegSet &FixedRegisters) {
Order.rewind();
unsigned PhysReg;
while ((PhysReg = Order.next()))
if (!Matrix->checkInterference(VirtReg, PhysReg))
break;
if (!PhysReg || Order.isHint())
return PhysReg;
// PhysReg is available, but there may be a better choice.
// If we missed a simple hint, try to cheaply evict interference from the
// preferred register.
if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
if (Order.isHint(Hint)) {
LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
EvictionCost MaxCost;
MaxCost.setBrokenHints(1);
if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
evictInterference(VirtReg, Hint, NewVRegs);
return Hint;
}
// Record the missed hint, we may be able to recover
// at the end if the surrounding allocation changed.
SetOfBrokenHints.insert(&VirtReg);
}
// Try to evict interference from a cheaper alternative.
unsigned Cost = TRI->getCostPerUse(PhysReg);
// Most registers have 0 additional cost.
if (!Cost)
return PhysReg;
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
<< Cost << '\n');
unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
return CheapReg ? CheapReg : PhysReg;
}
//===----------------------------------------------------------------------===//
// Interference eviction
//===----------------------------------------------------------------------===//
unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
unsigned PhysReg;
while ((PhysReg = Order.next())) {
if (PhysReg == PrevReg)
continue;
MCRegUnitIterator Units(PhysReg, TRI);
for (; Units.isValid(); ++Units) {
// Instantiate a "subquery", not to be confused with the Queries array.
LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
if (subQ.checkInterference())
break;
}
// If no units have interference, break out with the current PhysReg.
if (!Units.isValid())
break;
}
if (PhysReg)
LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
<< printReg(PrevReg, TRI) << " to "
<< printReg(PhysReg, TRI) << '\n');
return PhysReg;
}
/// shouldEvict - determine if A should evict the assigned live range B. The
/// eviction policy defined by this function together with the allocation order
/// defined by enqueue() decides which registers ultimately end up being split
/// and spilled.
///
/// Cascade numbers are used to prevent infinite loops if this function is a
/// cyclic relation.
///
/// @param A The live range to be assigned.
/// @param IsHint True when A is about to be assigned to its preferred
/// register.
/// @param B The live range to be evicted.
/// @param BreaksHint True when B is already assigned to its preferred register.
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
LiveInterval &B, bool BreaksHint) {
bool CanSplit = getStage(B) < RS_Spill;
// Be fairly aggressive about following hints as long as the evictee can be
// split.
if (CanSplit && IsHint && !BreaksHint)
return true;
if (A.weight > B.weight) {
LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
return true;
}
return false;
}
/// canEvictInterference - Return true if all interferences between VirtReg and
/// PhysReg can be evicted.
///
/// @param VirtReg Live range that is about to be assigned.
/// @param PhysReg Desired register for assignment.
/// @param IsHint True when PhysReg is VirtReg's preferred register.
/// @param MaxCost Only look for cheaper candidates and update with new cost
/// when returning true.
/// @returns True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
bool IsHint, EvictionCost &MaxCost,
const SmallVirtRegSet &FixedRegisters) {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
return false;
bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
// Find VirtReg's cascade number. This will be unassigned if VirtReg was never
// involved in an eviction before. If a cascade number was assigned, deny
// evicting anything with the same or a newer cascade number. This prevents
// infinite eviction loops.
//
// This works out so a register without a cascade number is allowed to evict
// anything, and it can be evicted by anything.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = NextCascade;
EvictionCost Cost;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// If there is 10 or more interferences, chances are one is heavier.
if (Q.collectInterferingVRegs(10) >= 10)
return false;
// Check if any interfering live range is heavier than MaxWeight.
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
assert(Register::isVirtualRegister(Intf->reg) &&
"Only expecting virtual register interference from query");
// Do not allow eviction of a virtual register if we are in the middle
// of last-chance recoloring and this virtual register is one that we
// have scavenged a physical register for.
if (FixedRegisters.count(Intf->reg))
return false;
// Never evict spill products. They cannot split or spill.
if (getStage(*Intf) == RS_Done)
return false;
// Once a live range becomes small enough, it is urgent that we find a
// register for it. This is indicated by an infinite spill weight. These
// urgent live ranges get to evict almost anything.
//
// Also allow urgent evictions of unspillable ranges from a strictly
// larger allocation order.
bool Urgent = !VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
// We permit breaking cascades for urgent evictions. It should be the
// last resort, though, so make it really expensive.
Cost.BrokenHints += 10;
}
// Would this break a satisfied hint?
bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
// Update eviction cost.
Cost.BrokenHints += BreaksHint;
Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
// Abort if this would be too expensive.
if (!(Cost < MaxCost))
return false;
if (Urgent)
continue;
// Apply the eviction policy for non-urgent evictions.
if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
return false;
// If !MaxCost.isMax(), then we're just looking for a cheap register.
// Evicting another local live range in this case could lead to suboptimal
// coloring.
if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
(!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
return false;
}
}
}
MaxCost = Cost;
return true;
}
/// Return true if all interferences between VirtReg and PhysReg between
/// Start and End can be evicted.
///
/// \param VirtReg Live range that is about to be assigned.
/// \param PhysReg Desired register for assignment.
/// \param Start Start of range to look for interferences.
/// \param End End of range to look for interferences.
/// \param MaxCost Only look for cheaper candidates and update with new cost
/// when returning true.
/// \return True when interference can be evicted cheaper than MaxCost.
bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
unsigned PhysReg, SlotIndex Start,
SlotIndex End,
EvictionCost &MaxCost) {
EvictionCost Cost;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// Check if any interfering live range is heavier than MaxWeight.
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
// Check if interference overlast the segment in interest.
if (!Intf->overlaps(Start, End))
continue;
// Cannot evict non virtual reg interference.
if (!Register::isVirtualRegister(Intf->reg))
return false;
// Never evict spill products. They cannot split or spill.
if (getStage(*Intf) == RS_Done)
return false;
// Would this break a satisfied hint?
bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
// Update eviction cost.
Cost.BrokenHints += BreaksHint;
Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
// Abort if this would be too expensive.
if (!(Cost < MaxCost))
return false;
}
}
if (Cost.MaxWeight == 0)
return false;
MaxCost = Cost;
return true;
}
/// Return the physical register that will be best
/// candidate for eviction by a local split interval that will be created
/// between Start and End.
///
/// \param Order The allocation order
/// \param VirtReg Live range that is about to be assigned.
/// \param Start Start of range to look for interferences
/// \param End End of range to look for interferences
/// \param BestEvictweight The eviction cost of that eviction
/// \return The PhysReg which is the best candidate for eviction and the
/// eviction cost in BestEvictweight
unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
LiveInterval &VirtReg,
SlotIndex Start, SlotIndex End,
float *BestEvictweight) {
EvictionCost BestEvictCost;
BestEvictCost.setMax();
BestEvictCost.MaxWeight = VirtReg.weight;
unsigned BestEvicteePhys = 0;
// Go over all physical registers and find the best candidate for eviction
for (auto PhysReg : Order.getOrder()) {
if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
BestEvictCost))
continue;
// Best so far.
BestEvicteePhys = PhysReg;
}
*BestEvictweight = BestEvictCost.MaxWeight;
return BestEvicteePhys;
}
/// evictInterference - Evict any interferring registers that prevent VirtReg
/// from being assigned to Physreg. This assumes that canEvictInterference
/// returned true.
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<unsigned> &NewVRegs) {
// Make sure that VirtReg has a cascade number, and assign that cascade
// number to every evicted register. These live ranges than then only be
// evicted by a newer cascade, preventing infinite loops.
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
if (!Cascade)
Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
<< " interference: Cascade " << Cascade << '\n');
// Collect all interfering virtregs first.
SmallVector<LiveInterval*, 8> Intfs;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// We usually have the interfering VRegs cached so collectInterferingVRegs()
// should be fast, we may need to recalculate if when different physregs
// overlap the same register unit so we had different SubRanges queried
// against it.
Q.collectInterferingVRegs();
ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
Intfs.append(IVR.begin(), IVR.end());
}
// Evict them second. This will invalidate the queries.
