1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/PowerPC/PPCReduceCRLogicals.cpp
Reid Kleckner 68092989f3 Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.

I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
  recompiles    touches affected_files  header
  342380        95      3604    llvm/include/llvm/ADT/STLExtras.h
  314730        234     1345    llvm/include/llvm/InitializePasses.h
  307036        118     2602    llvm/include/llvm/ADT/APInt.h
  213049        59      3611    llvm/include/llvm/Support/MathExtras.h
  170422        47      3626    llvm/include/llvm/Support/Compiler.h
  162225        45      3605    llvm/include/llvm/ADT/Optional.h
  158319        63      2513    llvm/include/llvm/ADT/Triple.h
  140322        39      3598    llvm/include/llvm/ADT/StringRef.h
  137647        59      2333    llvm/include/llvm/Support/Error.h
  131619        73      1803    llvm/include/llvm/Support/FileSystem.h

Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.

Reviewers: bkramer, asbirlea, bollu, jdoerfert

Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 16:34:37 -08:00

739 lines
29 KiB
C++

//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
//
// This pass aims to reduce the number of logical operations on bits in the CR
// register. These instructions have a fairly high latency and only a single
// pipeline at their disposal in modern PPC cores. Furthermore, they have a
// tendency to occur in fairly small blocks where there's little opportunity
// to hide the latency between the CR logical operation and its user.
//
//===---------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-reduce-cr-ops"
STATISTIC(NumContainedSingleUseBinOps,
"Number of single-use binary CR logical ops contained in a block");
STATISTIC(NumToSplitBlocks,
"Number of binary CR logical ops that can be used to split blocks");
STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
STATISTIC(TotalNullaryCRLogicals,
"Number of nullary CR logical ops (CRSET/CRUNSET).");
STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
STATISTIC(NumBlocksSplitOnBinaryCROp,
"Number of blocks split on CR binary logical ops.");
STATISTIC(NumNotSplitIdenticalOperands,
"Number of blocks not split due to operands being identical.");
STATISTIC(NumNotSplitChainCopies,
"Number of blocks not split due to operands being chained copies.");
STATISTIC(NumNotSplitWrongOpcode,
"Number of blocks not split due to the wrong opcode.");
/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for any incoming values in the PHIs that are supposed to
/// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
/// Any such PHIs will be updated to reflect reality.
static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
for (auto &MI : Successor->instrs()) {
if (!MI.isPHI())
continue;
// This is a really ugly-looking loop, but it was pillaged directly from
// MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
MachineOperand &MO = MI.getOperand(i);
if (MO.getMBB() == OrigMBB) {
// Check if the instruction is actually defined in NewMBB.
if (MI.getOperand(i - 1).isReg()) {
MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
if (DefMI->getParent() == NewMBB ||
!OrigMBB->isSuccessor(Successor)) {
MO.setMBB(NewMBB);
break;
}
}
}
}
}
}
/// Given a basic block \p Successor that potentially contains PHIs, this
/// function will look for PHIs that have an incoming value from \p OrigMBB
/// and will add the same incoming value from \p NewMBB.
/// NOTE: This should only be used if \p NewMBB is an immediate dominator of
/// \p OrigMBB.
static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
MachineBasicBlock *OrigMBB,
MachineBasicBlock *NewMBB,
MachineRegisterInfo *MRI) {
assert(OrigMBB->isSuccessor(NewMBB) &&
"NewMBB must be a successor of OrigMBB");
for (auto &MI : Successor->instrs()) {
if (!MI.isPHI())
continue;
// This is a really ugly-looking loop, but it was pillaged directly from
// MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
MachineOperand &MO = MI.getOperand(i);
if (MO.getMBB() == OrigMBB) {
MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
break;
}
}
}
}
struct BlockSplitInfo {
MachineInstr *OrigBranch;
MachineInstr *SplitBefore;
MachineInstr *SplitCond;
bool InvertNewBranch;
bool InvertOrigBranch;
bool BranchToFallThrough;
const MachineBranchProbabilityInfo *MBPI;
MachineInstr *MIToDelete;
MachineInstr *NewCond;
bool allInstrsInSameMBB() {
if (!OrigBranch || !SplitBefore || !SplitCond)
return false;
MachineBasicBlock *MBB = OrigBranch->getParent();
if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
return false;
if (MIToDelete && MIToDelete->getParent() != MBB)
return false;
if (NewCond && NewCond->getParent() != MBB)
return false;
return true;
}
};
/// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
/// branch is \p OrigBranch. The target of the new branch can either be the same
/// as the target of the original branch or the fallthrough successor of the
/// original block as determined by \p BranchToFallThrough. The branch
/// conditions will be inverted according to \p InvertNewBranch and
/// \p InvertOrigBranch. If an instruction that previously fed the branch is to
/// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
/// the branch condition. The branch probabilities will be set if the
/// MachineBranchProbabilityInfo isn't null.
