1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/VMCore/PassManagerT.h
Chris Lattner a10c21a9d0 Add more debug output
llvm-svn: 1627
2002-02-01 04:53:36 +00:00

490 lines
18 KiB
C++

//===- llvm/PassManager.h - Container for Passes -----------------*- C++ -*--=//
//
// This file defines the PassManager class. This class is used to hold,
// maintain, and optimize execution of Pass's. The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PASSMANAGER_H
#define LLVM_PASSMANAGER_H
#include "llvm/Pass.h"
#include <string>
//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions that are enabled when compiling
// with -g on. If compiling at -O, all functions are inlined noops.
//
struct PMDebug {
#ifdef NDEBUG
inline static void PrintPassStructure(Pass *) {}
inline static void PrintPassInformation(unsigned,const char*,Pass*,Value*) {}
inline static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
const Pass::AnalysisSet &) {}
#else
// If compiled in debug mode, these functions can be enabled by setting
// -debug-pass on the command line of the tool being used.
//
static void PrintPassStructure(Pass *P);
static void PrintPassInformation(unsigned,const char*,Pass *, Value *);
static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
const Pass::AnalysisSet&);
#endif
};
//===----------------------------------------------------------------------===//
// Declare the PassManagerTraits which will be specialized...
//
template<class UnitType> class PassManagerTraits; // Do not define.
//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes. The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename UnitType>
class PassManagerT : public PassManagerTraits<UnitType>,public AnalysisResolver{
typedef typename PassManagerTraits<UnitType>::PassClass PassClass;
typedef typename PassManagerTraits<UnitType>::SubPassClass SubPassClass;
typedef typename PassManagerTraits<UnitType>::BatcherClass BatcherClass;
typedef typename PassManagerTraits<UnitType>::ParentClass ParentClass;
typedef PassManagerTraits<UnitType> Traits;
friend typename PassManagerTraits<UnitType>::PassClass;
friend typename PassManagerTraits<UnitType>::SubPassClass;
friend class PassManagerTraits<UnitType>;
std::vector<PassClass*> Passes; // List of pass's to run
// The parent of this pass manager...
ParentClass * const Parent;
// The current batcher if one is in use, or null
BatcherClass *Batcher;
// CurrentAnalyses - As the passes are being run, this map contains the
// analyses that are available to the current pass for use. This is accessed
// through the getAnalysis() function in this class and in Pass.
//
std::map<AnalysisID, Pass*> CurrentAnalyses;
// LastUseOf - This map keeps track of the last usage in our pipeline of a
// particular pass. When executing passes, the memory for .first is free'd
// after .second is run.
//
std::map<Pass*, Pass*> LastUseOf;
public:
PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
~PassManagerT() {
// Delete all of the contained passes...
for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
I != E; ++I)
delete *I;
}
// run - Run all of the queued passes on the specified module in an optimal
// way.
virtual bool runOnUnit(UnitType *M) {
bool MadeChanges = false;
closeBatcher();
CurrentAnalyses.clear();
// LastUserOf - This contains the inverted LastUseOfMap...
std::map<Pass *, std::vector<Pass*> > LastUserOf;
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I)
LastUserOf[I->second].push_back(I->first);
// Output debug information...
if (Parent == 0) PMDebug::PrintPassStructure(this);
// Run all of the passes
for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
PassClass *P = Passes[i];
PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, (Value*)M);
// Get information about what analyses the pass uses...
std::vector<AnalysisID> Required, Destroyed, Provided;
P->getAnalysisUsageInfo(Required, Destroyed, Provided);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P, Required);
#ifndef NDEBUG
// All Required analyses should be available to the pass as it runs!
for (Pass::AnalysisSet::iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
assert(getAnalysisOrNullUp(*I) && "Analysis used but not available!");
}
#endif
// Run the sub pass!
bool Changed = Traits::runPass(P, M);
MadeChanges |= Changed;
if (Changed)
PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P,
(Value*)M);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Destroyed", P, Destroyed);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Provided", P, Provided);
// Erase all analyses in the destroyed set...
for (Pass::AnalysisSet::iterator I = Destroyed.begin(),
E = Destroyed.end(); I != E; ++I)
CurrentAnalyses.erase(*I);
// Add all analyses in the provided set...