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
LiveInterval *Intf = Intfs[i];
// The same VirtReg may be present in multiple RegUnits. Skip duplicates.
if (!VRM->hasPhys(Intf->reg))
continue;
LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
Matrix->unassign(*Intf);
assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
VirtReg.isSpillable() < Intf->isSpillable()) &&
"Cannot decrease cascade number, illegal eviction");
ExtraRegInfo[Intf->reg].Cascade = Cascade;
++NumEvicted;
NewVRegs.push_back(Intf->reg);
}
}
/// Returns true if the given \p PhysReg is a callee saved register and has not
/// been used for allocation yet.
bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
if (CSR == 0)
return false;
return !Matrix->isPhysRegUsed(PhysReg);
}
/// tryEvict - Try to evict all interferences for a physreg.
/// @param VirtReg Currently unassigned virtual register.
/// @param Order Physregs to try.
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
unsigned CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) {
NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
TimePassesIsEnabled);
// Keep track of the cheapest interference seen so far.
EvictionCost BestCost;
BestCost.setMax();
unsigned BestPhys = 0;
unsigned OrderLimit = Order.getOrder().size();
// When we are just looking for a reduced cost per use, don't break any
// hints, and only evict smaller spill weights.
if (CostPerUseLimit < ~0u) {
BestCost.BrokenHints = 0;
BestCost.MaxWeight = VirtReg.weight;
// Check of any registers in RC are below CostPerUseLimit.
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
unsigned MinCost = RegClassInfo.getMinCost(RC);
if (MinCost >= CostPerUseLimit) {
LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
<< MinCost << ", no cheaper registers to be found.\n");
return 0;
}
// It is normal for register classes to have a long tail of registers with
// the same cost. We don't need to look at them if they're too expensive.
if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
OrderLimit = RegClassInfo.getLastCostChange(RC);
LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
<< " regs.\n");
}
}
Order.rewind();
while (unsigned PhysReg = Order.next(OrderLimit)) {
if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
continue;
// The first use of a callee-saved register in a function has cost 1.
// Don't start using a CSR when the CostPerUseLimit is low.
if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
LLVM_DEBUG(
dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
<< printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
<< '\n');
continue;
}
if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
FixedRegisters))
continue;
// Best so far.
BestPhys = PhysReg;
// Stop if the hint can be used.
if (Order.isHint())
break;
}
if (!BestPhys)
return 0;
evictInterference(VirtReg, BestPhys, NewVRegs);
return BestPhys;
}
//===----------------------------------------------------------------------===//
// Region Splitting
//===----------------------------------------------------------------------===//
/// addSplitConstraints - Fill out the SplitConstraints vector based on the
/// interference pattern in Physreg and its aliases. Add the constraints to
/// SpillPlacement and return the static cost of this split in Cost, assuming
/// that all preferences in SplitConstraints are met.
/// Return false if there are no bundles with positive bias.
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
BlockFrequency &Cost) {
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
// Reset interference dependent info.
SplitConstraints.resize(UseBlocks.size());
BlockFrequency StaticCost = 0;
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
BC.Number = BI.MBB->getNumber();
Intf.moveToBlock(BC.Number);
BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
BC.Exit = (BI.LiveOut &&
!LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
? SpillPlacement::PrefReg
: SpillPlacement::DontCare;
BC.ChangesValue = BI.FirstDef.isValid();
if (!Intf.hasInterference())
continue;
// Number of spill code instructions to insert.
unsigned Ins = 0;
// Interference for the live-in value.
if (BI.LiveIn) {
if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
BC.Entry = SpillPlacement::MustSpill;
++Ins;
} else if (Intf.first() < BI.FirstInstr) {
BC.Entry = SpillPlacement::PrefSpill;
++Ins;
} else if (Intf.first() < BI.LastInstr) {
++Ins;
}
// Abort if the spill cannot be inserted at the MBB' start
if (((BC.Entry == SpillPlacement::MustSpill) ||
(BC.Entry == SpillPlacement::PrefSpill)) &&
SlotIndex::isEarlierInstr(BI.FirstInstr,
SA->getFirstSplitPoint(BC.Number)))
return false;
}
// Interference for the live-out value.
if (BI.LiveOut) {
if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
BC.Exit = SpillPlacement::MustSpill;
++Ins;
} else if (Intf.last() > BI.LastInstr) {
BC.Exit = SpillPlacement::PrefSpill;
++Ins;
} else if (Intf.last() > BI.FirstInstr) {
++Ins;
}
}
// Accumulate the total frequency of inserted spill code.
while (Ins--)
StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
}
Cost = StaticCost;
// Add constraints for use-blocks. Note that these are the only constraints
// that may add a positive bias, it is downhill from here.
SpillPlacer->addConstraints(SplitConstraints);
return SpillPlacer->scanActiveBundles();
}
/// addThroughConstraints - Add constraints and links to SpillPlacer from the
/// live-through blocks in Blocks.
bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
ArrayRef<unsigned> Blocks) {
const unsigned GroupSize = 8;
SpillPlacement::BlockConstraint BCS[GroupSize];
unsigned TBS[GroupSize];
unsigned B = 0, T = 0;
for (unsigned i = 0; i != Blocks.size(); ++i) {
unsigned Number = Blocks[i];
Intf.moveToBlock(Number);
if (!Intf.hasInterference()) {
assert(T < GroupSize && "Array overflow");
TBS[T] = Number;
if (++T == GroupSize) {
SpillPlacer->addLinks(makeArrayRef(TBS, T));
T = 0;
}
continue;
}
assert(B < GroupSize && "Array overflow");
BCS[B].Number = Number;
// Abort if the spill cannot be inserted at the MBB' start
MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
if (!MBB->empty() &&
SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
SA->getFirstSplitPoint(Number)))
return false;
// Interference for the live-in value.
if (Intf.first() <= Indexes->getMBBStartIdx(Number))
BCS[B].Entry = SpillPlacement::MustSpill;
else
BCS[B].Entry = SpillPlacement::PrefSpill;
// Interference for the live-out value.
if (Intf.last() >= SA->getLastSplitPoint(Number))
BCS[B].Exit = SpillPlacement::MustSpill;
else
BCS[B].Exit = SpillPlacement::PrefSpill;
if (++B == GroupSize) {
SpillPlacer->addConstraints(makeArrayRef(BCS, B));
B = 0;
}
}
SpillPlacer->addConstraints(makeArrayRef(BCS, B));
SpillPlacer->addLinks(makeArrayRef(TBS, T));
return true;
}
bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
// Keep track of through blocks that have not been added to SpillPlacer.
BitVector Todo = SA->getThroughBlocks();
SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
unsigned AddedTo = 0;
#ifndef NDEBUG
unsigned Visited = 0;
#endif
while (true) {
ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
// Find new through blocks in the periphery of PrefRegBundles.
for (int i = 0, e = NewBundles.size(); i != e; ++i) {
unsigned Bundle = NewBundles[i];
// Look at all blocks connected to Bundle in the full graph.
ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
I != E; ++I) {
unsigned Block = *I;
if (!Todo.test(Block))
continue;
Todo.reset(Block);
// This is a new through block. Add it to SpillPlacer later.
ActiveBlocks.push_back(Block);
#ifndef NDEBUG
++Visited;
#endif
}
}
// Any new blocks to add?
if (ActiveBlocks.size() == AddedTo)
break;
// Compute through constraints from the interference, or assume that all
// through blocks prefer spilling when forming compact regions.
auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
if (Cand.PhysReg) {
if (!addThroughConstraints(Cand.Intf, NewBlocks))
return false;
} else
// Provide a strong negative bias on through blocks to prevent unwanted
// liveness on loop backedges.
SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
AddedTo = ActiveBlocks.size();
// Perhaps iterating can enable more bundles?
SpillPlacer->iterate();
}
LLVM_DEBUG(dbgs() << ", v=" << Visited);
return true;
}
/// calcCompactRegion - Compute the set of edge bundles that should be live
/// when splitting the current live range into compact regions. Compact
/// regions can be computed without looking at interference. They are the
/// regions formed by removing all the live-through blocks from the live range.
///
/// Returns false if the current live range is already compact, or if the
/// compact regions would form single block regions anyway.
bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
// Without any through blocks, the live range is already compact.
if (!SA->getNumThroughBlocks())
return false;
// Compact regions don't correspond to any physreg.
Cand.reset(IntfCache, 0);
LLVM_DEBUG(dbgs() << "Compact region bundles");
// Use the spill placer to determine the live bundles. GrowRegion pretends
// that all the through blocks have interference when PhysReg is unset.
