mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
36d48161a2
This caused PR34629: asserts firing when building Chromium. It also broke some buildbots building test-suite as reported on the commit thread. > Summary: > 1/ Operand folding during complex pattern matching for LEAs has been > extended, such that it promotes Scale to accommodate similar operand > appearing in the DAG. > e.g. > T1 = A + B > T2 = T1 + 10 > T3 = T2 + A > For above DAG rooted at T3, X86AddressMode will no look like > Base = B , Index = A , Scale = 2 , Disp = 10 > > 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs > so that if there is an opportunity then complex LEAs (having 3 operands) > could be factored out. > e.g. > leal 1(%rax,%rcx,1), %rdx > leal 1(%rax,%rcx,2), %rcx > will be factored as following > leal 1(%rax,%rcx,1), %rdx > leal (%rdx,%rcx) , %edx > > 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops, > thus avoiding creation of any complex LEAs within a loop. > > Reviewers: lsaba, RKSimon, craig.topper, qcolombet > > Reviewed By: lsaba > > Subscribers: spatel, igorb, llvm-commits > > Differential Revision: https://reviews.llvm.org/D35014 llvm-svn: 313376
1354 lines
54 KiB
C++
1354 lines
54 KiB
C++
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the MachineInstr class, which is the
|
|
// basic representation for all target dependent machine instructions used by
|
|
// the back end.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
|
|
#define LLVM_CODEGEN_MACHINEINSTR_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/ArrayRecycler.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
template <typename T> class ArrayRef;
|
|
class DIExpression;
|
|
class DILocalVariable;
|
|
class MachineBasicBlock;
|
|
class MachineFunction;
|
|
class MachineMemOperand;
|
|
class MachineRegisterInfo;
|
|
class ModuleSlotTracker;
|
|
class raw_ostream;
|
|
template <typename T> class SmallVectorImpl;
|
|
class StringRef;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Representation of each machine instruction.
|
|
///
|
|
/// This class isn't a POD type, but it must have a trivial destructor. When a
|
|
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
|
|
/// without having their destructor called.
|
|
///
|
|
class MachineInstr
|
|
: public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
|
|
ilist_sentinel_tracking<true>> {
|
|
public:
|
|
using mmo_iterator = MachineMemOperand **;
|
|
|
|
/// Flags to specify different kinds of comments to output in
|
|
/// assembly code. These flags carry semantic information not
|
|
/// otherwise easily derivable from the IR text.
|
|
///
|
|
enum CommentFlag {
|
|
ReloadReuse = 0x1 // higher bits are reserved for target dep comments.
|
|
};
|
|
|
|
enum MIFlag {
|
|
NoFlags = 0,
|
|
FrameSetup = 1 << 0, // Instruction is used as a part of
|
|
// function frame setup code.
|
|
FrameDestroy = 1 << 1, // Instruction is used as a part of
|
|
// function frame destruction code.
|
|
BundledPred = 1 << 2, // Instruction has bundled predecessors.
|
|
BundledSucc = 1 << 3 // Instruction has bundled successors.
|
|
};
|
|
|
|
private:
|
|
const MCInstrDesc *MCID; // Instruction descriptor.
|
|
MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
|
|
|
|
// Operands are allocated by an ArrayRecycler.
|
|
MachineOperand *Operands = nullptr; // Pointer to the first operand.
|
|
unsigned NumOperands = 0; // Number of operands on instruction.
|
|
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
|
|
OperandCapacity CapOperands; // Capacity of the Operands array.
|
|
|
|
uint8_t Flags = 0; // Various bits of additional
|
|
// information about machine
|
|
// instruction.
|
|
|
|
uint8_t AsmPrinterFlags = 0; // Various bits of information used by
|
|
// the AsmPrinter to emit helpful
|
|
// comments. This is *not* semantic
|
|
// information. Do not use this for
|
|
// anything other than to convey comment
|
|
// information to AsmPrinter.
|
|
|
|
uint8_t NumMemRefs = 0; // Information on memory references.
|
|
// Note that MemRefs == nullptr, means 'don't know', not 'no memory access'.
|
|
// Calling code must treat missing information conservatively. If the number
|
|
// of memory operands required to be precise exceeds the maximum value of
|
|
// NumMemRefs - currently 256 - we remove the operands entirely. Note also
|
|
// that this is a non-owning reference to a shared copy on write buffer owned
|
|
// by the MachineFunction and created via MF.allocateMemRefsArray.
|
|
mmo_iterator MemRefs = nullptr;
|
|
|
|
DebugLoc debugLoc; // Source line information.
|
|
|
|
// Intrusive list support
|
|
friend struct ilist_traits<MachineInstr>;
|
|
friend struct ilist_callback_traits<MachineBasicBlock>;
|
|
void setParent(MachineBasicBlock *P) { Parent = P; }
|
|
|
|
/// This constructor creates a copy of the given
|
|
/// MachineInstr in the given MachineFunction.
|
|
MachineInstr(MachineFunction &, const MachineInstr &);
|
|
|
|
/// This constructor create a MachineInstr and add the implicit operands.
|
|
/// It reserves space for number of operands specified by
|
|
/// MCInstrDesc. An explicit DebugLoc is supplied.
