1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/lib/Transforms/Scalar/LoopDeletion.cpp
Anna Thomas ed1118ea96 [LoopDeletion] Update exits correctly when multiple duplicate edges from an exiting block
Summary:
Currently, we incorrectly update exit blocks of loops when there are multiple
edges from a single exiting block to the exit block. This can happen when we
have switches as the terminator of the exiting blocks.
The fix here is to correctly update the phi nodes in the exit block, and remove
all incoming values *except* for one which is from the preheader.

Note: Currently, this error can manifest only while deleting non-executed loops. However, it
is possible to trigger this error in invariant loops, once we enhance the logic
around the exit conditions for the loop check.

Reviewers: chandlerc, dberlin, sanjoy, efriedma

Reviewed by: efriedma

Subscribers: mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D34516

llvm-svn: 306048
2017-06-22 20:20:56 +00:00

352 lines
14 KiB
C++

//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-delete"
STATISTIC(NumDeleted, "Number of loops deleted");
/// This function deletes dead loops. The caller of this function needs to
/// guarantee that the loop is infact dead. Here we handle two kinds of dead
/// loop. The first kind (\p isLoopDead) is where only invariant values from
/// within the loop are used outside of it. The second kind (\p
/// isLoopNeverExecuted) is where the loop is provably never executed. We can
/// always remove never executed loops since they will not cause any
/// difference to program behaviour.
///
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
/// LI. It also updates the loop PM if an updater struct is provided.
// TODO: This function will be used by loop-simplifyCFG as well. So, move this
// to LoopUtils.cpp
static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, bool LoopIsNeverExecuted,
LPMUpdater *Updater = nullptr);
/// Determines if a loop is dead.
///
/// This assumes that we've already checked for unique exit and exiting blocks,
/// and that the code is in LCSSA form.
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
BasicBlock *ExitBlock, bool &Changed,
BasicBlock *Preheader) {
// Make sure that all PHI entries coming from the loop are loop invariant.
// Because the code is in LCSSA form, any values used outside of the loop
// must pass through a PHI in the exit block, meaning that this check is
// sufficient to guarantee that no loop-variant values are used outside
// of the loop.
BasicBlock::iterator BI = ExitBlock->begin();
bool AllEntriesInvariant = true;
bool AllOutgoingValuesSame = true;
while (PHINode *P = dyn_cast<PHINode>(BI)) {
Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
// Make sure all exiting blocks produce the same incoming value for the exit
// block. If there are different incoming values for different exiting
// blocks, then it is impossible to statically determine which value should
// be used.
AllOutgoingValuesSame =
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
return incoming == P->getIncomingValueForBlock(BB);
});
if (!AllOutgoingValuesSame)
break;
if (Instruction *I = dyn_cast<Instruction>(incoming))
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
AllEntriesInvariant = false;
break;
}
++BI;
}
if (Changed)
SE.forgetLoopDispositions(L);
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
return false;
// Make sure that no instructions in the block have potential side-effects.
// This includes instructions that could write to memory, and loads that are
// marked volatile.
for (auto &I : L->blocks())
if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); }))
return false;
return true;
}
/// This function returns true if there is no viable path from the
/// entry block to the header of \p L. Right now, it only does
/// a local search to save compile time.
static bool isLoopNeverExecuted(Loop *L) {
using namespace PatternMatch;
auto *Preheader = L->getLoopPreheader();
// TODO: We can relax this constraint, since we just need a loop
// predecessor.
assert(Preheader && "Needs preheader!");
if (Preheader == &Preheader->getParent()->getEntryBlock())
return false;
// All predecessors of the preheader should have a constant conditional
// branch, with the loop's preheader as not-taken.
for (auto *Pred: predecessors(Preheader)) {
BasicBlock *Taken, *NotTaken;
ConstantInt *Cond;
if (!match(Pred->getTerminator(),
m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
return false;
if (!Cond->getZExtValue())
std::swap(Taken, NotTaken);
if (Taken == Preheader)
return false;
}
assert(!pred_empty(Preheader) &&
"Preheader should have predecessors at this point!");
// All the predecessors have the loop preheader as not-taken target.
return true;
}
/// Remove a loop if it is dead.
///
/// A loop is considered dead if it does not impact the observable behavior of
/// the program other than finite running time. This never removes a loop that
/// might be infinite (unless it is never executed), as doing so could change
/// the halting/non-halting nature of a program.
///
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
/// order to make various safety checks work.
///
/// \returns true if any changes were made. This may mutate the loop even if it
/// is unable to delete it due to hoisting trivially loop invariant
/// instructions out of the loop.
static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, LPMUpdater *Updater = nullptr) {
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