SpillPlacer->prepare(Cand.LiveBundles);
// The static split cost will be zero since Cand.Intf reports no interference.
BlockFrequency Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
LLVM_DEBUG(dbgs() << ", none.\n");
return false;
}
if (!growRegion(Cand)) {
LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
return false;
}
SpillPlacer->finish();
if (!Cand.LiveBundles.any()) {
LLVM_DEBUG(dbgs() << ", none.\n");
return false;
}
LLVM_DEBUG({
for (int i : Cand.LiveBundles.set_bits())
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
return true;
}
/// calcSpillCost - Compute how expensive it would be to split the live range in
/// SA around all use blocks instead of forming bundle regions.
BlockFrequency RAGreedy::calcSpillCost() {
BlockFrequency Cost = 0;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
// We normally only need one spill instruction - a load or a store.
Cost += SpillPlacer->getBlockFrequency(Number);
// Unless the value is redefined in the block.
if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
Cost += SpillPlacer->getBlockFrequency(Number);
}
return Cost;
}
/// Check if splitting Evictee will create a local split interval in
/// basic block number BBNumber that may cause a bad eviction chain. This is
/// intended to prevent bad eviction sequences like:
/// movl %ebp, 8(%esp) # 4-byte Spill
/// movl %ecx, %ebp
/// movl %ebx, %ecx
/// movl %edi, %ebx
/// movl %edx, %edi
/// cltd
/// idivl %esi
/// movl %edi, %edx
/// movl %ebx, %edi
/// movl %ecx, %ebx
/// movl %ebp, %ecx
/// movl 16(%esp), %ebp # 4 - byte Reload
///
/// Such sequences are created in 2 scenarios:
///
/// Scenario #1:
/// %0 is evicted from physreg0 by %1.
/// Evictee %0 is intended for region splitting with split candidate
/// physreg0 (the reg %0 was evicted from).
/// Region splitting creates a local interval because of interference with the
/// evictor %1 (normally region splitting creates 2 interval, the "by reg"
/// and "by stack" intervals and local interval created when interference
/// occurs).
/// One of the split intervals ends up evicting %2 from physreg1.
/// Evictee %2 is intended for region splitting with split candidate
/// physreg1.
/// One of the split intervals ends up evicting %3 from physreg2, etc.
///
/// Scenario #2
/// %0 is evicted from physreg0 by %1.
/// %2 is evicted from physreg2 by %3 etc.
/// Evictee %0 is intended for region splitting with split candidate
/// physreg1.
/// Region splitting creates a local interval because of interference with the
/// evictor %1.
/// One of the split intervals ends up evicting back original evictor %1
/// from physreg0 (the reg %0 was evicted from).
/// Another evictee %2 is intended for region splitting with split candidate
/// physreg1.
/// One of the split intervals ends up evicting %3 from physreg2, etc.
///
/// \param Evictee The register considered to be split.
/// \param Cand The split candidate that determines the physical register
/// we are splitting for and the interferences.
/// \param BBNumber The number of a BB for which the region split process will
/// create a local split interval.
/// \param Order The physical registers that may get evicted by a split
/// artifact of Evictee.
/// \return True if splitting Evictee may cause a bad eviction chain, false
/// otherwise.
bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
GlobalSplitCandidate &Cand,
unsigned BBNumber,
const AllocationOrder &Order) {
EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
unsigned Evictor = VregEvictorInfo.first;
unsigned PhysReg = VregEvictorInfo.second;
// No actual evictor.
if (!Evictor || !PhysReg)
return false;
float MaxWeight = 0;
unsigned FutureEvictedPhysReg =
getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
// The bad eviction chain occurs when either the split candidate is the
// evicting reg or one of the split artifact will evict the evicting reg.
if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
return false;
Cand.Intf.moveToBlock(BBNumber);
// Check to see if the Evictor contains interference (with Evictee) in the
// given BB. If so, this interference caused the eviction of Evictee from
// PhysReg. This suggest that we will create a local interval during the
// region split to avoid this interference This local interval may cause a bad
// eviction chain.
if (!LIS->hasInterval(Evictor))
return false;
LiveInterval &EvictorLI = LIS->getInterval(Evictor);
if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
return false;
// Now, check to see if the local interval we will create is going to be
// expensive enough to evict somebody If so, this may cause a bad eviction
// chain.
VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
float splitArtifactWeight =
VRAI.futureWeight(LIS->getInterval(Evictee),
Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
return false;
return true;
}
/// Check if splitting VirtRegToSplit will create a local split interval
/// in basic block number BBNumber that may cause a spill.
///
/// \param VirtRegToSplit The register considered to be split.
/// \param Cand The split candidate that determines the physical
/// register we are splitting for and the interferences.
/// \param BBNumber The number of a BB for which the region split process
/// will create a local split interval.
/// \param Order The physical registers that may get evicted by a
/// split artifact of VirtRegToSplit.
/// \return True if splitting VirtRegToSplit may cause a spill, false
/// otherwise.
bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
GlobalSplitCandidate &Cand,
unsigned BBNumber,
const AllocationOrder &Order) {
Cand.Intf.moveToBlock(BBNumber);
// Check if the local interval will find a non interfereing assignment.
for (auto PhysReg : Order.getOrder()) {
if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
Cand.Intf.last(), PhysReg))
return false;
}
// Check if the local interval will evict a cheaper interval.
float CheapestEvictWeight = 0;
unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
Cand.Intf.last(), &CheapestEvictWeight);
// Have we found an interval that can be evicted?
if (FutureEvictedPhysReg) {
VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
float splitArtifactWeight =
VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
// Will the weight of the local interval be higher than the cheapest evictee
// weight? If so it will evict it and will not cause a spill.
if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
return false;
}
// The local interval is not able to find non interferencing assignment and
// not able to evict a less worthy interval, therfore, it can cause a spill.
return true;
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
/// interference pattern in SplitConstraints.
///
BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
const AllocationOrder &Order,
bool *CanCauseEvictionChain) {
BlockFrequency GlobalCost = 0;
const BitVector &LiveBundles = Cand.LiveBundles;
unsigned VirtRegToSplit = SA->getParent().reg;
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
unsigned Ins = 0;
Cand.Intf.moveToBlock(BC.Number);
// Check wheather a local interval is going to be created during the region
// split. Calculate adavanced spilt cost (cost of local intervals) if option
// is enabled.
if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
BI.LiveOut && RegIn && RegOut) {
if (CanCauseEvictionChain &&
splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
// This interference causes our eviction from this assignment, we might
// evict somebody else and eventually someone will spill, add that cost.
// See splitCanCauseEvictionChain for detailed description of scenarios.
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
*CanCauseEvictionChain = true;
} else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
Order)) {
// This interference causes local interval to spill, add that cost.
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
}
}
if (BI.LiveIn)
Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
if (BI.LiveOut)
Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
while (Ins--)
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
}
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
unsigned Number = Cand.ActiveBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
if (!RegIn && !RegOut)
continue;
if (RegIn && RegOut) {
// We need double spill code if this block has interference.
Cand.Intf.moveToBlock(Number);
if (Cand.Intf.hasInterference()) {
GlobalCost += SpillPlacer->getBlockFrequency(Number);
GlobalCost += SpillPlacer->getBlockFrequency(Number);
// Check wheather a local interval is going to be created during the
// region split.
if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
// This interference cause our eviction from this assignment, we might
// evict somebody else, add that cost.
// See splitCanCauseEvictionChain for detailed description of
// scenarios.
GlobalCost += SpillPlacer->getBlockFrequency(Number);
GlobalCost += SpillPlacer->getBlockFrequency(Number);
*CanCauseEvictionChain = true;
}
}
continue;
}
// live-in / stack-out or stack-in live-out.
GlobalCost += SpillPlacer->getBlockFrequency(Number);
}
return GlobalCost;
}
/// splitAroundRegion - Split the current live range around the regions
/// determined by BundleCand and GlobalCand.
///
/// Before calling this function, GlobalCand and BundleCand must be initialized
/// so each bundle is assigned to a valid candidate, or NoCand for the
/// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
/// objects must be initialized for the current live range, and intervals
/// created for the used candidates.
///
/// @param LREdit The LiveRangeEdit object handling the current split.
