mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
d6a98c11bc
Value to a vector instead of a list. Move SchedGraph.h & SchedPriorities.h into lib/CodeGen/InstrScheduling llvm-svn: 572
760 lines
21 KiB
C++
760 lines
21 KiB
C++
/****************************************************************************
|
|
* File:
|
|
* SchedGraph.cpp
|
|
*
|
|
* Purpose:
|
|
* Scheduling graph based on SSA graph plus extra dependence edges
|
|
* capturing dependences due to machine resources (machine registers,
|
|
* CC registers, and any others).
|
|
*
|
|
* History:
|
|
* 7/20/01 - Vikram Adve - Created
|
|
***************************************************************************/
|
|
|
|
#include "SchedGraph.h"
|
|
#include "llvm/InstrTypes.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Target/InstInfo.h"
|
|
#include "llvm/Support/StringExtras.h"
|
|
#include <algorithm>
|
|
|
|
//
|
|
// class SchedGraphEdge
|
|
//
|
|
|
|
/*ctor*/
|
|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
|
|
SchedGraphNode* _sink,
|
|
SchedGraphEdgeDepType _depType,
|
|
DataDepOrderType _depOrderType,
|
|
int _minDelay)
|
|
: src(_src),
|
|
sink(_sink),
|
|
depType(_depType),
|
|
depOrderType(_depOrderType),
|
|
val(NULL),
|
|
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
|
|
{
|
|
src->addOutEdge(this);
|
|
sink->addInEdge(this);
|
|
}
|
|
|
|
|
|
/*ctor*/
|
|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
|
|
SchedGraphNode* _sink,
|
|
Value* _val,
|
|
DataDepOrderType _depOrderType,
|
|
int _minDelay)
|
|
: src(_src),
|
|
sink(_sink),
|
|
depType(DefUseDep),
|
|
depOrderType(_depOrderType),
|
|
val(_val),
|
|
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
|
|
{
|
|
src->addOutEdge(this);
|
|
sink->addInEdge(this);
|
|
}
|
|
|
|
|
|
/*ctor*/
|
|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
|
|
SchedGraphNode* _sink,
|
|
unsigned int _regNum,
|
|
DataDepOrderType _depOrderType,
|
|
int _minDelay)
|
|
: src(_src),
|
|
sink(_sink),
|
|
depType(MachineRegister),
|
|
depOrderType(_depOrderType),
|
|
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
|
|
machineRegNum(_regNum)
|
|
{
|
|
src->addOutEdge(this);
|
|
sink->addInEdge(this);
|
|
}
|
|
|
|
|
|
/*ctor*/
|
|
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
|
|
SchedGraphNode* _sink,
|
|
ResourceId _resourceId,
|
|
int _minDelay)
|
|
: src(_src),
|
|
sink(_sink),
|
|
depType(MachineResource),
|
|
depOrderType(NonDataDep),
|
|
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
|
|
resourceId(_resourceId)
|
|
{
|
|
src->addOutEdge(this);
|
|
sink->addInEdge(this);
|
|
}
|
|
|
|
void SchedGraphEdge::dump(int indent=0) const {
|
|
printIndent(indent); cout << *this;
|
|
}
|
|
|
|
|
|
//
|
|
// class SchedGraphNode
|
|
//
|
|
|
|
/*ctor*/
|
|
SchedGraphNode::SchedGraphNode(unsigned int _nodeId,
|
|
const Instruction* _instr,
|
|
const MachineInstr* _minstr,
|
|
const TargetMachine& target)
|
|
: nodeId(_nodeId),
|
|
instr(_instr),
|
|
minstr(_minstr),
|
|
latency(0)
|
|
{
|
|
if (minstr)
|
|
{
|
|
MachineOpCode mopCode = minstr->getOpCode();
|
|
latency = target.getInstrInfo().hasResultInterlock(mopCode)
|
|
? target.getInstrInfo().minLatency(mopCode)
|
|
: target.getInstrInfo().maxLatency(mopCode);
|
|
}
|
|
}
|
|
|
|
|
|
/*dtor*/
|
|
SchedGraphNode::~SchedGraphNode()
|
|
{
|
|
// a node deletes its outgoing edges only
|
|
for (unsigned i=0, N=outEdges.size(); i < N; i++)
|
|
delete outEdges[i];
|
|
}
|
|
|
|
void SchedGraphNode::dump(int indent=0) const {
|
|
printIndent(indent); cout << *this;
|
|
}
|
|
|
|
|
|
inline void
|
|
SchedGraphNode::addInEdge(SchedGraphEdge* edge)
|
|
{
|
|
inEdges.push_back(edge);
|
|
}
|
|
|
|
|
|
inline void
|
|
SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
|
|
{
|
|
outEdges.push_back(edge);
|
|
}
|
|
|
|
inline void
|
|
SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
|
|
{
|
|
assert(edge->getSink() == this);
|
|
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
|
|
if ((*I) == edge)
|
|
{
|
|
inEdges.erase(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
|
|
{
|
|
assert(edge->getSrc() == this);
|
|
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
|
|
if ((*I) == edge)
|
|
{
|
|
outEdges.erase(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
SchedGraphNode::eraseAllEdges()
|
|
{
|
|
// Disconnect and delete all in-edges and out-edges for the node.
