1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Target/PowerPC/PPCISelLowering.h
QingShan Zhang adc5a63e81 [PowerPC] Replace the PPCISD:: SExtVElems with ISD::SIGN_EXTEND_INREG to leverage the combine rules
The PPCISD::SExtVElems was added by commit https://reviews.llvm.org/D34009. However,
we have another ISD node ISD::SIGN_EXTEND_INREG that perfectly match the semantics
of SExtVElems. And the DAGCombiner has some combine rules for SIGN_EXTEND_INREG
that produce better code.

Differential Revision: https://reviews.llvm.org/D70771
2020-03-13 07:28:28 +00:00

1257 lines
54 KiB
C++

//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
#include "PPCInstrInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/MachineValueType.h"
#include <utility>
namespace llvm {
namespace PPCISD {
// When adding a NEW PPCISD node please add it to the correct position in
// the enum. The order of elements in this enum matters!
// Values that are added after this entry:
// STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
// are considered memory opcodes and are treated differently than entries
// that come before it. For example, ADD or MUL should be placed before
// the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
// after it.
enum NodeType : unsigned {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// FSEL - Traditional three-operand fsel node.
///
FSEL,
/// XSMAXCDP, XSMINCDP - C-type min/max instructions.
XSMAXCDP,
XSMINCDP,
/// FCFID - The FCFID instruction, taking an f64 operand and producing
/// and f64 value containing the FP representation of the integer that
/// was temporarily in the f64 operand.
FCFID,
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
/// unsigned integers and single-precision outputs.
FCFIDU,
FCFIDS,
FCFIDUS,
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
/// operand, producing an f64 value containing the integer representation
/// of that FP value.
FCTIDZ,
FCTIWZ,
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
/// unsigned integers with round toward zero.
FCTIDUZ,
FCTIWUZ,
/// Floating-point-to-interger conversion instructions
FP_TO_UINT_IN_VSR,
FP_TO_SINT_IN_VSR,
/// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
/// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
VEXTS,
/// Reciprocal estimate instructions (unary FP ops).
FRE,
FRSQRTE,
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
// three v4f32 operands and producing a v4f32 result.
VMADDFP,
VNMSUBFP,
/// VPERM - The PPC VPERM Instruction.
///
VPERM,
/// XXSPLT - The PPC VSX splat instructions
///
XXSPLT,
/// VECINSERT - The PPC vector insert instruction
///
VECINSERT,
/// VECSHL - The PPC vector shift left instruction
///
VECSHL,
/// XXPERMDI - The PPC XXPERMDI instruction
///
XXPERMDI,
/// The CMPB instruction (takes two operands of i32 or i64).
CMPB,
/// Hi/Lo - These represent the high and low 16-bit parts of a global
/// address respectively. These nodes have two operands, the first of
/// which must be a TargetGlobalAddress, and the second of which must be a
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
/// though these are usually folded into other nodes.
Hi,
Lo,
/// The following two target-specific nodes are used for calls through
/// function pointers in the 64-bit SVR4 ABI.
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an allocation on the stack.
DYNALLOC,
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an offset from native SP to the address of the most recent
/// dynamic alloca.
DYNAREAOFFSET,
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
/// at function entry, used for PIC code.
GlobalBaseReg,
/// These nodes represent PPC shifts.
///
/// For scalar types, only the last `n + 1` bits of the shift amounts
/// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
/// for exact behaviors.
///
/// For vector types, only the last n bits are used. See vsld.
SRL,
SRA,
SHL,
/// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
/// word and shift left immediate.
EXTSWSLI,
/// The combination of sra[wd]i and addze used to implemented signed
/// integer division by a power of 2. The first operand is the dividend,
/// and the second is the constant shift amount (representing the
/// divisor).
SRA_ADDZE,
/// CALL - A direct function call.
/// CALL_NOP is a call with the special NOP which follows 64-bit
/// SVR4 calls and 32-bit/64-bit AIX calls.