/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
/// must appear in this list.
void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
ArrayRef<unsigned> UsedCands) {
// These are the intervals created for new global ranges. We may create more
// intervals for local ranges.
const unsigned NumGlobalIntvs = LREdit.size();
LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
<< " globals.\n");
assert(NumGlobalIntvs && "No global intervals configured");
// Isolate even single instructions when dealing with a proper sub-class.
// That guarantees register class inflation for the stack interval because it
// is all copies.
unsigned Reg = SA->getParent().reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
// First handle all the blocks with uses.
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
unsigned Number = BI.MBB->getNumber();
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
if (BI.LiveIn) {
unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
}
if (BI.LiveOut) {
unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
}
// Create separate intervals for isolated blocks with multiple uses.
if (!IntvIn && !IntvOut) {
LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
continue;
}
if (IntvIn && IntvOut)
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
else if (IntvIn)
SE->splitRegInBlock(BI, IntvIn, IntfIn);
else
SE->splitRegOutBlock(BI, IntvOut, IntfOut);
}
// Handle live-through blocks. The relevant live-through blocks are stored in
// the ActiveBlocks list with each candidate. We need to filter out
// duplicates.
BitVector Todo = SA->getThroughBlocks();
for (unsigned c = 0; c != UsedCands.size(); ++c) {
ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
unsigned Number = Blocks[i];
if (!Todo.test(Number))
continue;
Todo.reset(Number);
unsigned IntvIn = 0, IntvOut = 0;
SlotIndex IntfIn, IntfOut;
unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
if (CandIn != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
IntvIn = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfIn = Cand.Intf.first();
}
unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
if (CandOut != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
IntvOut = Cand.IntvIdx;
Cand.Intf.moveToBlock(Number);
IntfOut = Cand.Intf.last();
}
if (!IntvIn && !IntvOut)
continue;
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
}
}
++NumGlobalSplits;
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
unsigned OrigBlocks = SA->getNumLiveBlocks();
// Sort out the new intervals created by splitting. We get four kinds:
// - Remainder intervals should not be split again.
// - Candidate intervals can be assigned to Cand.PhysReg.
// - Block-local splits are candidates for local splitting.
// - DCE leftovers should go back on the queue.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
// Ignore old intervals from DCE.
if (getStage(Reg) != RS_New)
continue;
// Remainder interval. Don't try splitting again, spill if it doesn't
// allocate.
if (IntvMap[i] == 0) {
setStage(Reg, RS_Spill);
continue;
}
// Global intervals. Allow repeated splitting as long as the number of live
// blocks is strictly decreasing.
if (IntvMap[i] < NumGlobalIntvs) {
if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
<< " blocks as original.\n");
// Don't allow repeated splitting as a safe guard against looping.
setStage(Reg, RS_Split2);
}
continue;
}
// Other intervals are treated as new. This includes local intervals created
// for blocks with multiple uses, and anything created by DCE.
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around region");
}
// Global split has high compile time cost especially for large live range.
// Return false for the case here where the potential benefit will never
// worth the cost.
unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
VirtReg.size() > HugeSizeForSplit)
return false;
return true;
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
if (!isSplitBenefitWorthCost(VirtReg))
return 0;
unsigned NumCands = 0;
BlockFrequency SpillCost = calcSpillCost();
BlockFrequency BestCost;
// Check if we can split this live range around a compact region.
bool HasCompact = calcCompactRegion(GlobalCand.front());
if (HasCompact) {
// Yes, keep GlobalCand[0] as the compact region candidate.
NumCands = 1;
BestCost = BlockFrequency::getMaxFrequency();
} else {
// No benefit from the compact region, our fallback will be per-block
// splitting. Make sure we find a solution that is cheaper than spilling.
BestCost = SpillCost;
LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
}
bool CanCauseEvictionChain = false;
unsigned BestCand =
calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
false /*IgnoreCSR*/, &CanCauseEvictionChain);
// Split candidates with compact regions can cause a bad eviction sequence.
// See splitCanCauseEvictionChain for detailed description of scenarios.
// To avoid it, we need to comapre the cost with the spill cost and not the
// current max frequency.
if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
CanCauseEvictionChain) {
return 0;
}
// No solutions found, fall back to single block splitting.
if (!HasCompact && BestCand == NoCand)
return 0;
return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
}
unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
AllocationOrder &Order,
BlockFrequency &BestCost,
unsigned &NumCands, bool IgnoreCSR,
bool *CanCauseEvictionChain) {
unsigned BestCand = NoCand;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
continue;
// Discard bad candidates before we run out of interference cache cursors.
// This will only affect register classes with a lot of registers (>32).
if (NumCands == IntfCache.getMaxCursors()) {
unsigned WorstCount = ~0u;
unsigned Worst = 0;
for (unsigned i = 0; i != NumCands; ++i) {
if (i == BestCand || !GlobalCand[i].PhysReg)
continue;
unsigned Count = GlobalCand[i].LiveBundles.count();
if (Count < WorstCount) {
Worst = i;
WorstCount = Count;
}
}
--NumCands;
GlobalCand[Worst] = GlobalCand[NumCands];
if (BestCand == NumCands)
BestCand = Worst;
}
if (GlobalCand.size() <= NumCands)
GlobalCand.resize(NumCands+1);
GlobalSplitCandidate &Cand = GlobalCand[NumCands];
Cand.reset(IntfCache, PhysReg);
SpillPlacer->prepare(Cand.LiveBundles);
BlockFrequency Cost;
if (!addSplitConstraints(Cand.Intf, Cost)) {
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
continue;
}
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
MBFI->printBlockFreq(dbgs(), Cost));
if (Cost >= BestCost) {
LLVM_DEBUG({
if (BestCand == NoCand)
dbgs() << " worse than no bundles\n";
else
dbgs() << " worse than "
<< printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
});
continue;
}
if (!growRegion(Cand)) {
LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
continue;
}
SpillPlacer->finish();
// No live bundles, defer to splitSingleBlocks().
if (!Cand.LiveBundles.any()) {
LLVM_DEBUG(dbgs() << " no bundles.\n");
continue;
}
bool HasEvictionChain = false;
Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
LLVM_DEBUG({
dbgs() << ", total = ";
MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
for (int i : Cand.LiveBundles.set_bits())
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
if (Cost < BestCost) {
BestCand = NumCands;
BestCost = Cost;
// See splitCanCauseEvictionChain for detailed description of bad
// eviction chain scenarios.
if (CanCauseEvictionChain)
*CanCauseEvictionChain = HasEvictionChain;
}
++NumCands;
}
if (CanCauseEvictionChain && BestCand != NoCand) {
// See splitCanCauseEvictionChain for detailed description of bad
// eviction chain scenarios.
LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
<< printReg(VirtReg.reg, TRI) << " may ");
if (!(*CanCauseEvictionChain))
LLVM_DEBUG(dbgs() << "not ");
LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
}
return BestCand;
}
unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
bool HasCompact,
SmallVectorImpl<unsigned> &NewVRegs) {
SmallVector<unsigned, 8> UsedCands;
// Prepare split editor.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
SE->reset(LREdit, SplitSpillMode);
// Assign all edge bundles to the preferred candidate, or NoCand.
BundleCand.assign(Bundles->getNumBundles(), NoCand);
// Assign bundles for the best candidate region.
if (BestCand != NoCand) {
GlobalSplitCandidate &Cand = GlobalCand[BestCand];
if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
UsedCands.push_back(BestCand);
Cand.IntvIdx = SE->openIntv();
LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
<< B << " bundles, intv " << Cand.IntvIdx << ".\n");
(void)B;
}
}
// Assign bundles for the compact region.
if (HasCompact) {
GlobalSplitCandidate &Cand = GlobalCand.front();
assert(!Cand.PhysReg && "Compact region has no physreg");
if (unsigned B = Cand.getBundles(BundleCand, 0)) {
UsedCands.push_back(0);
Cand.IntvIdx = SE->openIntv();
LLVM_DEBUG(dbgs() << "Split for compact region in " << B
<< " bundles, intv " << Cand.IntvIdx << ".\n");
(void)B;
}
}
splitAroundRegion(LREdit, UsedCands);
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Block Splitting
//===----------------------------------------------------------------------===//
/// tryBlockSplit - Split a global live range around every block with uses. This
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
/// they don't allocate.