|
|
// Note that we delete the in-edges too since they have been
|
|
// disconnected from the source node and will not be deleted there.
|
|
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
|
|
{
|
|
(*I)->getSrc()->removeOutEdge(*I);
|
|
delete *I;
|
|
}
|
|
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
|
|
{
|
|
(*I)->getSink()->removeInEdge(*I);
|
|
delete *I;
|
|
}
|
|
inEdges.clear();
|
|
outEdges.clear();
|
|
}
|
|
|
|
|
|
//
|
|
// class SchedGraph
|
|
//
|
|
|
|
|
|
/*ctor*/
|
|
SchedGraph::SchedGraph(const BasicBlock* bb,
|
|
const TargetMachine& target)
|
|
{
|
|
bbVec.push_back(bb);
|
|
this->buildGraph(target);
|
|
}
|
|
|
|
|
|
/*dtor*/
|
|
SchedGraph::~SchedGraph()
|
|
{
|
|
// delete all the nodes. each node deletes its out-edges.
|
|
for (iterator I=begin(); I != end(); ++I)
|
|
delete (*I).second;
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::dump() const
|
|
{
|
|
cout << " Sched Graph for Basic Blocks: ";
|
|
for (unsigned i=0, N=bbVec.size(); i < N; i++)
|
|
{
|
|
cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block")
|
|
<< " (" << bbVec[i] << ")"
|
|
<< ((i == N-1)? "" : ", ");
|
|
}
|
|
|
|
cout << endl << endl << " Actual Root nodes : ";
|
|
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
|
|
cout << graphRoot->outEdges[i]->getSink()->getNodeId()
|
|
<< ((i == N-1)? "" : ", ");
|
|
|
|
cout << endl << " Graph Nodes:" << endl;
|
|
for (const_iterator I=begin(); I != end(); ++I)
|
|
cout << endl << * (*I).second;
|
|
|
|
cout << endl;
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::addDummyEdges()
|
|
{
|
|
assert(graphRoot->outEdges.size() == 0);
|
|
|
|
for (const_iterator I=begin(); I != end(); ++I)
|
|
{
|
|
SchedGraphNode* node = (*I).second;
|
|
assert(node != graphRoot && node != graphLeaf);
|
|
if (node->beginInEdges() == node->endInEdges())
|
|
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
if (node->beginOutEdges() == node->endOutEdges())
|
|
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::addCDEdges(const TerminatorInst* term,
|
|
const TargetMachine& target)
|
|
{
|
|
const MachineInstrInfo& mii = target.getInstrInfo();
|
|
MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
|
|
|
|
// Find the first branch instr in the sequence of machine instrs for term
|
|
//
|
|
unsigned first = 0;
|
|
while (! mii.isBranch(termMvec[first]->getOpCode()))
|
|
++first;
|
|
assert(first < termMvec.size() &&
|
|
"No branch instructions for BR? Ok, but weird! Delete assertion.");
|
|
if (first == termMvec.size())
|
|
return;
|
|
|
|
SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]);
|
|
|
|
// Add CD edges from each instruction in the sequence to the
|
|
// *last preceding* branch instr. in the sequence
|
|
//
|
|
for (int i = (int) termMvec.size()-1; i > (int) first; i--)
|
|
{
|
|
SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]);
|
|
assert(toNode && "No node for instr generated for branch?");
|
|
|
|
for (int j = i-1; j >= 0; j--)
|
|
if (mii.isBranch(termMvec[j]->getOpCode()))
|
|
{
|
|
SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]);
|
|
assert(brNode && "No node for instr generated for branch?");
|
|
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
break; // only one incoming edge is enough
|
|
}
|
|
}
|
|
|
|
// Add CD edges from each instruction preceding the first branch
|
|
// to the first branch
|
|
//
|
|
for (int i = first-1; i >= 0; i--)
|
|
{
|
|
SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]);
|
|
assert(fromNode && "No node for instr generated for branch?");
|
|
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
}
|
|
|
|
// Now add CD edges to the first branch instruction in the sequence
|
|
// from all preceding instructions in the basic block.