static bool splitMBB(BlockSplitInfo &BSI) {
assert(BSI.allInstrsInSameMBB() &&
"All instructions must be in the same block.");
MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
MachineFunction *MF = ThisMBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
if (ThisMBB->succ_size() != 2) {
LLVM_DEBUG(
dbgs() << "Don't know how to handle blocks that don't have exactly"
<< " two successors.\n");
return false;
}
const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
unsigned InvertedOpcode =
OrigBROpcode == PPC::BC
? PPC::BCn
: OrigBROpcode == PPC::BCn
? PPC::BC
: OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
? *ThisMBB->succ_rbegin()
: *ThisMBB->succ_begin();
MachineBasicBlock *NewBRTarget =
BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
// It's impossible to know the precise branch probability after the split.
// But it still needs to be reasonable, the whole probability to original
// targets should not be changed.
// After split NewBRTarget will get two incoming edges. Assume P0 is the
// original branch probability to NewBRTarget, P1 and P2 are new branch
// probabilies to NewBRTarget after split. If the two edge frequencies are
// same, then
// F * P1 = F * P0 / 2 ==> P1 = P0 / 2
// F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1)
BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br.
BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br.
ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown();
ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown();
if (BSI.MBPI) {
if (BSI.BranchToFallThrough) {
ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2;
ProbFallThrough = ProbToNewTarget.getCompl();
ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl();
ProbOrigTarget = ProbOrigFallThrough.getCompl();
} else {
ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2;
ProbFallThrough = ProbToNewTarget.getCompl();
ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl();
ProbOrigFallThrough = ProbOrigTarget.getCompl();
}
}
// Create a new basic block.
MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
MachineFunction::iterator It = ThisMBB->getIterator();
MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(++It, NewMBB);
// Move everything after SplitBefore into the new block.
NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
NewMBB->transferSuccessors(ThisMBB);
if (!ProbOrigTarget.isUnknown()) {
auto MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigTarget);
NewMBB->setSuccProbability(MBBI, ProbOrigTarget);
MBBI = std::find(NewMBB->succ_begin(), NewMBB->succ_end(), OrigFallThrough);
NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough);
}
// Add the two successors to ThisMBB.
ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
ThisMBB->addSuccessor(NewMBB, ProbFallThrough);
// Add the branches to ThisMBB.
BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
TII->get(NewBROpcode))
.addReg(BSI.SplitCond->getOperand(0).getReg())
.addMBB(NewBRTarget);
BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
TII->get(PPC::B))
.addMBB(NewMBB);
if (BSI.MIToDelete)
BSI.MIToDelete->eraseFromParent();
// Change the condition on the original branch and invert it if requested.
auto FirstTerminator = NewMBB->getFirstTerminator();
if (BSI.NewCond) {
assert(FirstTerminator->getOperand(0).isReg() &&
"Can't update condition of unconditional branch.");
FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
}
if (BSI.InvertOrigBranch)
FirstTerminator->setDesc(TII->get(InvertedOpcode));
// If any of the PHIs in the successors of NewMBB reference values that
// now come from NewMBB, they need to be updated.
for (auto *Succ : NewMBB->successors()) {
updatePHIs(Succ, ThisMBB, NewMBB, MRI);
}
addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
return true;
}
static bool isBinary(MachineInstr &MI) {
return MI.getNumOperands() == 3;
}
static bool isNullary(MachineInstr &MI) {
return MI.getNumOperands() == 1;
}
/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
/// a flag to indicate if the first operand of \p CROp is used as the
/// SplitBefore operand, determines whether either of the branches are to be
/// inverted as well as whether the new target should be the original
/// fall-through block.