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
unsigned Reg = VirtReg.reg;
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
SE->reset(LREdit, SplitSpillMode);
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
SE->splitSingleBlock(BI);
}
// No blocks were split.
if (LREdit.empty())
return 0;
// We did split for some blocks.
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
// Tell LiveDebugVariables about the new ranges.
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Sort out the new intervals created by splitting. The remainder interval
// goes straight to spilling, the new local ranges get to stay RS_New.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &LI = LIS->getInterval(LREdit.get(i));
if (getStage(LI) == RS_New && IntvMap[i] == 0)
setStage(LI, RS_Spill);
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
return 0;
}
//===----------------------------------------------------------------------===//
// Per-Instruction Splitting
//===----------------------------------------------------------------------===//
/// Get the number of allocatable registers that match the constraints of \p Reg
/// on \p MI and that are also in \p SuperRC.
static unsigned getNumAllocatableRegsForConstraints(
const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
const RegisterClassInfo &RCI) {
assert(SuperRC && "Invalid register class");
const TargetRegisterClass *ConstrainedRC =
MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
/* ExploreBundle */ true);
if (!ConstrainedRC)
return 0;
return RCI.getNumAllocatableRegs(ConstrainedRC);
}
/// tryInstructionSplit - Split a live range around individual instructions.
/// This is normally not worthwhile since the spiller is doing essentially the
/// same thing. However, when the live range is in a constrained register
/// class, it may help to insert copies such that parts of the live range can
/// be moved to a larger register class.
///
/// This is similar to spilling to a larger register class.
unsigned
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
// There is no point to this if there are no larger sub-classes.
if (!RegClassInfo.isProperSubClass(CurRC))
return 0;
// Always enable split spill mode, since we're effectively spilling to a
// register.
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
SE->reset(LREdit, SplitEditor::SM_Size);
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 1)
return 0;
LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
<< " individual instrs.\n");
const TargetRegisterClass *SuperRC =
TRI->getLargestLegalSuperClass(CurRC, *MF);
unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
// Split around every non-copy instruction if this split will relax
// the constraints on the virtual register.
// Otherwise, splitting just inserts uncoalescable copies that do not help
// the allocation.
for (unsigned i = 0; i != Uses.size(); ++i) {
if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
if (MI->isFullCopy() ||
SuperRCNumAllocatableRegs ==
getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
TRI, RCI)) {
LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
continue;
}
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
SE->useIntv(SegStart, SegStop);
}
if (LREdit.empty()) {
LLVM_DEBUG(dbgs() << "All uses were copies.\n");
return 0;
}
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
ExtraRegInfo.resize(MRI->getNumVirtRegs());
// Assign all new registers to RS_Spill. This was the last chance.
setStage(LREdit.begin(), LREdit.end(), RS_Spill);
return 0;
}
//===----------------------------------------------------------------------===//
// Local Splitting
//===----------------------------------------------------------------------===//
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
SmallVectorImpl<float> &GapWeight) {
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
const unsigned NumGaps = Uses.size()-1;
// Start and end points for the interference check.
SlotIndex StartIdx =
BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
SlotIndex StopIdx =
BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
GapWeight.assign(NumGaps, 0.0f);
// Add interference from each overlapping register.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
.checkInterference())
continue;
// We know that VirtReg is a continuous interval from FirstInstr to
// LastInstr, so we don't need InterferenceQuery.
//
// Interference that overlaps an instruction is counted in both gaps
// surrounding the instruction. The exception is interference before
// StartIdx and after StopIdx.
//
LiveIntervalUnion::SegmentIter IntI =
Matrix->getLiveUnions()[*Units] .find(StartIdx);
for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
// Skip the gaps before IntI.
while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
// Update the gaps covered by IntI.
const float weight = IntI.value()->weight;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = std::max(GapWeight[Gap], weight);
if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
break;
}
if (Gap == NumGaps)
break;
}
}
// Add fixed interference.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
const LiveRange &LR = LIS->getRegUnit(*Units);
LiveRange::const_iterator I = LR.find(StartIdx);
LiveRange::const_iterator E = LR.end();
// Same loop as above. Mark any overlapped gaps as HUGE_VALF.
for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
while (Uses[Gap+1].getBoundaryIndex() < I->start)
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = huge_valf;
if (Uses[Gap+1].getBaseIndex() >= I->end)
break;
}
if (Gap == NumGaps)
break;
}
}
}
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs) {
// TODO: the function currently only handles a single UseBlock; it should be
// possible to generalize.
if (SA->getUseBlocks().size() != 1)
return 0;
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
// Note that it is possible to have an interval that is live-in or live-out
// while only covering a single block - A phi-def can use undef values from
// predecessors, and the block could be a single-block loop.
// We don't bother doing anything clever about such a case, we simply assume
// that the interval is continuous from FirstInstr to LastInstr. We should
// make sure that we don't do anything illegal to such an interval, though.
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
if (Uses.size() <= 2)
return 0;
const unsigned NumGaps = Uses.size()-1;
LLVM_DEBUG({
dbgs() << "tryLocalSplit: ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
dbgs() << ' ' << Uses[i];
dbgs() << '\n';
});
// If VirtReg is live across any register mask operands, compute a list of
// gaps with register masks.
SmallVector<unsigned, 8> RegMaskGaps;
if (Matrix->checkRegMaskInterference(VirtReg)) {
// Get regmask slots for the whole block.
ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
// Constrain to VirtReg's live range.
unsigned ri =
llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
unsigned re = RMS.size();
for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
// Look for Uses[i] <= RMS <= Uses[i+1].
assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
continue;
// Skip a regmask on the same instruction as the last use. It doesn't
// overlap the live range.
if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
break;
LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
<< Uses[i + 1]);
RegMaskGaps.push_back(i);
// Advance ri to the next gap. A regmask on one of the uses counts in
// both gaps.
while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
++ri;
}
LLVM_DEBUG(dbgs() << '\n');
}
// Since we allow local split results to be split again, there is a risk of
// creating infinite loops. It is tempting to require that the new live
// ranges have less instructions than the original. That would guarantee
// convergence, but it is too strict. A live range with 3 instructions can be
// split 2+3 (including the COPY), and we want to allow that.
//
// Instead we use these rules:
//
// 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
// noop split, of course).
// 2. Require progress be made for ranges with getStage() == RS_Split2. All
// the new ranges must have fewer instructions than before the split.
// 3. New ranges with the same number of instructions are marked RS_Split2,
// smaller ranges are marked RS_New.
//
// These rules allow a 3 -> 2+3 split once, which we need. They also prevent
// excessive splitting and infinite loops.
//
bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
// Best split candidate.
unsigned BestBefore = NumGaps;
unsigned BestAfter = 0;
float BestDiff = 0;
const float blockFreq =
SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
(1.0f / MBFI->getEntryFreq());
SmallVector<float, 8> GapWeight;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Keep track of the largest spill weight that would need to be evicted in
// order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
calcGapWeights(PhysReg, GapWeight);
// Remove any gaps with regmask clobbers.
if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
GapWeight[RegMaskGaps[i]] = huge_valf;
// Try to find the best sequence of gaps to close.
// The new spill weight must be larger than any gap interference.
// We will split before Uses[SplitBefore] and after Uses[SplitAfter].
unsigned SplitBefore = 0, SplitAfter = 1;
// MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
// It is the spill weight that needs to be evicted.
float MaxGap = GapWeight[0];
while (true) {
// Live before/after split?
const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
<< '-' << Uses[SplitAfter] << " i=" << MaxGap);
// Stop before the interval gets so big we wouldn't be making progress.
if (!LiveBefore && !LiveAfter) {
LLVM_DEBUG(dbgs() << " all\n");
break;
}
// Should the interval be extended or shrunk?
bool Shrink = true;
// How many gaps would the new range have?
unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
// Legally, without causing looping?
bool Legal = !ProgressRequired || NewGaps < NumGaps;
if (Legal && MaxGap < huge_valf) {
// Estimate the new spill weight. Each instruction reads or writes the
// register. Conservatively assume there are no read-modify-write
// instructions.