for (Pass::AnalysisSet::iterator I = Provided.begin(),
E = Provided.end(); I != E; ++I)
CurrentAnalyses[*I] = P;
// Free memory for any passes that we are the last use of...
std::vector<Pass*> &DeadPass = LastUserOf[P];
for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
I != E; ++I) {
PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I,
(Value*)M);
(*I)->releaseMemory();
}
}
return MadeChanges;
}
#ifndef NDEBUG
// dumpPassStructure - Implement the -debug-passes=PassStructure option
virtual void dumpPassStructure(unsigned Offset = 0) {
std::cerr << std::string(Offset*2, ' ') << Traits::getPMName()
<< " Pass Manager\n";
for (std::vector<PassClass*>::iterator I = Passes.begin(), E = Passes.end();
I != E; ++I) {
PassClass *P = *I;
P->dumpPassStructure(Offset+1);
// Loop through and see which classes are destroyed after this one...
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I) {
if (P == I->second) {
std::cerr << "Fr" << std::string(Offset*2, ' ');
I->first->dumpPassStructure(0);
}
}
}
}
#endif
Pass *getAnalysisOrNullDown(AnalysisID ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I == CurrentAnalyses.end()) {
if (Batcher)
return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
return 0;
}
return I->second;
}
Pass *getAnalysisOrNullUp(AnalysisID ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I == CurrentAnalyses.end()) {
if (Parent)
return Parent->getAnalysisOrNullUp(ID);
return 0;
}
return I->second;
}
// markPassUsed - Inform higher level pass managers (and ourselves)
// that these analyses are being used by this pass. This is used to
// make sure that analyses are not free'd before we have to use
// them...
//
void markPassUsed(AnalysisID P, Pass *User) {
std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.find(P);
if (I != CurrentAnalyses.end()) {
LastUseOf[I->second] = User; // Local pass, extend the lifetime
} else {
// Pass not in current available set, must be a higher level pass
// available to us, propogate to parent pass manager... We tell the
// parent that we (the passmanager) are using the analysis so that it
// frees the analysis AFTER this pass manager runs.
//
assert(Parent != 0 && "Pass available but not found!");
Parent->markPassUsed(P, this);
}
}
// Return the number of parent PassManagers that exist
virtual unsigned getDepth() const {
if (Parent == 0) return 0;
return 1 + Parent->getDepth();
}
// add - Add a pass to the queue of passes to run. This passes ownership of
// the Pass to the PassManager. When the PassManager is destroyed, the pass
// will be destroyed as well, so there is no need to delete the pass. This
// implies that all passes MUST be new'd.
//
void add(PassClass *P) {
// Get information about what analyses the pass uses...
std::vector<AnalysisID> Required, Destroyed, Provided;
P->getAnalysisUsageInfo(Required, Destroyed, Provided);
// Loop over all of the analyses used by this pass,
for (std::vector<AnalysisID>::iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
if (getAnalysisOrNullDown(*I) == 0)
add((PassClass*)I->createPass());
}
// Tell the pass to add itself to this PassManager... the way it does so
// depends on the class of the pass, and is critical to laying out passes in
// an optimal order..
//
P->addToPassManager(this, Required, Destroyed, Provided);
}
private:
// addPass - These functions are used to implement the subclass specific
// behaviors present in PassManager. Basically the add(Pass*) method ends up
// reflecting its behavior into a Pass::addToPassManager call. Subclasses of
// Pass override it specifically so that they can reflect the type
// information inherent in "this" back to the PassManager.
//
// For generic Pass subclasses (which are interprocedural passes), we simply
// add the pass to the end of the pass list and terminate any accumulation of
// MethodPasses that are present.
//
void addPass(PassClass *P, Pass::AnalysisSet &Required,
Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) {
// Providers are analysis classes which are forbidden to modify the module
// they are operating on, so they are allowed to be reordered to before the
// batcher...
//
if (Batcher && Provided.empty())
closeBatcher(); // This pass cannot be batched!
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(P, this);
Passes.push_back(P);
// Inform higher level pass managers (and ourselves) that these analyses are
// being used by this pass. This is used to make sure that analyses are not
// free'd before we have to use them...