// We can only remove the loop if there is a preheader that we can
// branch from after removing it.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
// If LoopSimplify form is not available, stay out of trouble.
if (!L->hasDedicatedExits())
return false;
// We can't remove loops that contain subloops. If the subloops were dead,
// they would already have been removed in earlier executions of this pass.
if (L->begin() != L->end())
return false;
BasicBlock *ExitBlock = L->getUniqueExitBlock();
if (ExitBlock && isLoopNeverExecuted(L)) {
deleteDeadLoop(L, DT, SE, LI, true /* LoopIsNeverExecuted */, Updater);
++NumDeleted;
return true;
}
// The remaining checks below are for a loop being dead because all statements
// in the loop are invariant.
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// We require that the loop only have a single exit block. Otherwise, we'd
// be in the situation of needing to be able to solve statically which exit
// block will be branched to, or trying to preserve the branching logic in
// a loop invariant manner.
if (!ExitBlock)
return false;
// Finally, we have to check that the loop really is dead.
bool Changed = false;
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader))
return Changed;
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(S))
return Changed;
deleteDeadLoop(L, DT, SE, LI, false /* LoopIsNeverExecuted */, Updater);
++NumDeleted;
return true;
}
static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, bool LoopIsNeverExecuted,
LPMUpdater *Updater) {
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
auto *Preheader = L->getLoopPreheader();
assert(Preheader && "Preheader should exist!");
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// If we have an LPM updater, tell it about the loop being removed.
if (Updater)
Updater->markLoopAsDeleted(*L);
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
SE.forgetLoop(L);
auto *ExitBlock = L->getUniqueExitBlock();
assert(ExitBlock && "Should have a unique exit block!");
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
// Connect the preheader directly to the exit block.
// Even when the loop is never executed, we cannot remove the edge from the
// source block to the exit block. Consider the case where the unexecuted loop
// branches back to an outer loop. If we deleted the loop and removed the edge
// coming to this inner loop, this will break the outer loop structure (by
// deleting the backedge of the outer loop). If the outer loop is indeed a
// non-loop, it will be deleted in a future iteration of loop deletion pass.
Preheader->getTerminator()->replaceUsesOfWith(L->getHeader(), ExitBlock);
// Rewrite phis in the exit block to get their inputs from the Preheader
// instead of the exiting block.
BasicBlock::iterator BI = ExitBlock->begin();
while (PHINode *P = dyn_cast<PHINode>(BI)) {
// Set the zero'th element of Phi to be from the preheader and remove all
// other incoming values. Given the loop has dedicated exits, all other
// incoming values must be from the exiting blocks.
int PredIndex = 0;
if (LoopIsNeverExecuted)
P->setIncomingValue(PredIndex, UndefValue::get(P->getType()));
P->setIncomingBlock(PredIndex, Preheader);
// Removes all incoming values from all other exiting blocks (including
// duplicate values from an exiting block).
// Nuke all entries except the zero'th entry which is the preheader entry.
// NOTE! We need to remove Incoming Values in the reverse order as done
// below, to keep the indices valid for deletion (removeIncomingValues
// updates getNumIncomingValues and shifts all values down into the operand
// being deleted).
for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
P->removeIncomingValue(e-i, false);
assert((P->getNumIncomingValues() == 1 &&
P->getIncomingBlock(PredIndex) == Preheader) &&
"Should have exactly one value and that's from the preheader!");
++BI;
}
// Update the dominator tree and remove the instructions and blocks that will
// be deleted from the reference counting scheme.
SmallVector<DomTreeNode*, 8> ChildNodes;
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
// Move all of the block's children to be children of the Preheader, which
// allows us to remove the domtree entry for the block.
ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
for (DomTreeNode *ChildNode : ChildNodes) {
DT.changeImmediateDominator(ChildNode, DT[Preheader]);
}
ChildNodes.clear();
DT.eraseNode(*LI);
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
(*LI)->dropAllReferences();
}
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove its
// entry from the loop's block list. We do that in the next section.
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI)
(*LI)->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI.removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
LI.markAsRemoved(L);
}
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
if (!deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, &Updater))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
namespace {
class LoopDeletionLegacyPass : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopDeletionLegacyPass() : LoopPass(ID) {
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
}
// Possibly eliminate loop L if it is dead.
bool runOnLoop(Loop *L, LPPassManager &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
};
}
char LoopDeletionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
if (skipLoop(L))
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
return deleteLoopIfDead(L, DT, SE, LI);
}