//
// Try to guess the size of the new interval.
const float EstWeight = normalizeSpillWeight(
blockFreq * (NewGaps + 1),
Uses[SplitBefore].distance(Uses[SplitAfter]) +
(LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1);
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
LLVM_DEBUG(dbgs() << " w=" << EstWeight);
if (EstWeight * Hysteresis >= MaxGap) {
Shrink = false;
float Diff = EstWeight - MaxGap;
if (Diff > BestDiff) {
LLVM_DEBUG(dbgs() << " (best)");
BestDiff = Hysteresis * Diff;
BestBefore = SplitBefore;
BestAfter = SplitAfter;
}
}
}
// Try to shrink.
if (Shrink) {
if (++SplitBefore < SplitAfter) {
LLVM_DEBUG(dbgs() << " shrink\n");
// Recompute the max when necessary.
if (GapWeight[SplitBefore - 1] >= MaxGap) {
MaxGap = GapWeight[SplitBefore];
for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
MaxGap = std::max(MaxGap, GapWeight[i]);
}
continue;
}
MaxGap = 0;
}
// Try to extend the interval.
if (SplitAfter >= NumGaps) {
LLVM_DEBUG(dbgs() << " end\n");
break;
}
LLVM_DEBUG(dbgs() << " extend\n");
MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
}
}
// Didn't find any candidates?
if (BestBefore == NumGaps)
return 0;
LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
<< Uses[BestAfter] << ", " << BestDiff << ", "
<< (BestAfter - BestBefore + 1) << " instrs\n");
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
SE->reset(LREdit);
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
SE->useIntv(SegStart, SegStop);
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
// If the new range has the same number of instructions as before, mark it as
// RS_Split2 so the next split will be forced to make progress. Otherwise,
// leave the new intervals as RS_New so they can compete.
bool LiveBefore = BestBefore != 0 || BI.LiveIn;
bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
if (NewGaps >= NumGaps) {
LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
assert(!ProgressRequired && "Didn't make progress when it was required.");
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
if (IntvMap[i] == 1) {
setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
}
LLVM_DEBUG(dbgs() << '\n');
}
++NumLocalSplits;
return 0;
}
//===----------------------------------------------------------------------===//
// Live Range Splitting
//===----------------------------------------------------------------------===//
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<unsigned>&NewVRegs,
const SmallVirtRegSet &FixedRegisters) {
// Ranges must be Split2 or less.
if (getStage(VirtReg) >= RS_Spill)
return 0;
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
TimerGroupDescription, TimePassesIsEnabled);
SA->analyze(&VirtReg);
unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
return tryInstructionSplit(VirtReg, Order, NewVRegs);
}
NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
TimerGroupDescription, TimePassesIsEnabled);
SA->analyze(&VirtReg);
// FIXME: SplitAnalysis may repair broken live ranges coming from the
// coalescer. That may cause the range to become allocatable which means that
// tryRegionSplit won't be making progress. This check should be replaced with
// an assertion when the coalescer is fixed.
if (SA->didRepairRange()) {
// VirtReg has changed, so all cached queries are invalid.
Matrix->invalidateVirtRegs();
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
return PhysReg;
}
// First try to split around a region spanning multiple blocks. RS_Split2
// ranges already made dubious progress with region splitting, so they go
// straight to single block splitting.
if (getStage(VirtReg) < RS_Split2) {
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
}
// Then isolate blocks.
return tryBlockSplit(VirtReg, Order, NewVRegs);
}
//===----------------------------------------------------------------------===//
// Last Chance Recoloring
//===----------------------------------------------------------------------===//
/// Return true if \p reg has any tied def operand.
static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
for (const MachineOperand &MO : MRI->def_operands(reg))
if (MO.isTied())
return true;
return false;
}
/// mayRecolorAllInterferences - Check if the virtual registers that
/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
/// recolored to free \p PhysReg.
/// When true is returned, \p RecoloringCandidates has been augmented with all
/// the live intervals that need to be recolored in order to free \p PhysReg
/// for \p VirtReg.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
bool
RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
SmallLISet &RecoloringCandidates,
const SmallVirtRegSet &FixedRegisters) {
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// If there is LastChanceRecoloringMaxInterference or more interferences,
// chances are one would not be recolorable.
if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
CutOffInfo |= CO_Interf;
return false;
}
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
// If Intf is done and sit on the same register class as VirtReg,
// it would not be recolorable as it is in the same state as VirtReg.
// However, if VirtReg has tied defs and Intf doesn't, then
// there is still a point in examining if it can be recolorable.
if (((getStage(*Intf) == RS_Done &&
MRI->getRegClass(Intf->reg) == CurRC) &&
!(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
FixedRegisters.count(Intf->reg)) {
LLVM_DEBUG(
dbgs() << "Early abort: the interference is not recolorable.\n");
return false;
}
RecoloringCandidates.insert(Intf);
}
}
return true;
}
/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
/// its interferences.
/// Last chance recoloring chooses a color for \p VirtReg and recolors every
/// virtual register that was using it. The recoloring process may recursively
/// use the last chance recoloring. Therefore, when a virtual register has been
/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
/// be last-chance-recolored again during this recoloring "session".
/// E.g.,
/// Let
/// vA can use {R1, R2 }
/// vB can use { R2, R3}
/// vC can use {R1 }
/// Where vA, vB, and vC cannot be split anymore (they are reloads for
/// instance) and they all interfere.
///
/// vA is assigned R1
/// vB is assigned R2
/// vC tries to evict vA but vA is already done.
/// Regular register allocation fails.
///
/// Last chance recoloring kicks in:
/// vC does as if vA was evicted => vC uses R1.
/// vC is marked as fixed.
/// vA needs to find a color.
/// None are available.
/// vA cannot evict vC: vC is a fixed virtual register now.
/// vA does as if vB was evicted => vA uses R2.
/// vB needs to find a color.
/// R3 is available.
/// Recoloring => vC = R1, vA = R2, vB = R3
///
/// \p Order defines the preferred allocation order for \p VirtReg.
/// \p NewRegs will contain any new virtual register that have been created
/// (split, spill) during the process and that must be assigned.
/// \p FixedRegisters contains all the virtual registers that cannot be
/// recolored.
/// \p Depth gives the current depth of the last chance recoloring.
/// \return a physical register that can be used for VirtReg or ~0u if none
/// exists.
unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
AllocationOrder &Order,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
// Ranges must be Done.
assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
"Last chance recoloring should really be last chance");
// Set the max depth to LastChanceRecoloringMaxDepth.
// We may want to reconsider that if we end up with a too large search space
// for target with hundreds of registers.
// Indeed, in that case we may want to cut the search space earlier.
if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
CutOffInfo |= CO_Depth;
return ~0u;
}
// Set of Live intervals that will need to be recolored.
SmallLISet RecoloringCandidates;
// Record the original mapping virtual register to physical register in case
// the recoloring fails.
DenseMap<unsigned, unsigned> VirtRegToPhysReg;
// Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
// this recoloring "session".
assert(!FixedRegisters.count(VirtReg.reg));
FixedRegisters.insert(VirtReg.reg);
SmallVector<unsigned, 4> CurrentNewVRegs;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
<< printReg(PhysReg, TRI) << '\n');
RecoloringCandidates.clear();
VirtRegToPhysReg.clear();
CurrentNewVRegs.clear();
// It is only possible to recolor virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) >
LiveRegMatrix::IK_VirtReg) {
LLVM_DEBUG(
dbgs() << "Some interferences are not with virtual registers.\n");
continue;
}
// Early give up on this PhysReg if it is obvious we cannot recolor all
// the interferences.
if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
FixedRegisters)) {
LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
continue;
}
// RecoloringCandidates contains all the virtual registers that interfer
// with VirtReg on PhysReg (or one of its aliases).
// Enqueue them for recoloring and perform the actual recoloring.
PQueue RecoloringQueue;
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
EndIt = RecoloringCandidates.end();
It != EndIt; ++It) {
unsigned ItVirtReg = (*It)->reg;
enqueue(RecoloringQueue, *It);
assert(VRM->hasPhys(ItVirtReg) &&
"Interferences are supposed to be with allocated variables");
// Record the current allocation.
VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
// unset the related struct.
Matrix->unassign(**It);
}
// Do as if VirtReg was assigned to PhysReg so that the underlying
// recoloring has the right information about the interferes and
// available colors.
Matrix->assign(VirtReg, PhysReg);
// Save the current recoloring state.
// If we cannot recolor all the interferences, we will have to start again
// at this point for the next physical register.
SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
FixedRegisters, Depth)) {
// Push the queued vregs into the main queue.
for (unsigned NewVReg : CurrentNewVRegs)
NewVRegs.push_back(NewVReg);
// Do not mess up with the global assignment process.
// I.e., VirtReg must be unassigned.
Matrix->unassign(VirtReg);
return PhysReg;
}
LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
<< printReg(PhysReg, TRI) << '\n');
// The recoloring attempt failed, undo the changes.
FixedRegisters = SaveFixedRegisters;
Matrix->unassign(VirtReg);
// For a newly created vreg which is also in RecoloringCandidates,
// don't add it to NewVRegs because its physical register will be restored
// below. Other vregs in CurrentNewVRegs are created by calling
// selectOrSplit and should be added into NewVRegs.
for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
End = CurrentNewVRegs.end();
Next != End; ++Next) {
if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
continue;
NewVRegs.push_back(*Next);
}
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
EndIt = RecoloringCandidates.end();
It != EndIt; ++It) {
unsigned ItVirtReg = (*It)->reg;
if (VRM->hasPhys(ItVirtReg))
Matrix->unassign(**It);
unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
Matrix->assign(**It, ItPhysReg);
}
}
// Last chance recoloring did not worked either, give up.
return ~0u;
}
/// tryRecoloringCandidates - Try to assign a new color to every register
/// in \RecoloringQueue.
/// \p NewRegs will contain any new virtual register created during the
/// recoloring process.
/// \p FixedRegisters[in/out] contains all the registers that have been
/// recolored.
/// \return true if all virtual registers in RecoloringQueue were successfully
/// recolored, false otherwise.
bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
while (!RecoloringQueue.empty()) {
LiveInterval *LI = dequeue(RecoloringQueue);
LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
unsigned PhysReg;
PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
// When splitting happens, the live-range may actually be empty.
// In that case, this is okay to continue the recoloring even
// if we did not find an alternative color for it. Indeed,
// there will not be anything to color for LI in the end.
if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
return false;
if (!PhysReg) {
assert(LI->empty() && "Only empty live-range do not require a register");
LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
<< " succeeded. Empty LI.\n");
continue;
}
LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
<< " succeeded with: " << printReg(PhysReg, TRI) << '\n');
Matrix->assign(*LI, PhysReg);
FixedRegisters.insert(LI->reg);
}
return true;
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &NewVRegs) {
CutOffInfo = CO_None;
LLVMContext &Ctx = MF->getFunction().getContext();
SmallVirtRegSet FixedRegisters;
unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
if (Reg == ~0U && (CutOffInfo != CO_None)) {
uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
if (CutOffEncountered == CO_Depth)
Ctx.emitError("register allocation failed: maximum depth for recoloring "
"reached. Use -fexhaustive-register-search to skip "
"cutoffs");
else if (CutOffEncountered == CO_Interf)
Ctx.emitError("register allocation failed: maximum interference for "
"recoloring reached. Use -fexhaustive-register-search "
"to skip cutoffs");
else if (CutOffEncountered == (CO_Depth | CO_Interf))
Ctx.emitError("register allocation failed: maximum interference and "
"depth for recoloring reached. Use "
"-fexhaustive-register-search to skip cutoffs");
}
return Reg;
}
/// Using a CSR for the first time has a cost because it causes push|pop
/// to be added to prologue|epilogue. Splitting a cold section of the live
/// range can have lower cost than using the CSR for the first time;
/// Spilling a live range in the cold path can have lower cost than using
/// the CSR for the first time. Returns the physical register if we decide
/// to use the CSR; otherwise return 0.
unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
AllocationOrder &Order,
unsigned PhysReg,
unsigned &CostPerUseLimit,
SmallVectorImpl<unsigned> &NewVRegs) {
if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
// We choose spill over using the CSR for the first time if the spill cost
// is lower than CSRCost.
SA->analyze(&VirtReg);
if (calcSpillCost() >= CSRCost)
return PhysReg;
// We are going to spill, set CostPerUseLimit to 1 to make sure that
// we will not use a callee-saved register in tryEvict.
CostPerUseLimit = 1;
return 0;
}
if (getStage(VirtReg) < RS_Split) {
// We choose pre-splitting over using the CSR for the first time if
// the cost of splitting is lower than CSRCost.
SA->analyze(&VirtReg);
unsigned NumCands = 0;
BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
NumCands, true /*IgnoreCSR*/);
if (BestCand == NoCand)
// Use the CSR if we can't find a region split below CSRCost.
return PhysReg;
// Perform the actual pre-splitting.
doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
return 0;
}
return PhysReg;
}
void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
// Do not keep invalid information around.
SetOfBrokenHints.remove(&LI);
}
void RAGreedy::initializeCSRCost() {
// We use the larger one out of the command-line option and the value report
// by TRI.
CSRCost = BlockFrequency(
std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
if (!CSRCost.getFrequency())
return;
// Raw cost is relative to Entry == 2^14; scale it appropriately.
uint64_t ActualEntry = MBFI->getEntryFreq();
if (!ActualEntry) {
CSRCost = 0;
return;
}
uint64_t FixedEntry = 1 << 14;
if (ActualEntry < FixedEntry)
CSRCost *= BranchProbability(ActualEntry, FixedEntry);
else if (ActualEntry <= UINT32_MAX)
// Invert the fraction and divide.
CSRCost /= BranchProbability(FixedEntry, ActualEntry);
else
// Can't use BranchProbability in general, since it takes 32-bit numbers.
CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
}
/// Collect the hint info for \p Reg.
/// The results are stored into \p Out.
/// \p Out is not cleared before being populated.
void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
if (!Instr.isFullCopy())
continue;
// Look for the other end of the copy.
Register OtherReg = Instr.getOperand(0).getReg();
if (OtherReg == Reg) {
OtherReg = Instr.getOperand(1).getReg();
if (OtherReg == Reg)
continue;
}
// Get the current assignment.
Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
? OtherReg
: VRM->getPhys(OtherReg);
// Push the collected information.
Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
OtherPhysReg));
}
}
/// Using the given \p List, compute the cost of the broken hints if
/// \p PhysReg was used.
/// \return The cost of \p List for \p PhysReg.
BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
unsigned PhysReg) {
BlockFrequency Cost = 0;
for (const HintInfo &Info : List) {
if (Info.PhysReg != PhysReg)
Cost += Info.Freq;
}
return Cost;
}
/// Using the register assigned to \p VirtReg, try to recolor
/// all the live ranges that are copy-related with \p VirtReg.
/// The recoloring is then propagated to all the live-ranges that have
/// been recolored and so on, until no more copies can be coalesced or
/// it is not profitable.
/// For a given live range, profitability is determined by the sum of the
/// frequencies of the non-identity copies it would introduce with the old
/// and new register.
void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
// We have a broken hint, check if it is possible to fix it by
// reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
// some register and PhysReg may be available for the other live-ranges.
SmallSet<unsigned, 4> Visited;
SmallVector<unsigned, 2> RecoloringCandidates;
HintsInfo Info;
unsigned Reg = VirtReg.reg;
Register PhysReg = VRM->getPhys(Reg);
// Start the recoloring algorithm from the input live-interval, then
// it will propagate to the ones that are copy-related with it.
Visited.insert(Reg);
RecoloringCandidates.push_back(Reg);
LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
<< '(' << printReg(PhysReg, TRI) << ")\n");
do {
Reg = RecoloringCandidates.pop_back_val();
// We cannot recolor physical register.
if (Register::isPhysicalRegister(Reg))
continue;
assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
// Get the live interval mapped with this virtual register to be able
// to check for the interference with the new color.
LiveInterval &LI = LIS->getInterval(Reg);
Register CurrPhys = VRM->getPhys(Reg);
// Check that the new color matches the register class constraints and
// that it is free for this live range.
if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
Matrix->checkInterference(LI, PhysReg)))
continue;
LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
<< ") is recolorable.\n");
// Gather the hint info.
Info.clear();
collectHintInfo(Reg, Info);
// Check if recoloring the live-range will increase the cost of the
// non-identity copies.
if (CurrPhys != PhysReg) {
LLVM_DEBUG(dbgs() << "Checking profitability:\n");
BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
<< "\nNew Cost: " << NewCopiesCost.getFrequency()
<< '\n');
if (OldCopiesCost < NewCopiesCost) {
LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
continue;
}
// At this point, the cost is either cheaper or equal. If it is
// equal, we consider this is profitable because it may expose
// more recoloring opportunities.