CALL,
CALL_NOP,
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
/// MTCTR instruction.
MTCTR,
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
/// BCTRL instruction.
BCTRL,
/// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
/// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
/// and 64-bit AIX.
BCTRL_LOAD_TOC,
/// Return with a flag operand, matched by 'blr'
RET_FLAG,
/// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
/// This copies the bits corresponding to the specified CRREG into the
/// resultant GPR. Bits corresponding to other CR regs are undefined.
MFOCRF,
/// Direct move from a VSX register to a GPR
MFVSR,
/// Direct move from a GPR to a VSX register (algebraic)
MTVSRA,
/// Direct move from a GPR to a VSX register (zero)
MTVSRZ,
/// Direct move of 2 consecutive GPR to a VSX register.
BUILD_FP128,
/// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
/// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
/// unsupported for this target.
/// Merge 2 GPRs to a single SPE register.
BUILD_SPE64,
/// Extract SPE register component, second argument is high or low.
EXTRACT_SPE,
/// Extract a subvector from signed integer vector and convert to FP.
/// It is primarily used to convert a (widened) illegal integer vector
/// type to a legal floating point vector type.
/// For example v2i32 -> widened to v4i32 -> v2f64
SINT_VEC_TO_FP,
/// Extract a subvector from unsigned integer vector and convert to FP.
/// As with SINT_VEC_TO_FP, used for converting illegal types.
UINT_VEC_TO_FP,
// FIXME: Remove these once the ANDI glue bug is fixed:
/// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
/// eq or gt bit of CR0 after executing andi. x, 1. This is used to
/// implement truncation of i32 or i64 to i1.
ANDI_rec_1_EQ_BIT,
ANDI_rec_1_GT_BIT,
// READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
// target (returns (Lo, Hi)). It takes a chain operand.
READ_TIME_BASE,
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
EH_SJLJ_SETJMP,
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
EH_SJLJ_LONGJMP,
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
/// instructions. For lack of better number, we use the opcode number
/// encoding for the OPC field to identify the compare. For example, 838
/// is VCMPGTSH.
VCMP,
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
/// altivec VCMP*o instructions. For lack of better number, we use the
/// opcode number encoding for the OPC field to identify the compare. For
/// example, 838 is VCMPGTSH.
VCMPo,
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
/// condition register to branch on, OPC is the branch opcode to use (e.g.
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
/// an optional input flag argument.
COND_BRANCH,
/// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
/// loops.
BDNZ,
BDZ,
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
/// towards zero. Used only as part of the long double-to-int
/// conversion sequence.
FADDRTZ,
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
MFFS,
/// TC_RETURN - A tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
TC_RETURN,
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
CR6SET,
CR6UNSET,
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
/// for non-position independent code on PPC32.
PPC32_GOT,
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
/// local dynamic TLS and position indendepent code on PPC32.
PPC32_PICGOT,
/// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
/// TLS model, produces an ADDIS8 instruction that adds the GOT
/// base to sym\@got\@tprel\@ha.
ADDIS_GOT_TPREL_HA,
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
/// TLS model, produces a LD instruction with base register G8RReg
/// and offset sym\@got\@tprel\@l. This completes the addition that
/// finds the offset of "sym" relative to the thread pointer.
LD_GOT_TPREL_L,
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
/// model, produces an ADD instruction that adds the contents of
/// G8RReg to the thread pointer. Symbol contains a relocation
/// sym\@tls which is to be replaced by the thread pointer and
/// identifies to the linker that the instruction is part of a
/// TLS sequence.
ADD_TLS,
/// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym\@got\@tlsgd\@ha.
ADDIS_TLSGD_HA,
/// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
/// ADDIS_TLSGD_L_ADDR until after register assignment.
ADDI_TLSGD_L,
/// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
/// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
/// ADDIS_TLSGD_L_ADDR until after register assignment.
GET_TLS_ADDR,
/// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
/// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
/// register assignment.
ADDI_TLSGD_L_ADDR,
/// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym\@got\@tlsld\@ha.
ADDIS_TLSLD_HA,
/// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
/// ADDIS_TLSLD_L_ADDR until after register assignment.
ADDI_TLSLD_L,
/// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
/// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
/// ADDIS_TLSLD_L_ADDR until after register assignment.
GET_TLSLD_ADDR,
/// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
/// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
/// following register assignment.
ADDI_TLSLD_L_ADDR,
/// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
/// model, produces an ADDIS8 instruction that adds X3 to
/// sym\@dtprel\@ha.
ADDIS_DTPREL_HA,
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym\@got\@dtprel\@l.
ADDI_DTPREL_L,
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
/// during instruction selection to optimize a BUILD_VECTOR into
/// operations on splats. This is necessary to avoid losing these
/// optimizations due to constant folding.
VADD_SPLAT,
/// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
/// operand identifies the operating system entry point.
SC,
/// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
CLRBHRB,
/// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
/// history rolling buffer entry.
MFBHRBE,
/// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
RFEBB,
/// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
/// endian. Maps to an xxswapd instruction that corrects an lxvd2x
/// or stxvd2x instruction. The chain is necessary because the
/// sequence replaces a load and needs to provide the same number
/// of outputs.
XXSWAPD,
/// An SDNode for swaps that are not associated with any loads/stores
/// and thereby have no chain.
SWAP_NO_CHAIN,
/// An SDNode for Power9 vector absolute value difference.
/// operand #0 vector
/// operand #1 vector
/// operand #2 constant i32 0 or 1, to indicate whether needs to patch
/// the most significant bit for signed i32
///
/// Power9 VABSD* instructions are designed to support unsigned integer
/// vectors (byte/halfword/word), if we want to make use of them for signed
/// integer vectors, we have to flip their sign bits first. To flip sign bit
/// for byte/halfword integer vector would become inefficient, but for word
/// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
/// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
/// => VABSDUW((XVNEGSP a), (XVNEGSP b))
VABSD,
/// QVFPERM = This corresponds to the QPX qvfperm instruction.
QVFPERM,
/// QVGPCI = This corresponds to the QPX qvgpci instruction.
QVGPCI,
/// QVALIGNI = This corresponds to the QPX qvaligni instruction.
QVALIGNI,
/// QVESPLATI = This corresponds to the QPX qvesplati instruction.
QVESPLATI,
/// QBFLT = Access the underlying QPX floating-point boolean
/// representation.
QBFLT,
/// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
/// lower (IDX=1) half of v4f32 to v2f64.
FP_EXTEND_HALF,
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
/// i32.
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
/// or i32.
LBRX,
/// STFIWX - The STFIWX instruction. The first operand is an input token
/// chain, then an f64 value to store, then an address to store it to.
STFIWX,
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
/// load which sign-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWAX,
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
/// load which zero-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWZX,
/// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
/// integer smaller than 64 bits into a VSR. The integer is zero-extended.
/// This can be used for converting loaded integers to floating point.
LXSIZX,
/// STXSIX - The STXSI[bh]X instruction. The first operand is an input
/// chain, then an f64 value to store, then an address to store it to,
/// followed by a byte-width for the store.
STXSIX,
/// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
/// Maps directly to an lxvd2x instruction that will be followed by
/// an xxswapd.
LXVD2X,
/// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
/// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
/// the vector type to load vector in big-endian element order.
LOAD_VEC_BE,
/// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
/// v2f32 value into the lower half of a VSR register.
LD_VSX_LH,
/// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
/// instructions such as LXVDSX, LXVWSX.
LD_SPLAT,
/// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
/// Maps directly to an stxvd2x instruction that will be preceded by
/// an xxswapd.
STXVD2X,
/// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
/// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
/// the vector type to store vector in big-endian element order.
STORE_VEC_BE,
/// Store scalar integers from VSR.