static void
computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
bool &InvertNewBranch, bool &InvertOrigBranch,
bool &TargetIsFallThrough) {
// The conditions under which each of the output operands should be [un]set
// can certainly be written much more concisely with just 3 if statements or
// ternary expressions. However, this provides a much clearer overview to the
// reader as to what is set for each <CROp, BROp, OpUsed> combination.
if (BROp == PPC::BC || BROp == PPC::BCLR) {
// Regular branches.
switch (CROp) {
default:
llvm_unreachable("Don't know how to handle this CR logical.");
case PPC::CROR:
InvertNewBranch = false;
InvertOrigBranch = false;
TargetIsFallThrough = false;
return;
case PPC::CRAND:
InvertNewBranch = true;
InvertOrigBranch = false;
TargetIsFallThrough = true;
return;
case PPC::CRNAND:
InvertNewBranch = true;
InvertOrigBranch = true;
TargetIsFallThrough = false;
return;
case PPC::CRNOR:
InvertNewBranch = false;
InvertOrigBranch = true;
TargetIsFallThrough = true;
return;
case PPC::CRORC:
InvertNewBranch = UsingDef1;
InvertOrigBranch = !UsingDef1;
TargetIsFallThrough = false;
return;
case PPC::CRANDC:
InvertNewBranch = !UsingDef1;
InvertOrigBranch = !UsingDef1;
TargetIsFallThrough = true;
return;
}
} else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
// Negated branches.
switch (CROp) {
default:
llvm_unreachable("Don't know how to handle this CR logical.");
case PPC::CROR:
InvertNewBranch = true;
InvertOrigBranch = false;
TargetIsFallThrough = true;
return;
case PPC::CRAND:
InvertNewBranch = false;
InvertOrigBranch = false;
TargetIsFallThrough = false;
return;
case PPC::CRNAND:
InvertNewBranch = false;
InvertOrigBranch = true;
TargetIsFallThrough = true;
return;
case PPC::CRNOR:
InvertNewBranch = true;
InvertOrigBranch = true;
TargetIsFallThrough = false;
return;
case PPC::CRORC:
InvertNewBranch = !UsingDef1;
InvertOrigBranch = !UsingDef1;
TargetIsFallThrough = true;
return;
case PPC::CRANDC:
InvertNewBranch = UsingDef1;
InvertOrigBranch = !UsingDef1;
TargetIsFallThrough = false;
return;
}
} else
llvm_unreachable("Don't know how to handle this branch.");
}
namespace {
class PPCReduceCRLogicals : public MachineFunctionPass {
public:
static char ID;
struct CRLogicalOpInfo {
MachineInstr *MI;
// FIXME: If chains of copies are to be handled, this should be a vector.
std::pair<MachineInstr*, MachineInstr*> CopyDefs;
std::pair<MachineInstr*, MachineInstr*> TrueDefs;
unsigned IsBinary : 1;
unsigned IsNullary : 1;
unsigned ContainedInBlock : 1;
unsigned FeedsISEL : 1;
unsigned FeedsBR : 1;
unsigned FeedsLogical : 1;
unsigned SingleUse : 1;
unsigned DefsSingleUse : 1;
unsigned SubregDef1;
unsigned SubregDef2;
CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
SubregDef1(0), SubregDef2(0) { }
void dump();
};
private:
const PPCInstrInfo *TII = nullptr;
MachineFunction *MF = nullptr;
MachineRegisterInfo *MRI = nullptr;
const MachineBranchProbabilityInfo *MBPI = nullptr;
// A vector to contain all the CR logical operations
SmallVector<CRLogicalOpInfo, 16> AllCRLogicalOps;
void initialize(MachineFunction &MFParm);
void collectCRLogicals();
bool handleCROp(unsigned Idx);
bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
static bool isCRLogical(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
}
bool simplifyCode() {
bool Changed = false;
// Not using a range-based for loop here as the vector may grow while being
// operated on.
for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
Changed |= handleCROp(i);
return Changed;
}
public:
PPCReduceCRLogicals() : MachineFunctionPass(ID) {
initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
}
MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
MachineInstr *&CpDef);
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
// If the subtarget doesn't use CR bits, there's nothing to do.