//
for (std::vector<AnalysisID>::iterator I = Required.begin(),
E = Required.end(); I != E; ++I)
markPassUsed(*I, P); // Mark *I as used by P
// Erase all analyses in the destroyed set...
for (std::vector<AnalysisID>::iterator I = Destroyed.begin(),
E = Destroyed.end(); I != E; ++I)
CurrentAnalyses.erase(*I);
// Add all analyses in the provided set...
for (std::vector<AnalysisID>::iterator I = Provided.begin(),
E = Provided.end(); I != E; ++I)
CurrentAnalyses[*I] = P;
// For now assume that our results are never used...
LastUseOf[P] = P;
}
// For MethodPass subclasses, we must be sure to batch the MethodPasses
// together in a MethodPassBatcher object so that all of the analyses are run
// together a method at a time.
//
void addPass(SubPassClass *MP, Pass::AnalysisSet &Required,
Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &Provided) {
if (Batcher == 0) // If we don't have a batcher yet, make one now.
Batcher = new BatcherClass(this);
// The Batcher will queue them passes up
MP->addToPassManager(Batcher, Required, Destroyed, Provided);
}
// closeBatcher - Terminate the batcher that is being worked on.
void closeBatcher() {
if (Batcher) {
Passes.push_back(Batcher);
Batcher = 0;
}
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<BasicBlock> Specialization
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
template<> struct PassManagerTraits<BasicBlock> : public BasicBlockPass {
// PassClass - The type of passes tracked by this PassManager
typedef BasicBlockPass PassClass;
// SubPassClass - The types of classes that should be collated together
// This is impossible to match, so BasicBlock instantiations of PassManagerT
// do not collate.
//
typedef PassManagerT<Module> SubPassClass;
// BatcherClass - The type to use for collation of subtypes... This class is
// never instantiated for the PassManager<BasicBlock>, but it must be an
// instance of PassClass to typecheck.
//
typedef PassClass BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Method> ParentClass;
// PMType - The type of the passmanager that subclasses this class
typedef PassManagerT<BasicBlock> PMType;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, BasicBlock *M) {
// todo, init and finalize
return P->runOnBasicBlock(M);
}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "BasicBlock"; }
// Implement the BasicBlockPass interface...
virtual bool doInitialization(Module *M);
virtual bool runOnBasicBlock(BasicBlock *BB);
virtual bool doFinalization(Module *M);
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Method> Specialization
//
// This pass manager is used to group together all of the MethodPass's
// into a single unit.
//
template<> struct PassManagerTraits<Method> : public MethodPass {
// PassClass - The type of passes tracked by this PassManager
typedef MethodPass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef BasicBlockPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<BasicBlock> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef PassManagerT<Module> ParentClass;
// PMType - The type of the passmanager that subclasses this class
typedef PassManagerT<Method> PMType;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Method *M) {
return P->runOnMethod(M);
}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "Method"; }
// Implement the MethodPass interface...
virtual bool doInitialization(Module *M);
virtual bool runOnMethod(Method *M);
virtual bool doFinalization(Module *M);
};
//===----------------------------------------------------------------------===//
// PassManagerTraits<Module> Specialization
//
// This is the top level PassManager implementation that holds generic passes.
//
template<> struct PassManagerTraits<Module> : public Pass {
// PassClass - The type of passes tracked by this PassManager
typedef Pass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef MethodPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef PassManagerT<Method> BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef AnalysisResolver ParentClass;
// runPass - Specify how the pass should be run on the UnitType
static bool runPass(PassClass *P, Module *M) { return P->run(M); }
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
const char *getPMName() const { return "Module"; }
// run - Implement the Pass interface...
virtual bool run(Module *M) {
return ((PassManagerT<Module>*)this)->runOnUnit(M);
}
};
//===----------------------------------------------------------------------===//
// PassManagerTraits Method Implementations
//
// PassManagerTraits<BasicBlock> Implementations
//
inline bool PassManagerTraits<BasicBlock>::doInitialization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool PassManagerTraits<BasicBlock>::runOnBasicBlock(BasicBlock *BB) {
return ((PMType*)this)->runOnUnit(BB);
}
inline bool PassManagerTraits<BasicBlock>::doFinalization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
// PassManagerTraits<Method> Implementations
//
inline bool PassManagerTraits<Method>::doInitialization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool PassManagerTraits<Method>::runOnMethod(Method *M) {
return ((PMType*)this)->runOnUnit(M);
}
inline bool PassManagerTraits<Method>::doFinalization(Module *M) {
bool Changed = false;
for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i)
((PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
#endif