ST_VSR_SCAL_INT,
/// QBRC, CHAIN = QVLFSb CHAIN, Ptr
/// The 4xf32 load used for v4i1 constants.
QVLFSb,
/// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
/// except they ensure that the compare input is zero-extended for
/// sub-word versions because the atomic loads zero-extend.
ATOMIC_CMP_SWAP_8,
ATOMIC_CMP_SWAP_16,
/// GPRC = TOC_ENTRY GA, TOC
/// Loads the entry for GA from the TOC, where the TOC base is given by
/// the last operand.
TOC_ENTRY
};
} // end namespace PPCISD
/// Define some predicates that are used for node matching.
namespace PPC {
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG);
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG);
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUDUM instruction.
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG);
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG);
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
unsigned ShuffleKind, SelectionDAG &DAG);
/// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
/// a VMRGEW or VMRGOW instruction
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
unsigned ShuffleKind, SelectionDAG &DAG);
/// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXSLDWI instruction.
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
bool &Swap, bool IsLE);
/// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXBRH instruction.
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
/// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXBRW instruction.
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
/// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXBRD instruction.
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
/// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXBRQ instruction.
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
/// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
/// for a XXPERMDI instruction.
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
bool &Swap, bool IsLE);
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
/// shift amount, otherwise return -1.
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
SelectionDAG &DAG);
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
/// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
/// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
/// shuffle of v4f32/v4i32 vectors that just inserts one element from one
/// vector into the other. This function will also set a couple of
/// output parameters for how much the source vector needs to be shifted and
/// what byte number needs to be specified for the instruction to put the
/// element in the desired location of the target vector.
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
unsigned &InsertAtByte, bool &Swap, bool IsLE);
/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
/// appropriate for PPC mnemonics (which have a big endian bias - namely
/// elements are counted from the left of the vector register).
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
SelectionDAG &DAG);
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
/// formed by using a vspltis[bhw] instruction of the specified element
/// size, return the constant being splatted. The ByteSize field indicates
/// the number of bytes of each element [124] -> [bhw].
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
/// If this is a qvaligni shuffle mask, return the shift
/// amount, otherwise return -1.
int isQVALIGNIShuffleMask(SDNode *N);
} // end namespace PPC
class PPCTargetLowering : public TargetLowering {
const PPCSubtarget &Subtarget;
public:
explicit PPCTargetLowering(const PPCTargetMachine &TM,
const PPCSubtarget &STI);
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
bool isSelectSupported(SelectSupportKind Kind) const override {
// PowerPC does not support scalar condition selects on vectors.
return (Kind != SelectSupportKind::ScalarCondVectorVal);
}
/// getPreferredVectorAction - The code we generate when vector types are
/// legalized by promoting the integer element type is often much worse
/// than code we generate if we widen the type for applicable vector types.
/// The issue with promoting is that the vector is scalaraized, individual
/// elements promoted and then the vector is rebuilt. So say we load a pair
/// of v4i8's and shuffle them. This will turn into a mess of 8 extending
/// loads, moves back into VSR's (or memory ops if we don't have moves) and
/// then the VPERM for the shuffle. All in all a very slow sequence.
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
const override {
if (VT.getScalarSizeInBits() % 8 == 0)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool useSoftFloat() const override;
bool hasSPE() const;
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
return MVT::i32;
}
bool isCheapToSpeculateCttz() const override {
return true;
}
bool isCheapToSpeculateCtlz() const override {
return true;
}
bool isCtlzFast() const override {
return true;
}
bool isEqualityCmpFoldedWithSignedCmp() const override {
return false;
}
bool hasAndNotCompare(SDValue) const override {
return true;
}
bool preferIncOfAddToSubOfNot(EVT VT) const override;
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
return VT.isScalarInteger();
}
bool supportSplitCSR(MachineFunction *MF) const override {
return
MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
}
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
/// getSetCCResultType - Return the ISD::SETCC ValueType
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
/// Return true if target always beneficiates from combining into FMA for a
/// given value type. This must typically return false on targets where FMA
/// takes more cycles to execute than FADD.
bool enableAggressiveFMAFusion(EVT VT) const override;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
/// SelectAddressEVXRegReg - Given the specified addressed, check to see if
/// it can be more efficiently represented as [r+imm].
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
/// is non-zero, only accept displacement which is not suitable for [r+imm].
/// Returns false if it can be represented by [r+imm], which are preferred.
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG,
unsigned EncodingAlignment = 0) const;
/// SelectAddressRegImm - Returns true if the address N can be represented
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
/// is not better represented as reg+reg. If \p EncodingAlignment is
/// non-zero, only accept displacements suitable for instruction encoding
/// requirement, i.e. multiples of 4 for DS form.
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG,
unsigned EncodingAlignment) const;
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
Sched::Preference getSchedulingPreference(SDNode *N) const override;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
Register getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const override;
void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
Align getPrefLoopAlignment(MachineLoop *ML) const override;
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
return true;
}
Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const override;
MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
MachineBasicBlock *MBB,
unsigned AtomicSize,
unsigned BinOpcode,
unsigned CmpOpcode = 0,
unsigned CmpPred = 0) const;
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
MachineBasicBlock *MBB,
bool is8bit,
unsigned Opcode,
unsigned CmpOpcode = 0,
unsigned CmpPred = 0) const;
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const;
ConstraintType getConstraintType(StringRef Constraint) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const override;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "es")
return InlineAsm::Constraint_es;
else if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
else if (ConstraintCode == "Q")
return InlineAsm::Constraint_Q;
else if (ConstraintCode == "Z")
return InlineAsm::Constraint_Z;
else if (ConstraintCode == "Zy")
return InlineAsm::Constraint_Zy;
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AS,
Instruction *I = nullptr) const override;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
bool isLegalICmpImmediate(int64_t Imm) const override;
/// isLegalAddImmediate - Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can
/// add a register and the immediate without having to materialize
/// the immediate into a register.
bool isLegalAddImmediate(int64_t Imm) const override;
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
/// register X1 to i32 by referencing its sub-register R1.
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
bool convertSelectOfConstantsToMath(EVT VT) const override {
return true;
}
bool isDesirableToTransformToIntegerOp(unsigned Opc,
EVT VT) const override {
// Only handle float load/store pair because float(fpr) load/store
// instruction has more cycles than integer(gpr) load/store in PPC.
if (Opc != ISD::LOAD && Opc != ISD::STORE)
return false;
if (VT != MVT::f32 && VT != MVT::f64)
return false;
return true;
}
// Returns true if the address of the global is stored in TOC entry.
bool isAccessedAsGotIndirect(SDValue N) const;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
/// Is unaligned memory access allowed for the given type, and is it fast
/// relative to software emulation.
bool allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace, unsigned Align = 1,
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool *Fast = nullptr) const override;
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
/// expanded to FMAs when this method returns true, otherwise fmuladd is
/// expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
// Should we expand the build vector with shuffles?
bool
shouldExpandBuildVectorWithShuffles(EVT VT,
unsigned DefinedValues) const override;
/// createFastISel - This method returns a target-specific FastISel object,
/// or null if the target does not support "fast" instruction selection.
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) const override;
/// Returns true if an argument of type Ty needs to be passed in a
/// contiguous block of registers in calling convention CallConv.
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
// We support any array type as "consecutive" block in the parameter
// save area. The element type defines the alignment requirement and
// whether the argument should go in GPRs, FPRs, or VRs if available.
//
// Note that clang uses this capability both to implement the ELFv2
// homogeneous float/vector aggregate ABI, and to avoid having to use
// "byval" when passing aggregates that might fully fit in registers.
return Ty->isArrayTy();
}
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
unsigned
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
unsigned
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
/// Override to support customized stack guard loading.
bool useLoadStackGuardNode() const override;
void insertSSPDeclarations(Module &M) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
unsigned getJumpTableEncoding() const override;
bool isJumpTableRelative() const override;
SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const override;
const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI,
MCContext &Ctx) const override;
/// Structure that collects some common arguments that get passed around
/// between the functions for call lowering.
struct CallFlags {
const CallingConv::ID CallConv;
const bool IsTailCall : 1;
const bool IsVarArg : 1;
const bool IsPatchPoint : 1;
const bool IsIndirect : 1;
const bool HasNest : 1;
CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
bool IsPatchPoint, bool IsIndirect, bool HasNest)
: CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
HasNest(HasNest) {}
};
private:
struct ReuseLoadInfo {
SDValue Ptr;
SDValue Chain;
SDValue ResChain;
MachinePointerInfo MPI;
bool IsDereferenceable = false;
bool IsInvariant = false;
unsigned Alignment = 0;
AAMDNodes AAInfo;
const MDNode *Ranges = nullptr;
ReuseLoadInfo() = default;
MachineMemOperand::Flags MMOFlags() const {
MachineMemOperand::Flags F = MachineMemOperand::MONone;
if (IsDereferenceable)
F |= MachineMemOperand::MODereferenceable;
if (IsInvariant)
F |= MachineMemOperand::MOInvariant;
return F;
}
};
bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
// Addrspacecasts are always noops.
return true;
}
bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
SelectionDAG &DAG,
ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
SelectionDAG &DAG) const;
void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
SelectionDAG &DAG, const SDLoc &dl) const;
SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const;
bool directMoveIsProfitable(const SDValue &Op) const;
SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const;
SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const;
SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
bool
IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
bool
IsEligibleForTailCallOptimization_64SVR4(
SDValue Callee,
CallingConv::ID CalleeCC,
ImmutableCallSite CS,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
SDValue Chain, SDValue &LROpOut,
SDValue &FPOpOut,
const SDLoc &dl) const;
SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
const SDLoc &dl) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
SDValue &Callee, int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite CS) const;
SDValue
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const override;
SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
SelectionDAG &DAG, SDValue ArgVal,
const SDLoc &dl) const;
SDValue LowerFormalArguments_AIX(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerFormalArguments_Darwin(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerFormalArguments_64SVR4(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerFormalArguments_32SVR4(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue CallSeqStart,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
const SDLoc &dl) const;
SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite CS) const;
SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite CS) const;
SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite CS) const;
SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
ImmutableCallSite CS) const;
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
DAGCombinerInfo &DCI) const;
/// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
/// SETCC with integer subtraction when (1) there is a legal way of doing it
/// (2) keeping the result of comparison in GPR has performance benefit.
SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps, bool &UseOneConstNR,
bool Reciprocal) const override;
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps) const override;
unsigned combineRepeatedFPDivisors() const override;
SDValue
combineElementTruncationToVectorTruncation(SDNode *N,
DAGCombinerInfo &DCI) const;
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
/// handled by the VINSERTH instruction introduced in ISA 3.0. This is
/// essentially any shuffle of v8i16 vectors that just inserts one element
/// from one vector into the other.
SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
/// handled by the VINSERTB instruction introduced in ISA 3.0. This is
/// essentially v16i8 vector version of VINSERTH.
SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
// Return whether the call instruction can potentially be optimized to a
// tail call. This will cause the optimizers to attempt to move, or
// duplicate return instructions to help enable tail call optimizations.
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool hasBitPreservingFPLogic(EVT VT) const override;
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
}; // end class PPCTargetLowering
namespace PPC {
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo);
} // end namespace PPC
bool isIntS16Immediate(SDNode *N, int16_t &Imm);
bool isIntS16Immediate(SDValue Op, int16_t &Imm);
} // end namespace llvm
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H