|
|
MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
|
|
bool NoImp = false);
|
|
|
|
// MachineInstrs are pool-allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
public:
|
|
MachineInstr(const MachineInstr &) = delete;
|
|
MachineInstr &operator=(const MachineInstr &) = delete;
|
|
// Use MachineFunction::DeleteMachineInstr() instead.
|
|
~MachineInstr() = delete;
|
|
|
|
const MachineBasicBlock* getParent() const { return Parent; }
|
|
MachineBasicBlock* getParent() { return Parent; }
|
|
|
|
/// Return the asm printer flags bitvector.
|
|
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
|
|
|
|
/// Clear the AsmPrinter bitvector.
|
|
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
|
|
|
|
/// Return whether an AsmPrinter flag is set.
|
|
bool getAsmPrinterFlag(CommentFlag Flag) const {
|
|
return AsmPrinterFlags & Flag;
|
|
}
|
|
|
|
/// Set a flag for the AsmPrinter.
|
|
void setAsmPrinterFlag(uint8_t Flag) {
|
|
AsmPrinterFlags |= Flag;
|
|
}
|
|
|
|
/// Clear specific AsmPrinter flags.
|
|
void clearAsmPrinterFlag(CommentFlag Flag) {
|
|
AsmPrinterFlags &= ~Flag;
|
|
}
|
|
|
|
/// Return the MI flags bitvector.
|
|
uint8_t getFlags() const {
|
|
return Flags;
|
|
}
|
|
|
|
/// Return whether an MI flag is set.
|
|
bool getFlag(MIFlag Flag) const {
|
|
return Flags & Flag;
|
|
}
|
|
|
|
/// Set a MI flag.
|
|
void setFlag(MIFlag Flag) {
|
|
Flags |= (uint8_t)Flag;
|
|
}
|
|
|
|
void setFlags(unsigned flags) {
|
|
// Filter out the automatically maintained flags.
|
|
unsigned Mask = BundledPred | BundledSucc;
|
|
Flags = (Flags & Mask) | (flags & ~Mask);
|
|
}
|
|
|
|
/// clearFlag - Clear a MI flag.
|
|
void clearFlag(MIFlag Flag) {
|
|
Flags &= ~((uint8_t)Flag);
|
|
}
|
|
|
|
/// Return true if MI is in a bundle (but not the first MI in a bundle).
|
|
///
|
|
/// A bundle looks like this before it's finalized:
|
|
/// ----------------
|
|
/// | MI |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// In this case, the first MI starts a bundle but is not inside a bundle, the
|
|
/// next 2 MIs are considered "inside" the bundle.
|
|
///
|
|
/// After a bundle is finalized, it looks like this:
|
|
/// ----------------
|
|
/// | Bundle |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
|
|
/// a bundle, but the next three MIs are.
|
|
bool isInsideBundle() const {
|
|
return getFlag(BundledPred);
|
|
}
|
|
|
|
/// Return true if this instruction part of a bundle. This is true
|
|
/// if either itself or its following instruction is marked "InsideBundle".
|
|
bool isBundled() const {
|
|
return isBundledWithPred() || isBundledWithSucc();
|
|
}
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// first instruction in the bundle.
|
|
bool isBundledWithPred() const { return getFlag(BundledPred); }
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// last instruction in the bundle.
|
|
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
|
|
|
|
/// Bundle this instruction with its predecessor. This can be an unbundled
|
|
/// instruction, or it can be the first instruction in a bundle.
|
|
void bundleWithPred();
|
|
|
|
/// Bundle this instruction with its successor. This can be an unbundled
|
|
/// instruction, or it can be the last instruction in a bundle.
|
|
void bundleWithSucc();
|
|
|
|
/// Break bundle above this instruction.
|
|
void unbundleFromPred();
|
|
|
|
/// Break bundle below this instruction.
|
|
void unbundleFromSucc();
|
|
|
|
/// Returns the debug location id of this MachineInstr.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Return the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DILocalVariable *getDebugVariable() const;
|
|
|
|
/// Return the complex address expression referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DIExpression *getDebugExpression() const;
|
|
|
|
/// Emit an error referring to the source location of this instruction.
|
|
/// This should only be used for inline assembly that is somehow
|
|
/// impossible to compile. Other errors should have been handled much
|
|
/// earlier.
|
|
///
|
|
/// If this method returns, the caller should try to recover from the error.
|
|
void emitError(StringRef Msg) const;
|
|
|
|
/// Returns the target instruction descriptor of this MachineInstr.
|
|
const MCInstrDesc &getDesc() const { return *MCID; }
|
|
|
|
/// Returns the opcode of this MachineInstr.
|
|
unsigned getOpcode() const { return MCID->Opcode; }
|
|
|
|
/// Access to explicit operands of the instruction.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
const MachineOperand& getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
MachineOperand& getOperand(unsigned i) {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
|
|
/// Returns the number of non-implicit operands.
|
|
unsigned getNumExplicitOperands() const;
|
|
|
|
/// iterator/begin/end - Iterate over all operands of a machine instruction.
|
|
using mop_iterator = MachineOperand *;
|
|
using const_mop_iterator = const MachineOperand *;
|
|
|
|
mop_iterator operands_begin() { return Operands; }
|
|
mop_iterator operands_end() { return Operands + NumOperands; }
|
|
|
|
const_mop_iterator operands_begin() const { return Operands; }
|
|
const_mop_iterator operands_end() const { return Operands + NumOperands; }
|
|
|
|
iterator_range<mop_iterator> operands() {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> operands() const {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_operands() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_operands() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<mop_iterator> implicit_operands() {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> implicit_operands() const {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
/// Returns a range over all explicit operands that are register definitions.
|
|
/// Implicit definition are not included!
|
|
iterator_range<mop_iterator> defs() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getDesc().getNumDefs());
|
|
}
|
|
/// \copydoc defs()
|
|
iterator_range<const_mop_iterator> defs() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getDesc().getNumDefs());
|
|
}
|
|
/// Returns a range that includes all operands that are register uses.
|
|
/// This may include unrelated operands which are not register uses.
|
|
iterator_range<mop_iterator> uses() {
|
|
return make_range(operands_begin() + getDesc().getNumDefs(),
|
|
operands_end());
|
|
}
|
|
/// \copydoc uses()
|
|
iterator_range<const_mop_iterator> uses() const {
|
|
return make_range(operands_begin() + getDesc().getNumDefs(),
|
|
operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_uses() {
|
|
return make_range(operands_begin() + getDesc().getNumDefs(),
|
|
operands_begin() + getNumExplicitOperands() );
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_uses() const {
|
|
return make_range(operands_begin() + getDesc().getNumDefs(),
|
|
operands_begin() + getNumExplicitOperands() );
|
|
}
|
|
|
|
/// Returns the number of the operand iterator \p I points to.
|
|
unsigned getOperandNo(const_mop_iterator I) const {
|
|
return I - operands_begin();
|
|
}
|
|
|
|
/// Access to memory operands of the instruction
|
|
mmo_iterator memoperands_begin() const { return MemRefs; }
|
|
mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
|
|
/// Return true if we don't have any memory operands which described the the
|
|
/// memory access done by this instruction. If this is true, calling code
|
|
/// must be conservative.
|
|
bool memoperands_empty() const { return NumMemRefs == 0; }
|
|
|
|
iterator_range<mmo_iterator> memoperands() {
|
|
return make_range(memoperands_begin(), memoperands_end());
|
|
}
|
|
iterator_range<mmo_iterator> memoperands() const {
|
|
return make_range(memoperands_begin(), memoperands_end());
|
|
}
|
|
|
|
/// Return true if this instruction has exactly one MachineMemOperand.
|
|
bool hasOneMemOperand() const {
|
|
return NumMemRefs == 1;
|
|
}
|
|
|
|
/// Return the number of memory operands.
|
|
unsigned getNumMemOperands() const { return NumMemRefs; }
|
|
|
|
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
|
|
/// queries but they are bundle aware.
|
|
|
|
enum QueryType {
|
|
IgnoreBundle, // Ignore bundles
|
|
AnyInBundle, // Return true if any instruction in bundle has property
|
|
AllInBundle // Return true if all instructions in bundle have property
|
|
};
|
|
|
|
/// Return true if the instruction (or in the case of a bundle,
|
|
/// the instructions inside the bundle) has the specified property.
|
|
/// The first argument is the property being queried.
|
|
/// The second argument indicates whether the query should look inside
|
|
/// instruction bundles.
|
|
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
|
|
// Inline the fast path for unbundled or bundle-internal instructions.
|
|
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
|
|
return getDesc().getFlags() & (1ULL << MCFlag);
|
|
|
|
// If this is the first instruction in a bundle, take the slow path.
|
|
return hasPropertyInBundle(1ULL << MCFlag, Type);
|
|
}
|
|
|
|
/// Return true if this instruction can have a variable number of operands.
|
|
/// In this case, the variable operands will be after the normal
|
|
/// operands but before the implicit definitions and uses (if any are
|
|
/// present).
|
|
bool isVariadic(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Variadic, Type);
|
|
}
|
|
|
|
/// Set if this instruction has an optional definition, e.g.
|
|
/// ARM instructions which can set condition code if 's' bit is set.
|
|
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasOptionalDef, Type);
|
|
}
|
|
|
|
/// Return true if this is a pseudo instruction that doesn't
|
|
/// correspond to a real machine instruction.
|
|
bool isPseudo(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Pseudo, Type);
|
|
}
|
|
|
|
bool isReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Return, Type);
|
|
}
|
|
|
|
bool isCall(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Call, Type);
|
|
}
|
|
|
|
/// Returns true if the specified instruction stops control flow
|
|
/// from executing the instruction immediately following it. Examples include
|
|
/// unconditional branches and return instructions.
|
|
bool isBarrier(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Barrier, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction part of the terminator for a basic block.
|
|
/// Typically this is things like return and branch instructions.
|
|
///
|
|
/// Various passes use this to insert code into the bottom of a basic block,
|
|
/// but before control flow occurs.
|
|
bool isTerminator(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Terminator, Type);
|
|
}
|
|
|
|
/// Returns true if this is a conditional, unconditional, or indirect branch.
|
|
/// Predicates below can be used to discriminate between
|
|
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
|
|
/// get more information.
|
|
bool isBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Branch, Type);
|
|
}
|
|
|
|
/// Return true if this is an indirect branch, such as a
|
|
/// branch through a register.
|
|
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::IndirectBranch, Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which may fall
|
|
/// through to the next instruction or may transfer control flow to some other
|
|
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
|
|
/// information about this branch.
|
|
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which always
|
|
/// transfers control flow to some other block. The
|
|
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
|
|
/// about this branch.
|
|
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this instruction has a predicate operand that
|
|
/// controls execution. It may be set to 'always', or may be set to other
|
|
/// values. There are various methods in TargetInstrInfo that can be used to
|
|
/// control and modify the predicate in this instruction.
|
|
bool isPredicable(QueryType Type = AllInBundle) const {
|
|
// If it's a bundle than all bundled instructions must be predicable for this
|
|
// to return true.
|
|
return hasProperty(MCID::Predicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a comparison.
|
|
bool isCompare(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Compare, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a move immediate
|
|
/// (including conditional moves) instruction.
|
|
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveImm, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a bitcast instruction.
|
|
bool isBitcast(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Bitcast, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a select instruction.
|
|
bool isSelect(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Select, Type);
|
|
}
|
|
|
|
/// Return true if this instruction cannot be safely duplicated.
|
|
/// For example, if the instruction has a unique labels attached
|
|
/// to it, duplicating it would cause multiple definition errors.
|
|
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::NotDuplicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is convergent.
|
|
/// Convergent instructions can not be made control-dependent on any
|
|
/// additional values.
|
|
bool isConvergent(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::Convergent, Type);
|
|
}
|
|
|
|
/// Returns true if the specified instruction has a delay slot
|
|
/// which must be filled by the code generator.
|
|
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::DelaySlot, Type);
|
|
}
|
|
|
|
/// Return true for instructions that can be folded as
|
|
/// memory operands in other instructions. The most common use for this
|
|
/// is instructions that are simple loads from memory that don't modify
|
|
/// the loaded value in any way, but it can also be used for instructions
|
|
/// that can be expressed as constant-pool loads, such as V_SETALLONES
|
|
/// on x86, to allow them to be folded when it is beneficial.
|
|
/// This should only be set on instructions that return a value in their
|
|
/// only virtual register definition.
|
|
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::FoldableAsLoad, Type);
|
|
}
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic REG_SEQUENCE instructions.
|
|
/// E.g., on ARM,
|
|
/// dX VMOVDRR rY, rZ
|
|
/// is equivalent to
|
|
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::RegSequence, Type);
|
|
}
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic EXTRACT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// rX, rY VMOVRRD dZ
|
|
/// is equivalent to two EXTRACT_SUBREG:
|
|
/// rX = EXTRACT_SUBREG dZ, ssub_0
|
|
/// rY = EXTRACT_SUBREG dZ, ssub_1
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ExtractSubreg, Type);
|
|
}
|
|
|
|
/// \brief Return true if this instruction behaves
|
|
/// the same way as the generic INSERT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// dX = VSETLNi32 dY, rZ, Imm
|
|
/// is equivalent to a INSERT_SUBREG:
|
|
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::InsertSubreg, Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Side Effect Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this instruction could possibly read memory.
|
|
/// Instructions with this flag set are not necessarily simple load
|
|
/// instructions, they may load a value and modify it, for example.
|
|
bool mayLoad(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayLoad, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly modify memory.
|
|
/// Instructions with this flag set are not necessarily simple store
|
|
/// instructions, they may store a modified value based on their operands, or
|
|
/// may not actually modify anything, for example.
|
|
bool mayStore(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayStore, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly read or modify memory.
|
|
bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
|
|
return mayLoad(Type) || mayStore(Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Flags that indicate whether an instruction can be modified by a method.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this may be a 2- or 3-address
|
|
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
|
|
/// result if Y and Z are exchanged. If this flag is set, then the
|
|
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
|
|
/// instruction.
|
|
///
|
|
/// Note that this flag may be set on instructions that are only commutable
|
|
/// sometimes. In these cases, the call to commuteInstruction will fail.
|
|
/// Also note that some instructions require non-trivial modification to
|
|
/// commute them.
|
|
bool isCommutable(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Commutable, Type);
|
|
}
|
|
|
|
/// Return true if this is a 2-address instruction
|
|
/// which can be changed into a 3-address instruction if needed. Doing this
|
|
/// transformation can be profitable in the register allocator, because it
|
|
/// means that the instruction can use a 2-address form if possible, but
|
|
/// degrade into a less efficient form if the source and dest register cannot
|
|
/// be assigned to the same register. For example, this allows the x86
|
|
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
|
|
/// is the same speed as the shift but has bigger code size.
|
|
///
|
|
/// If this returns true, then the target must implement the
|
|
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
|
|
/// is allowed to fail if the transformation isn't valid for this specific
|
|
/// instruction (e.g. shl reg, 4 on x86).
|
|
///
|
|
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ConvertibleTo3Addr, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires
|
|
/// custom insertion support when the DAG scheduler is inserting it into a
|
|
/// machine basic block. If this is true for the instruction, it basically
|
|
/// means that it is a pseudo instruction used at SelectionDAG time that is
|
|
/// expanded out into magic code by the target when MachineInstrs are formed.
|
|
///
|
|
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
|
|
/// is used to insert this into the MachineBasicBlock.
|
|
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::UsesCustomInserter, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires *adjustment*
|
|
/// after instruction selection by calling a target hook. For example, this
|
|
/// can be used to fill in ARM 's' optional operand depending on whether
|
|
/// the conditional flag register is used.
|
|
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasPostISelHook, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction is a candidate for remat.
|
|
/// This flag is deprecated, please don't use it anymore. If this
|
|
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
|
|
/// verify the instruction is really rematable.
|
|
bool isRematerializable(QueryType Type = AllInBundle) const {
|
|
// It's only possible to re-mat a bundle if all bundled instructions are
|
|
// re-materializable.
|
|
return hasProperty(MCID::Rematerializable, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction has the same cost (or less) than a move
|
|
/// instruction. This is useful during certain types of optimizations
|
|
/// (e.g., remat during two-address conversion or machine licm)
|
|
/// where we would like to remat or hoist the instruction, but not if it costs
|
|
/// more than moving the instruction into the appropriate register. Note, we
|
|
/// are not marking copies from and to the same register class with this flag.
|
|
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
|
|
// Only returns true for a bundle if all bundled instructions are cheap.
|
|
return hasProperty(MCID::CheapAsAMove, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction source operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::STRD's two source registers must be an
|
|
/// even / odd pair, ARM::STM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for sources of instructions with this flag.
|
|
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction def operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
|
|
/// even / odd pair, ARM::LDM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for definitions of instructions with this flag.
|
|
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
|
|
}
|
|
|
|
enum MICheckType {
|
|
CheckDefs, // Check all operands for equality
|
|
CheckKillDead, // Check all operands including kill / dead markers
|
|
IgnoreDefs, // Ignore all definitions
|
|
IgnoreVRegDefs // Ignore virtual register definitions
|
|
};
|
|
|
|
/// Return true if this instruction is identical to \p Other.
|
|
/// Two instructions are identical if they have the same opcode and all their
|
|
/// operands are identical (with respect to MachineOperand::isIdenticalTo()).
|
|
/// Note that this means liveness related flags (dead, undef, kill) do not
|
|
/// affect the notion of identical.
|
|
bool isIdenticalTo(const MachineInstr &Other,
|
|
MICheckType Check = CheckDefs) const;
|
|
|
|
/// Unlink 'this' from the containing basic block, and return it without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used on bundled instructions, use
|
|
/// removeFromBundle() to remove individual instructions from a bundle.
|
|
MachineInstr *removeFromParent();
|
|
|
|
/// Unlink this instruction from its basic block and return it without
|
|
/// deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
MachineInstr *removeFromBundle();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// If this instruction is the header of a bundle, the whole bundle is erased.
|
|
/// This function can not be used for instructions inside a bundle, use
|
|
/// eraseFromBundle() to erase individual bundled instructions.
|
|
void eraseFromParent();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// For all definitions mark their uses in DBG_VALUE nodes
|
|
/// as undefined. Otherwise like eraseFromParent().
|
|
void eraseFromParentAndMarkDBGValuesForRemoval();
|
|
|
|
/// Unlink 'this' form its basic block and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
void eraseFromBundle();
|
|
|
|
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
|
|
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
|
|
|
|
/// Returns true if the MachineInstr represents a label.
|
|
bool isLabel() const { return isEHLabel() || isGCLabel(); }
|
|
|
|
bool isCFIInstruction() const {
|
|
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
|
|
}
|
|
|
|
// True if the instruction represents a position in the function.
|
|
bool isPosition() const { return isLabel() || isCFIInstruction(); }
|
|
|
|
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
|
|
|
|
/// A DBG_VALUE is indirect iff the first operand is a register and
|
|
/// the second operand is an immediate.
|
|
bool isIndirectDebugValue() const {
|
|
return isDebugValue()
|
|
&& getOperand(0).isReg()
|
|
&& getOperand(1).isImm();
|
|
}
|
|
|
|
bool isPHI() const {
|
|
return getOpcode() == TargetOpcode::PHI ||
|
|
getOpcode() == TargetOpcode::G_PHI;
|
|
}
|
|
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
|
|
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
|
|
bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
|
|
|
|
bool isMSInlineAsm() const {
|
|
return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
|
|
}
|
|
|
|
bool isStackAligningInlineAsm() const;
|
|
InlineAsm::AsmDialect getInlineAsmDialect() const;
|
|
|
|
bool isInsertSubreg() const {
|
|
return getOpcode() == TargetOpcode::INSERT_SUBREG;
|
|
}
|
|
|
|
bool isSubregToReg() const {
|
|
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
|
|
}
|
|
|
|
bool isRegSequence() const {
|
|
return getOpcode() == TargetOpcode::REG_SEQUENCE;
|
|
}
|
|
|
|
bool isBundle() const {
|
|
return getOpcode() == TargetOpcode::BUNDLE;
|
|
}
|
|
|
|
bool isCopy() const {
|
|
return getOpcode() == TargetOpcode::COPY;
|
|
}
|
|
|
|
bool isFullCopy() const {
|
|
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
|
|
}
|
|
|
|
bool isExtractSubreg() const {
|
|
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
|
|
}
|
|
|
|
/// Return true if the instruction behaves like a copy.
|
|
/// This does not include native copy instructions.
|
|
bool isCopyLike() const {
|
|
return isCopy() || isSubregToReg();
|
|
}
|
|
|
|
/// Return true is the instruction is an identity copy.
|
|
bool isIdentityCopy() const {
|
|
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
|
|
getOperand(0).getSubReg() == getOperand(1).getSubReg();
|
|
}
|
|
|
|
/// Return true if this instruction doesn't produce any output in the form of
|
|
/// executable instructions.
|
|
bool isMetaInstruction() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return false;
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::GC_LABEL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return true if this is a transient instruction that is either very likely
|
|
/// to be eliminated during register allocation (such as copy-like
|
|
/// instructions), or if this instruction doesn't have an execution-time cost.
|
|
bool isTransient() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return isMetaInstruction();
|
|
// Copy-like instructions are usually eliminated during register allocation.
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::G_PHI:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return the number of instructions inside the MI bundle, excluding the
|
|
/// bundle header.
|
|
///
|
|
/// This is the number of instructions that MachineBasicBlock::iterator
|
|
/// skips, 0 for unbundled instructions.
|
|
unsigned getBundleSize() const;
|
|
|
|
/// Return true if the MachineInstr reads the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there
|
|
/// is a read of a super-register.
|
|
/// This does not count partial redefines of virtual registers as reads:
|
|
/// %reg1024:6 = OP.
|
|
bool readsRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr reads the specified virtual register.
|
|
/// Take into account that a partial define is a
|
|
/// read-modify-write operation.
|
|
bool readsVirtualRegister(unsigned Reg) const {
|
|
return readsWritesVirtualRegister(Reg).first;
|
|
}
|
|
|
|
/// Return a pair of bools (reads, writes) indicating if this instruction
|
|
/// reads or writes Reg. This also considers partial defines.
|
|
/// If Ops is not null, all operand indices for Reg are added.
|
|
std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
|
|
SmallVectorImpl<unsigned> *Ops = nullptr) const;
|
|
|
|
/// Return true if the MachineInstr kills the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there is
|
|
/// a kill of a super-register.
|
|
bool killsRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr fully defines the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a def of a super-register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool definesRegister(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr modifies (fully define or partially
|
|
/// define) the specified register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
|
|
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the register is dead in this machine instruction.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a dead def of a super-register.
|
|
bool registerDefIsDead(unsigned Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr has an implicit-use operand of exactly
|
|
/// the given register (not considering sub/super-registers).
|
|
bool hasRegisterImplicitUseOperand(unsigned Reg) const;
|
|
|
|
/// Returns the operand index that is a use of the specific register or -1
|
|
/// if it is not found. It further tightens the search criteria to a use
|
|
/// that kills the register if isKill is true.
|
|
int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterUseOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
const MachineOperand *findRegisterUseOperand(
|
|
unsigned Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return const_cast<MachineInstr *>(this)->
|
|
findRegisterUseOperand(Reg, isKill, TRI);
|
|
}
|
|
|
|
/// Returns the operand index that is a def of the specified register or
|
|
/// -1 if it is not found. If isDead is true, defs that are not dead are
|
|
/// skipped. If Overlap is true, then it also looks for defs that merely
|
|
/// overlap the specified register. If TargetRegisterInfo is non-null,
|
|
/// then it also checks if there is a def of a super-register.
|
|
/// This may also return a register mask operand when Overlap is true.
|
|
int findRegisterDefOperandIdx(unsigned Reg,
|
|
bool isDead = false, bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterDefOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
/// Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int findFirstPredOperandIdx() const;
|
|
|
|
/// Find the index of the flag word operand that
|
|
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
|
|
/// getOperand(OpIdx) does not belong to an inline asm operand group.
|
|
///
|
|
/// If GroupNo is not NULL, it will receive the number of the operand group
|
|
/// containing OpIdx.
|
|
///
|
|
/// The flag operand is an immediate that can be decoded with methods like
|
|
/// InlineAsm::hasRegClassConstraint().
|
|
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
|
|
|
|
/// Compute the static register class constraint for operand OpIdx.
|
|
/// For normal instructions, this is derived from the MCInstrDesc.
|
|
/// For inline assembly it is derived from the flag words.
|
|
///
|
|
/// Returns NULL if the static register class constraint cannot be
|
|
/// determined.
|
|
const TargetRegisterClass*
|
|
getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
|
|
/// the given \p CurRC.
|
|
/// If \p ExploreBundle is set and MI is part of a bundle, all the
|
|
/// instructions inside the bundle will be taken into account. In other words,
|
|
/// this method accumulates all the constraints of the operand of this MI and
|
|
/// the related bundle if MI is a bundle or inside a bundle.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by MI. Returns NULL if such a register class does not
|
|
/// exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
|
|
unsigned Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
|
|
bool ExploreBundle = false) const;
|
|
|
|
/// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
|
|
/// to the given \p CurRC.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
|
|
/// does not exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
/// \pre The operand at \p OpIdx must be a register.
|
|
const TargetRegisterClass *
|
|
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Add a tie between the register operands at DefIdx and UseIdx.
|
|
/// The tie will cause the register allocator to ensure that the two
|
|
/// operands are assigned the same physical register.
|
|
///
|
|
/// Tied operands are managed automatically for explicit operands in the
|
|
/// MCInstrDesc. This method is for exceptional cases like inline asm.
|
|
void tieOperands(unsigned DefIdx, unsigned UseIdx);
|
|
|
|
/// Given the index of a tied register operand, find the
|
|
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
|
|
/// index of the tied operand which must exist.
|
|
unsigned findTiedOperandIdx(unsigned OpIdx) const;
|
|
|
|
/// Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference if UseOpIdx is not null.
|
|
bool isRegTiedToUseOperand(unsigned DefOpIdx,
|
|
unsigned *UseOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
|
|
return false;
|
|
if (UseOpIdx)
|
|
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the use operand of the specified index is tied to a def
|
|
/// operand. It also returns the def operand index by reference if DefOpIdx
|
|
/// is not null.
|
|
bool isRegTiedToDefOperand(unsigned UseOpIdx,
|
|
unsigned *DefOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Clears kill flags on all operands.
|
|
void clearKillInfo();
|
|
|
|
/// Replace all occurrences of FromReg with ToReg:SubIdx,
|
|
/// properly composing subreg indices where necessary.
|
|
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo);
|
|
|
|
/// We have determined MI kills a register. Look for the
|
|
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
|
|
/// add a implicit operand if it's not found. Returns true if the operand
|
|
/// exists / is added.
|
|
bool addRegisterKilled(unsigned IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
|
|
/// all aliasing registers.
|
|
void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
|
|
|
|
/// We have determined MI defined a register without a use.
|
|
/// Look for the operand that defines it and mark it as IsDead. If
|
|
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
|
|
/// true if the operand exists / is added.
|
|
bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all dead flags on operands defining register @p Reg.
|
|
void clearRegisterDeads(unsigned Reg);
|
|
|
|
/// Mark all subregister defs of register @p Reg with the undef flag.
|
|
/// This function is used when we determined to have a subregister def in an
|
|
/// otherwise undefined super register.
|
|
void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
|
|
|
|
/// We have determined MI defines a register. Make sure there is an operand
|
|
/// defining Reg.
|
|
void addRegisterDefined(unsigned Reg,
|
|
const TargetRegisterInfo *RegInfo = nullptr);
|
|
|
|
/// Mark every physreg used by this instruction as
|
|
/// dead except those in the UsedRegs list.
|
|
///
|
|
/// On instructions with register mask operands, also add implicit-def
|
|
/// operands for all registers in UsedRegs.
|
|
void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
|
|
const TargetRegisterInfo &TRI);
|
|
|
|
/// Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
|
|
|
|
/// Returns true if this instruction's memory access aliases the memory
|
|
/// access of Other.
|
|
//
|
|
/// Assumes any physical registers used to compute addresses
|
|
/// have the same value for both instructions. Returns false if neither
|
|
/// instruction writes to memory.
|
|
///
|
|
/// @param AA Optional alias analysis, used to compare memory operands.
|
|
/// @param Other MachineInstr to check aliasing against.
|
|
/// @param UseTBAA Whether to pass TBAA information to alias analysis.
|
|
bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
|
|
|
|
/// Return true if this instruction may have an ordered
|
|
/// or volatile memory reference, or if the information describing the memory
|
|
/// reference is not available. Return false if it is known to have no
|
|
/// ordered or volatile memory references.
|
|
bool hasOrderedMemoryRef() const;
|
|
|
|
/// Return true if this load instruction never traps and points to a memory
|
|
/// location whose value doesn't change during the execution of this function.
|
|
///
|
|
/// Examples include loading a value from the constant pool or from the
|
|
/// argument area of a function (if it does not change). If the instruction
|
|
/// does multiple loads, this returns true only if all of the loads are
|
|
/// dereferenceable and invariant.
|
|
bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
|
|
|
|
/// If the specified instruction is a PHI that always merges together the
|
|
/// same virtual register, return the register, otherwise return 0.
|
|
unsigned isConstantValuePHI() const;
|
|
|
|
/// Return true if this instruction has side effects that are not modeled
|
|
/// by mayLoad / mayStore, etc.
|
|
/// For all instructions, the property is encoded in MCInstrDesc::Flags
|
|
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
|
|
/// INLINEASM instruction, in which case the side effect property is encoded
|
|
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
|
|
///
|
|
bool hasUnmodeledSideEffects() const;
|
|
|
|
/// Returns true if it is illegal to fold a load across this instruction.
|
|
bool isLoadFoldBarrier() const;
|
|
|
|
/// Return true if all the defs of this instruction are dead.
|
|
bool allDefsAreDead() const;
|
|
|
|
/// Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Debugging support
|
|
/// @{
|
|
/// Print this MI to \p OS.
|
|
/// Only print the defs and the opcode if \p SkipOpers is true.
|
|
/// Otherwise, also print operands if \p SkipDebugLoc is true.
|
|
/// Otherwise, also print the debug loc, with a terminating newline.
|
|
/// \p TII is used to print the opcode name. If it's not present, but the
|
|
/// MI is in a function, the opcode will be printed using the function's TII.
|
|
void print(raw_ostream &OS, bool SkipOpers = false, bool SkipDebugLoc = false,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST, bool SkipOpers = false,
|
|
bool SkipDebugLoc = false,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void dump() const;
|
|
/// @}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors used to build up machine instructions.
|
|
|
|
/// Add the specified operand to the instruction. If it is an implicit
|
|
/// operand, it is added to the end of the operand list. If it is an
|
|
/// explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
///
|
|
/// MF must be the machine function that was used to allocate this
|
|
/// instruction.
|
|
///
|
|
/// MachineInstrBuilder provides a more convenient interface for creating
|
|
/// instructions and adding operands.
|
|
void addOperand(MachineFunction &MF, const MachineOperand &Op);
|
|
|
|
/// Add an operand without providing an MF reference. This only works for
|
|
/// instructions that are inserted in a basic block.
|
|
///
|
|
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
|
|
/// preferred.
|
|
void addOperand(const MachineOperand &Op);
|
|
|
|
/// Replace the instruction descriptor (thus opcode) of
|
|
/// the current instruction with a new one.
|
|
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
|
|
|
|
/// Replace current source information with new such.
|
|
/// Avoid using this, the constructor argument is preferable.
|
|
void setDebugLoc(DebugLoc dl) {
|
|
debugLoc = std::move(dl);
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
}
|
|
|
|
/// Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
void RemoveOperand(unsigned i);
|
|
|
|
/// Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
|
|
|
|
/// Assign this MachineInstr's memory reference descriptor list.
|
|
/// This does not transfer ownership.
|
|
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
|
|
setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
|
|
}
|
|
|
|
/// Assign this MachineInstr's memory reference descriptor list. First
|
|
/// element in the pair is the begin iterator/pointer to the array; the
|
|
/// second is the number of MemoryOperands. This does not transfer ownership
|
|
/// of the underlying memory.
|
|
void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
|
|
MemRefs = NewMemRefs.first;
|
|
NumMemRefs = uint8_t(NewMemRefs.second);
|
|
assert(NumMemRefs == NewMemRefs.second &&
|
|
"Too many memrefs - must drop memory operands");
|
|
}
|
|
|
|
/// Return a set of memrefs (begin iterator, size) which conservatively
|
|
/// describe the memory behavior of both MachineInstrs. This is appropriate
|
|
/// for use when merging two MachineInstrs into one. This routine does not
|
|
/// modify the memrefs of the this MachineInstr.
|
|
std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
|
|
|
|
/// Clear this MachineInstr's memory reference descriptor list. This resets
|
|
/// the memrefs to their most conservative state. This should be used only
|
|
/// as a last resort since it greatly pessimizes our knowledge of the memory
|
|
/// access performed by the instruction.
|
|
void dropMemRefs() {
|
|
MemRefs = nullptr;
|
|
NumMemRefs = 0;
|
|
}
|
|
|
|
/// Break any tie involving OpIdx.
|
|
void untieRegOperand(unsigned OpIdx) {
|
|
MachineOperand &MO = getOperand(OpIdx);
|
|
if (MO.isReg() && MO.isTied()) {
|
|
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
|
|
MO.TiedTo = 0;
|
|
}
|
|
}
|
|
|
|
/// Add all implicit def and use operands to this instruction.
|
|
void addImplicitDefUseOperands(MachineFunction &MF);
|
|
|
|
private:
|
|
/// If this instruction is embedded into a MachineFunction, return the
|
|
/// MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *getRegInfo();
|
|
|
|
/// Unlink all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands already be on their
|
|
/// use lists.
|
|
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
|
|
|
|
/// Add all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands not be on their
|
|
/// use lists yet.
|
|
void AddRegOperandsToUseLists(MachineRegisterInfo&);
|
|
|
|
/// Slow path for hasProperty when we're dealing with a bundle.
|
|
bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
|
|
|
|
/// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
|
|
/// this MI and the given operand index \p OpIdx.
|
|
/// If the related operand does not constrained Reg, this returns CurRC.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
|
|
unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
|
|
};
|
|
|
|
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
|
|
/// instruction rather than by pointer value.
|
|
/// The hashing and equality testing functions ignore definitions so this is
|
|
/// useful for CSE, etc.
|
|
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
|
|
static inline MachineInstr *getEmptyKey() {
|
|
return nullptr;
|
|
}
|
|
|
|
static inline MachineInstr *getTombstoneKey() {
|
|
return reinterpret_cast<MachineInstr*>(-1);
|
|
}
|
|
|
|
static unsigned getHashValue(const MachineInstr* const &MI);
|
|
|
|
static bool isEqual(const MachineInstr* const &LHS,
|
|
const MachineInstr* const &RHS) {
|
|
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
|
|
LHS == getEmptyKey() || LHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debugging Support
|
|
|
|
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
|
|
MI.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEINSTR_H
|