LLVM_DEBUG(dbgs() << "=> Profitable.\n");
// Recolor the live-range.
Matrix->unassign(LI);
Matrix->assign(LI, PhysReg);
}
// Push all copy-related live-ranges to keep reconciling the broken
// hints.
for (const HintInfo &HI : Info) {
if (Visited.insert(HI.Reg).second)
RecoloringCandidates.push_back(HI.Reg);
}
} while (!RecoloringCandidates.empty());
}
/// Try to recolor broken hints.
/// Broken hints may be repaired by recoloring when an evicted variable
/// freed up a register for a larger live-range.
/// Consider the following example:
/// BB1:
/// a =
/// b =
/// BB2:
/// ...
/// = b
/// = a
/// Let us assume b gets split:
/// BB1:
/// a =
/// b =
/// BB2:
/// c = b
/// ...
/// d = c
/// = d
/// = a
/// Because of how the allocation work, b, c, and d may be assigned different
/// colors. Now, if a gets evicted later:
/// BB1:
/// a =
/// st a, SpillSlot
/// b =
/// BB2:
/// c = b
/// ...
/// d = c
/// = d
/// e = ld SpillSlot
/// = e
/// This is likely that we can assign the same register for b, c, and d,
/// getting rid of 2 copies.
void RAGreedy::tryHintsRecoloring() {
for (LiveInterval *LI : SetOfBrokenHints) {
assert(Register::isVirtualRegister(LI->reg) &&
"Recoloring is possible only for virtual registers");
// Some dead defs may be around (e.g., because of debug uses).
// Ignore those.
if (!VRM->hasPhys(LI->reg))
continue;
tryHintRecoloring(*LI);
}
}
unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &NewVRegs,
SmallVirtRegSet &FixedRegisters,
unsigned Depth) {
unsigned CostPerUseLimit = ~0u;
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
// If VirtReg got an assignment, the eviction info is no longre relevant.
LastEvicted.clearEvicteeInfo(VirtReg.reg);
// When NewVRegs is not empty, we may have made decisions such as evicting
// a virtual register, go with the earlier decisions and use the physical
// register.
if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
NewVRegs.empty()) {
unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
CostPerUseLimit, NewVRegs);
if (CSRReg || !NewVRegs.empty())
// Return now if we decide to use a CSR or create new vregs due to
// pre-splitting.
return CSRReg;
} else
return PhysReg;
}
LiveRangeStage Stage = getStage(VirtReg);
LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
<< ExtraRegInfo[VirtReg.reg].Cascade << '\n');
// Try to evict a less worthy live range, but only for ranges from the primary
// queue. The RS_Split ranges already failed to do this, and they should not
// get a second chance until they have been split.
if (Stage != RS_Split)
if (unsigned PhysReg =
tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
FixedRegisters)) {
unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
// If VirtReg has a hint and that hint is broken record this
// virtual register as a recoloring candidate for broken hint.
// Indeed, since we evicted a variable in its neighborhood it is
// likely we can at least partially recolor some of the
// copy-related live-ranges.
if (Hint && Hint != PhysReg)
SetOfBrokenHints.insert(&VirtReg);
// If VirtReg eviction someone, the eviction info for it as an evictee is
// no longre relevant.
LastEvicted.clearEvicteeInfo(VirtReg.reg);
return PhysReg;
}
assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
// This gives a better picture of the interference to split around.
if (Stage < RS_Split) {
setStage(VirtReg, RS_Split);
LLVM_DEBUG(dbgs() << "wait for second round\n");
NewVRegs.push_back(VirtReg.reg);
return 0;
}
if (Stage < RS_Spill) {
// Try splitting VirtReg or interferences.
unsigned NewVRegSizeBefore = NewVRegs.size();
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
// If VirtReg got split, the eviction info is no longre relevant.
LastEvicted.clearEvicteeInfo(VirtReg.reg);
return PhysReg;
}
}
// If we couldn't allocate a register from spilling, there is probably some
// invalid inline assembly. The base class will report it.
if (Stage >= RS_Done || !VirtReg.isSpillable())
return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
Depth);
// Finally spill VirtReg itself.
if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
// TODO: This is experimental and in particular, we do not model
// the live range splitting done by spilling correctly.
// We would need a deep integration with the spiller to do the
// right thing here. Anyway, that is still good for early testing.
setStage(VirtReg, RS_Memory);
LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
NewVRegs.push_back(VirtReg.reg);
} else {
NamedRegionTimer T("spill", "Spiller", TimerGroupName,
TimerGroupDescription, TimePassesIsEnabled);
LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
// Tell LiveDebugVariables about the new ranges. Ranges not being covered by
// the new regs are kept in LDV (still mapping to the old register), until
// we rewrite spilled locations in LDV at a later stage.
DebugVars->splitRegister(VirtReg.reg, LRE.regs(), *LIS);
if (VerifyEnabled)
MF->verify(this, "After spilling");
}
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
unsigned &FoldedReloads,
unsigned &Spills,
unsigned &FoldedSpills) {
Reloads = 0;
FoldedReloads = 0;
Spills = 0;
FoldedSpills = 0;
// Sum up the spill and reloads in subloops.
for (MachineLoop *SubLoop : *L) {
unsigned SubReloads;
unsigned SubFoldedReloads;
unsigned SubSpills;
unsigned SubFoldedSpills;
reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
SubSpills, SubFoldedSpills);
Reloads += SubReloads;
FoldedReloads += SubFoldedReloads;
Spills += SubSpills;
FoldedSpills += SubFoldedSpills;
}
const MachineFrameInfo &MFI = MF->getFrameInfo();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
int FI;
for (MachineBasicBlock *MBB : L->getBlocks())
// Handle blocks that were not included in subloops.
if (Loops->getLoopFor(MBB) == L)
for (MachineInstr &MI : *MBB) {
SmallVector<const MachineMemOperand *, 2> Accesses;
auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
return MFI.isSpillSlotObjectIndex(
cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
->getFrameIndex());
};
if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
++Reloads;
else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
llvm::any_of(Accesses, isSpillSlotAccess))
++FoldedReloads;
else if (TII->isStoreToStackSlot(MI, FI) &&
MFI.isSpillSlotObjectIndex(FI))
++Spills;
else if (TII->hasStoreToStackSlot(MI, Accesses) &&
llvm::any_of(Accesses, isSpillSlotAccess))
++FoldedSpills;
}
if (Reloads || FoldedReloads || Spills || FoldedSpills) {
using namespace ore;
ORE->emit([&]() {
MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
L->getStartLoc(), L->getHeader());
if (Spills)
R << NV("NumSpills", Spills) << " spills ";
if (FoldedSpills)
R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
if (Reloads)
R << NV("NumReloads", Reloads) << " reloads ";
if (FoldedReloads)
R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
R << "generated in loop";
return R;
});
}
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
TRI = MF->getSubtarget().getRegisterInfo();
TII = MF->getSubtarget().getInstrInfo();
RCI.runOnMachineFunction(mf);
EnableLocalReassign = EnableLocalReassignment ||
MF->getSubtarget().enableRALocalReassignment(
MF->getTarget().getOptLevel());
EnableAdvancedRASplitCost =
ConsiderLocalIntervalCost.getNumOccurrences()
? ConsiderLocalIntervalCost
: MF->getSubtarget().enableAdvancedRASplitCost();
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
Indexes = &getAnalysis<SlotIndexes>();
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
DomTree = &getAnalysis<MachineDominatorTree>();
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Loops = &getAnalysis<MachineLoopInfo>();
Bundles = &getAnalysis<EdgeBundles>();
SpillPlacer = &getAnalysis<SpillPlacement>();
DebugVars = &getAnalysis<LiveDebugVariables>();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
initializeCSRCost();
calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
LLVM_DEBUG(LIS->dump());
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
ExtraRegInfo.clear();
ExtraRegInfo.resize(MRI->getNumVirtRegs());
NextCascade = 1;
IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
GlobalCand.resize(32); // This will grow as needed.
SetOfBrokenHints.clear();
LastEvicted.clear();
allocatePhysRegs();
tryHintsRecoloring();
postOptimization();
reportNumberOfSplillsReloads();
releaseMemory();
return true;
}