|
|
//
|
|
const BasicBlock* bb = term->getParent();
|
|
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
|
|
{
|
|
if ((*II) == (const Instruction*) term) // special case, handled above
|
|
continue;
|
|
|
|
assert(! (*II)->isTerminator() && "Two terminators in basic block?");
|
|
|
|
const MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
{
|
|
SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]);
|
|
if (fromNode == NULL)
|
|
continue; // dummy instruction, e.g., PHI
|
|
|
|
(void) new SchedGraphEdge(fromNode, firstBrNode,
|
|
SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
|
|
// If we find any other machine instructions (other than due to
|
|
// the terminator) that also have delay slots, add an outgoing edge
|
|
// from the instruction to the instructions in the delay slots.
|
|
//
|
|
unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode());
|
|
assert(i+d < N && "Insufficient delay slots for instruction?");
|
|
|
|
for (unsigned j=1; j <= d; j++)
|
|
{
|
|
SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]);
|
|
assert(toNode && "No node for machine instr in delay slot?");
|
|
(void) new SchedGraphEdge(fromNode, toNode,
|
|
SchedGraphEdge::CtrlDep,
|
|
SchedGraphEdge::NonDataDep, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
|
|
const TargetMachine& target)
|
|
{
|
|
const MachineInstrInfo& mii = target.getInstrInfo();
|
|
|
|
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
|
|
{
|
|
const Instruction* fromInstr = memVec[im];
|
|
bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load;
|
|
|
|
for (unsigned jm=im+1; jm < NM; jm++)
|
|
{
|
|
const Instruction* toInstr = memVec[jm];
|
|
bool toIsLoad = toInstr->getOpcode() == Instruction::Load;
|
|
SchedGraphEdge::DataDepOrderType depOrderType;
|
|
|
|
if (fromIsLoad)
|
|
{
|
|
if (toIsLoad) continue; // both instructions are loads
|
|
depOrderType = SchedGraphEdge::AntiDep;
|
|
}
|
|
else
|
|
{
|
|
depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep
|
|
: SchedGraphEdge::OutputDep;
|
|
}
|
|
|
|
MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec();
|
|
MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec();
|
|
|
|
// We have two VM memory instructions, and at least one is a store.
|
|
// Add edges between all machine load/store instructions.
|
|
//
|
|
for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++)
|
|
{
|
|
MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode();
|
|
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode))
|
|
{
|
|
SchedGraphNode* fromNode =
|
|
this->getGraphNodeForInstr(fromInstrMvec[i]);
|
|
assert(fromNode && "No node for memory instr?");
|
|
|
|
for (unsigned j=0, M=toInstrMvec.size(); j < M; j++)
|
|
{
|
|
MachineOpCode toOpCode = toInstrMvec[j]->getOpCode();
|
|
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode))
|
|
{
|
|
SchedGraphNode* toNode =
|
|
this->getGraphNodeForInstr(toInstrMvec[j]);
|
|
assert(toNode && "No node for memory instr?");
|
|
|
|
(void) new SchedGraphEdge(fromNode, toNode,
|
|
SchedGraphEdge::MemoryDep,
|
|
depOrderType, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
|
|
|
|
// The following needs to be a class, not a typedef, so we can use
|
|
// an opaque declaration in SchedGraph.h
|
|
class NodeToRegRefMap: public hash_map<int, RegRefVec> {
|
|
typedef hash_map<int, RegRefVec>:: iterator iterator;
|
|
typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
|
|
};
|
|
|
|
|
|
void
|
|
SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
|
|
const TargetMachine& target)
|
|
{
|
|
assert(bbVec.size() == 1 && "Only handling a single basic block here");
|
|
|
|
// This assumes that such hardwired registers are never allocated
|
|
// to any LLVM value (since register allocation happens later), i.e.,
|
|
// any uses or defs of this register have been made explicit!
|
|
// Also assumes that two registers with different numbers are
|
|
// not aliased!
|
|
//
|
|
for (NodeToRegRefMap::iterator I = regToRefVecMap.begin();
|
|
I != regToRefVecMap.end(); ++I)
|
|
{
|
|
int regNum = (*I).first;
|
|
RegRefVec& regRefVec = (*I).second;
|
|
|
|
// regRefVec is ordered by control flow order in the basic block
|
|
int lastDefIdx = -1;
|
|
for (unsigned i=0; i < regRefVec.size(); ++i)
|
|
{
|
|
SchedGraphNode* node = regRefVec[i].first;
|
|
bool isDef = regRefVec[i].second;
|
|
|
|
if (isDef)
|
|
{ // Each def gets an output edge from the last def
|
|
if (lastDefIdx > 0)
|
|
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum,
|
|
SchedGraphEdge::OutputDep);
|
|
|
|
// Also, an anti edge from all uses *since* the last def,
|
|
// But don't add edge from an instruction to itself!
|
|
for (int u = 1 + lastDefIdx; u < (int) i; u++)
|
|
if (regRefVec[u].first != node)
|
|
new SchedGraphEdge(regRefVec[u].first, node, regNum,
|
|
SchedGraphEdge::AntiDep);
|
|
}
|
|
else
|
|
{ // Each use gets a true edge from the last def
|
|
if (lastDefIdx > 0)
|
|
new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::addSSAEdge(SchedGraphNode* node,
|
|
Value* val,
|
|
const TargetMachine& target)
|
|
{
|
|
if (!val->isInstruction()) return;
|
|
|
|
const Instruction* thisVMInstr = node->getInstr();
|
|
const Instruction* defVMInstr = (const Instruction*) val;
|
|
|
|
// Phi instructions are the only ones that produce a value but don't get
|
|
// any non-dummy machine instructions. Return here as an optimization.
|
|
//
|
|
if (defVMInstr->isPHINode())
|
|
return;
|
|
|
|
// Now add the graph edge for the appropriate machine instruction(s).
|
|
// Note that multiple machine instructions generated for the
|
|
// def VM instruction may modify the register for the def value.
|
|
//
|
|
MachineCodeForVMInstr& defMvec = defVMInstr->getMachineInstrVec();
|
|
const MachineInstrInfo& mii = target.getInstrInfo();
|
|
|
|
for (unsigned i=0, N=defMvec.size(); i < N; i++)
|
|
for (int o=0, N = mii.getNumOperands(defMvec[i]->getOpCode()); o < N; o++)
|
|
{
|
|
const MachineOperand& defOp = defMvec[i]->getOperand(o);
|
|
|
|
if (defOp.opIsDef()
|
|
&& (defOp.getOperandType() == MachineOperand::MO_VirtualRegister
|
|
|| defOp.getOperandType() == MachineOperand::MO_CCRegister)
|
|
&& (defOp.getVRegValue() == val))
|
|
{
|
|
// this instruction does define value `val'.
|
|
// if there is a node for it in the same graph, add an edge.
|
|
SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
|
|
if (defNode != NULL)
|
|
(void) new SchedGraphEdge(defNode, node, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
|
|
NodeToRegRefMap& regToRefVecMap,
|
|
const TargetMachine& target)
|
|
{
|
|
const Instruction& instr = * node->getInstr(); // No dummy nodes here!
|
|
const MachineInstr& minstr = * node->getMachineInstr();
|
|
|
|
// Add incoming edges for the following:
|
|
// (1) operands of the machine instruction, including hidden operands
|
|
// (2) machine register dependences
|
|
// (3) other resource dependences for the machine instruction, if any
|
|
// Also, note any uses or defs of machine registers.
|
|
//
|
|
for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
|
|
{
|
|
const MachineOperand& mop = minstr.getOperand(i);
|
|
|
|
// if this writes to a machine register other than the hardwired
|
|
// "zero" register used on many processors, record the reference.
|
|
if (mop.getOperandType() == MachineOperand::MO_MachineRegister
|
|
&& (! (target.zeroRegNum >= 0
|
|
&& mop.getMachineRegNum()==(unsigned) target.zeroRegNum)))
|
|
{
|
|
regToRefVecMap[mop.getMachineRegNum()].
|
|
push_back(make_pair(node, i));
|
|
}
|
|
|
|
// ignore all other def operands
|
|
if (minstr.operandIsDefined(i))
|
|
continue;
|
|
|
|
switch(mop.getOperandType())
|
|
{
|
|
case MachineOperand::MO_VirtualRegister:
|
|
case MachineOperand::MO_CCRegister:
|
|
if (mop.getVRegValue())
|
|
addSSAEdge(node, mop.getVRegValue(), target);
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineRegister:
|
|
break;
|
|
|
|
case MachineOperand::MO_SignExtendedImmed:
|
|
case MachineOperand::MO_UnextendedImmed:
|
|
case MachineOperand::MO_PCRelativeDisp:
|
|
break; // nothing to do for immediate fields
|
|
|
|
default:
|
|
assert(0 && "Unknown machine operand type in SchedGraph builder");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// add all true, anti,
|
|
// and output dependences for this register. but ignore
|
|
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraph::buildGraph(const TargetMachine& target)
|
|
{
|
|
const MachineInstrInfo& mii = target.getInstrInfo();
|
|
const BasicBlock* bb = bbVec[0];
|
|
|
|
assert(bbVec.size() == 1 && "Only handling a single basic block here");
|
|
|
|
// Use this data structures to note all LLVM memory instructions.
|
|
// We use this to add memory dependence edges without a second full walk.
|
|
//
|
|
vector<const Instruction*> memVec;
|
|
|
|
// Use this data structures to note any uses or definitions of
|
|
// machine registers so we can add edges for those later without
|
|
// extra passes over the nodes.
|
|
// The vector holds an ordered list of references to the machine reg,
|
|
// ordered according to control-flow order. This only works for a
|
|
// single basic block, hence the assertion. Each reference is identified
|
|
// by the pair: <node, operand-number>.
|
|
//
|
|
NodeToRegRefMap regToRefVecMap;
|
|
|
|
// Make a dummy root node. We'll add edges to the real roots later.
|
|
graphRoot = new SchedGraphNode(0, NULL, NULL, target);
|
|
graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
|
|
|
|
//----------------------------------------------------------------
|
|
// First add nodes for all the machine instructions in the basic block.
|
|
// This greatly simplifies identifing which edges to add.
|
|
// Also, remember the load/store instructions to add memory deps later.
|
|
//----------------------------------------------------------------
|
|
|
|
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
|
|
{
|
|
const Instruction *instr = *II;
|
|
const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
|
|
{
|
|
SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
|
|
instr, mvec[i], target);
|
|
this->noteGraphNodeForInstr(mvec[i], node);
|
|
}
|
|
|
|
if (instr->getOpcode() == Instruction::Load ||
|
|
instr->getOpcode() == Instruction::Store)
|
|
memVec.push_back(instr);
|
|
}
|
|
|
|
//----------------------------------------------------------------
|
|
// Now add the edges.
|
|
//----------------------------------------------------------------
|
|
|
|
// First, add edges to the terminator instruction of the basic block.
|
|
this->addCDEdges(bb->getTerminator(), target);
|
|
|
|
// Then add memory dep edges: store->load, load->store, and store->store
|
|
this->addMemEdges(memVec, target);
|
|
|
|
// Then add other edges for all instructions in the block.
|
|
for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI)
|
|
{
|
|
SchedGraphNode* node = (*GI).second;
|
|
addEdgesForInstruction(node, regToRefVecMap, target);
|
|
}
|
|
|
|
// Then add edges for dependences on machine registers
|
|
this->addMachineRegEdges(regToRefVecMap, target);
|
|
|
|
// Finally, add edges from the dummy root and to dummy leaf
|
|
this->addDummyEdges();
|
|
}
|
|
|
|
|
|
//
|
|
// class SchedGraphSet
|
|
//
|
|
|
|
/*ctor*/
|
|
SchedGraphSet::SchedGraphSet(const Method* _method,
|
|
const TargetMachine& target) :
|
|
method(_method)
|
|
{
|
|
buildGraphsForMethod(method, target);
|
|
}
|
|
|
|
|
|
/*dtor*/
|
|
SchedGraphSet::~SchedGraphSet()
|
|
{
|
|
// delete all the graphs
|
|
for (iterator I=begin(); I != end(); ++I)
|
|
delete (*I).second;
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraphSet::dump() const
|
|
{
|
|
cout << "======== Sched graphs for method `"
|
|
<< (method->hasName()? method->getName() : "???")
|
|
<< "' ========" << endl << endl;
|
|
|
|
for (const_iterator I=begin(); I != end(); ++I)
|
|
(*I).second->dump();
|
|
|
|
cout << endl << "====== End graphs for method `"
|
|
<< (method->hasName()? method->getName() : "")
|
|
<< "' ========" << endl << endl;
|
|
}
|
|
|
|
|
|
void
|
|
SchedGraphSet::buildGraphsForMethod(const Method *method,
|
|
const TargetMachine& target)
|
|
{
|
|
for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
|
|
{
|
|
SchedGraph* graph = new SchedGraph(*BI, target);
|
|
this->noteGraphForBlock(*BI, graph);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
ostream&
|
|
operator<<(ostream& os, const SchedGraphEdge& edge)
|
|
{
|
|
os << "edge [" << edge.src->getNodeId() << "] -> ["
|
|
<< edge.sink->getNodeId() << "] : ";
|
|
|
|
switch(edge.depType) {
|
|
case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break;
|
|
case SchedGraphEdge::DefUseDep: os<< "Reg Value " << edge.val; break;
|
|
case SchedGraphEdge::MemoryDep: os<< "Mem Value " << edge.val; break;
|
|
case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
|
|
case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
|
|
default: assert(0); break;
|
|
}
|
|
|
|
os << " : delay = " << edge.minDelay << endl;
|
|
|
|
return os;
|
|
}
|
|
|
|
ostream&
|
|
operator<<(ostream& os, const SchedGraphNode& node)
|
|
{
|
|
printIndent(4, os);
|
|
os << "Node " << node.nodeId << " : "
|
|
<< "latency = " << node.latency << endl;
|
|
|
|
printIndent(6, os);
|
|
|
|
if (node.getMachineInstr() == NULL)
|
|
os << "(Dummy node)" << endl;
|
|
else
|
|
{
|
|
os << *node.getMachineInstr() << endl;
|
|
|
|
printIndent(6, os);
|
|
os << node.inEdges.size() << " Incoming Edges:" << endl;
|
|
for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
|
|
{
|
|
printIndent(8, os);
|
|
os << * node.inEdges[i];
|
|
}
|
|
|
|
printIndent(6, os);
|
|
os << node.outEdges.size() << " Outgoing Edges:" << endl;
|
|
for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
|
|
{
|
|
printIndent(8, os);
|
|
os << * node.outEdges[i];
|
|
}
|
|
}
|
|
|
|
return os;
|
|
}
|