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
if (!STI.useCRBits())
return false;
initialize(MF);
collectCRLogicals();
return simplifyCode();
}
CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
dbgs() << "CRLogicalOpMI: ";
MI->dump();
dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
dbgs() << ", DefsSingleUse: " << DefsSingleUse;
dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
if (!IsNullary) {
dbgs() << "\nDefs:\n";
TrueDefs.first->dump();
}
if (IsBinary)
TrueDefs.second->dump();
dbgs() << "\n";
if (CopyDefs.first) {
dbgs() << "CopyDef1: ";
CopyDefs.first->dump();
}
if (CopyDefs.second) {
dbgs() << "CopyDef2: ";
CopyDefs.second->dump();
}
}
#endif
PPCReduceCRLogicals::CRLogicalOpInfo
PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
CRLogicalOpInfo Ret;
Ret.MI = &MIParam;
// Get the defs
if (isNullary(MIParam)) {
Ret.IsNullary = 1;
Ret.TrueDefs = std::make_pair(nullptr, nullptr);
Ret.CopyDefs = std::make_pair(nullptr, nullptr);
} else {
MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
Ret.SubregDef1, Ret.CopyDefs.first);
assert(Def1 && "Must be able to find a definition of operand 1.");
Ret.DefsSingleUse &=
MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
Ret.DefsSingleUse &=
MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
if (isBinary(MIParam)) {
Ret.IsBinary = 1;
MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
Ret.SubregDef2,
Ret.CopyDefs.second);
assert(Def2 && "Must be able to find a definition of operand 2.");
Ret.DefsSingleUse &=
MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
Ret.DefsSingleUse &=
MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
Ret.TrueDefs = std::make_pair(Def1, Def2);
} else {
Ret.TrueDefs = std::make_pair(Def1, nullptr);
Ret.CopyDefs.second = nullptr;
}
}
Ret.ContainedInBlock = 1;
// Get the uses
for (MachineInstr &UseMI :
MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
unsigned Opc = UseMI.getOpcode();
if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
Ret.FeedsISEL = 1;
if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
Opc == PPC::BCLRn)
Ret.FeedsBR = 1;
Ret.FeedsLogical = isCRLogical(UseMI);
if (UseMI.getParent() != MIParam.getParent())
Ret.ContainedInBlock = 0;
}
Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
// We now know whether all the uses of the CR logical are in the same block.
if (!Ret.IsNullary) {
Ret.ContainedInBlock &=
(MIParam.getParent() == Ret.TrueDefs.first->getParent());
if (Ret.IsBinary)
Ret.ContainedInBlock &=
(MIParam.getParent() == Ret.TrueDefs.second->getParent());
}
LLVM_DEBUG(Ret.dump());
if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
NumContainedSingleUseBinOps++;
if (Ret.FeedsBR && Ret.DefsSingleUse)
NumToSplitBlocks++;
}
return Ret;
}
/// Looks through a COPY instruction to the actual definition of the CR-bit
/// register and returns the instruction that defines it.
/// FIXME: This currently handles what is by-far the most common case:
/// an instruction that defines a CR field followed by a single copy of a bit
/// from that field into a virtual register. If chains of copies need to be
/// handled, this should have a loop until a non-copy instruction is found.
MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
unsigned &Subreg,
MachineInstr *&CpDef) {
Subreg = -1;
if (!Register::isVirtualRegister(Reg))
return nullptr;
MachineInstr *Copy = MRI->getVRegDef(Reg);
CpDef = Copy;
if (!Copy->isCopy())
return Copy;
Register CopySrc = Copy->getOperand(1).getReg();
Subreg = Copy->getOperand(1).getSubReg();
if (!Register::isVirtualRegister(CopySrc)) {
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
// Set the Subreg
if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
Subreg = PPC::sub_eq;
if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
Subreg = PPC::sub_lt;
if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
Subreg = PPC::sub_gt;
if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
Subreg = PPC::sub_un;
// Loop backwards and return the first MI that modifies the physical CR Reg.
MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
while (Me != B)
if ((--Me)->modifiesRegister(CopySrc, TRI))
return &*Me;
return nullptr;
}
return MRI->getVRegDef(CopySrc);
}
void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
MF = &MFParam;
MRI = &MF->getRegInfo();
TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
AllCRLogicalOps.clear();
}
/// Contains all the implemented transformations on CR logical operations.
/// For example, a binary CR logical can be used to split a block on its inputs,
/// a unary CR logical might be used to change the condition code on a
/// comparison feeding it. A nullary CR logical might simply be removable
/// if the user of the bit it [un]sets can be transformed.
bool PPCReduceCRLogicals::handleCROp(unsigned Idx) {
// We can definitely split a block on the inputs to a binary CR operation
// whose defs and (single) use are within the same block.
bool Changed = false;
CRLogicalOpInfo CRI = AllCRLogicalOps[Idx];
if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
CRI.DefsSingleUse) {
Changed = splitBlockOnBinaryCROp(CRI);
if (Changed)
NumBlocksSplitOnBinaryCROp++;
}
return Changed;
}
/// Splits a block that contains a CR-logical operation that feeds a branch
/// and whose operands are produced within the block.
/// Example:
/// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
/// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
/// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
/// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
/// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
/// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
/// Becomes:
/// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
/// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
/// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
///
/// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
/// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
/// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
NumNotSplitIdenticalOperands++;
return false;
}
if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
LLVM_DEBUG(
dbgs() << "Unable to split because one of the operands is a PHI or "
"chain of copies.\n");
NumNotSplitChainCopies++;
return false;
}
// Note: keep in sync with computeBranchTargetAndInversion().
if (CRI.MI->getOpcode() != PPC::CROR &&
CRI.MI->getOpcode() != PPC::CRAND &&
CRI.MI->getOpcode() != PPC::CRNOR &&
CRI.MI->getOpcode() != PPC::CRNAND &&
CRI.MI->getOpcode() != PPC::CRORC &&
CRI.MI->getOpcode() != PPC::CRANDC) {
LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
NumNotSplitWrongOpcode++;
return false;
}
LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
bool UsingDef1 = false;
MachineInstr *SplitBefore = &*Def2It;
for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
if (Def1It == Def2It) { // Def2 comes before Def1.
SplitBefore = &*Def1It;
UsingDef1 = true;
break;
}
}
LLVM_DEBUG(dbgs() << "We will split the following block:\n";);
LLVM_DEBUG(CRI.MI->getParent()->dump());
LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
// Get the branch instruction.
MachineInstr *Branch =
MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
// We want the new block to have no code in it other than the definition
// of the input to the CR logical and the CR logical itself. So we move
// those to the bottom of the block (just before the branch). Then we
// will split before the CR logical.
MachineBasicBlock *MBB = SplitBefore->getParent();
auto FirstTerminator = MBB->getFirstTerminator();
MachineBasicBlock::iterator FirstInstrToMove =
UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
MachineBasicBlock::iterator SecondInstrToMove =
UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
// The instructions that need to be moved are not guaranteed to be
// contiguous. Move them individually.
// FIXME: If one of the operands is a chain of (single use) copies, they
// can all be moved and we can still split.
MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
if (FirstInstrToMove != SecondInstrToMove)
MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
MBB->splice(FirstTerminator, MBB, CRI.MI);
unsigned Opc = CRI.MI->getOpcode();
bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
InvertNewBranch, InvertOrigBranch,
TargetIsFallThrough);
MachineInstr *SplitCond =
UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
LLVM_DEBUG(dbgs() << " the original branch and the target is the "
<< (TargetIsFallThrough ? "fallthrough block\n"
: "orig. target block\n"));
LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
bool Changed = splitMBB(BSI);
// If we've split on a CR logical that is fed by a CR logical,
// recompute the source CR logical as it may be usable for splitting.
if (Changed) {
bool Input1CRlogical =
CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
bool Input2CRlogical =
CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
if (Input1CRlogical)
AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
if (Input2CRlogical)
AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
}
return Changed;
}
void PPCReduceCRLogicals::collectCRLogicals() {
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
if (isCRLogical(MI)) {
AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
TotalCRLogicals++;
if (AllCRLogicalOps.back().IsNullary)
TotalNullaryCRLogicals++;
else if (AllCRLogicalOps.back().IsBinary)
TotalBinaryCRLogicals++;
else
TotalUnaryCRLogicals++;
}
}
}
}
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
"PowerPC Reduce CR logical Operation", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
"PowerPC Reduce CR logical Operation", false, false)
char PPCReduceCRLogicals::ID = 0;
FunctionPass*
llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }