mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
950 lines
33 KiB
C++
950 lines
33 KiB
C++
//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines a set of templates that efficiently compute a dominator
|
|
/// tree over a generic graph. This is used typically in LLVM for fast
|
|
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
|
|
/// graph types.
|
|
///
|
|
/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
|
|
/// on the graph's NodeRef. The NodeRef should be a pointer and,
|
|
/// NodeRef->getParent() must return the parent node that is also a pointer.
|
|
///
|
|
/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREE_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/CFGDiff.h"
|
|
#include "llvm/Support/CFGUpdate.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
template <typename NodeT, bool IsPostDom>
|
|
class DominatorTreeBase;
|
|
|
|
namespace DomTreeBuilder {
|
|
template <typename DomTreeT>
|
|
struct SemiNCAInfo;
|
|
} // namespace DomTreeBuilder
|
|
|
|
/// Base class for the actual dominator tree node.
|
|
template <class NodeT> class DomTreeNodeBase {
|
|
friend class PostDominatorTree;
|
|
friend class DominatorTreeBase<NodeT, false>;
|
|
friend class DominatorTreeBase<NodeT, true>;
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
|
|
|
|
NodeT *TheBB;
|
|
DomTreeNodeBase *IDom;
|
|
unsigned Level;
|
|
SmallVector<DomTreeNodeBase *, 4> Children;
|
|
mutable unsigned DFSNumIn = ~0;
|
|
mutable unsigned DFSNumOut = ~0;
|
|
|
|
public:
|
|
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
|
|
: TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
|
|
|
|
using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
|
|
using const_iterator =
|
|
typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
DomTreeNodeBase *const &back() const { return Children.back(); }
|
|
DomTreeNodeBase *&back() { return Children.back(); }
|
|
|
|
iterator_range<iterator> children() { return make_range(begin(), end()); }
|
|
iterator_range<const_iterator> children() const {
|
|
return make_range(begin(), end());
|
|
}
|
|
|
|
NodeT *getBlock() const { return TheBB; }
|
|
DomTreeNodeBase *getIDom() const { return IDom; }
|
|
unsigned getLevel() const { return Level; }
|
|
|
|
std::unique_ptr<DomTreeNodeBase> addChild(
|
|
std::unique_ptr<DomTreeNodeBase> C) {
|
|
Children.push_back(C.get());
|
|
return C;
|
|
}
|
|
|
|
bool isLeaf() const { return Children.empty(); }
|
|
size_t getNumChildren() const { return Children.size(); }
|
|
|
|
void clearAllChildren() { Children.clear(); }
|
|
|
|
bool compare(const DomTreeNodeBase *Other) const {
|
|
if (getNumChildren() != Other->getNumChildren())
|
|
return true;
|
|
|
|
if (Level != Other->Level) return true;
|
|
|
|
SmallPtrSet<const NodeT *, 4> OtherChildren;
|
|
for (const DomTreeNodeBase *I : *Other) {
|
|
const NodeT *Nd = I->getBlock();
|
|
OtherChildren.insert(Nd);
|
|
}
|
|
|
|
for (const DomTreeNodeBase *I : *this) {
|
|
const NodeT *N = I->getBlock();
|
|
if (OtherChildren.count(N) == 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setIDom(DomTreeNodeBase *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom == NewIDom) return;
|
|
|
|
auto I = find(IDom->Children, this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
|
|
UpdateLevel();
|
|
}
|
|
|
|
/// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
|
|
/// in the dominator tree. They are only guaranteed valid if
|
|
/// updateDFSNumbers() has been called.
|
|
unsigned getDFSNumIn() const { return DFSNumIn; }
|
|
unsigned getDFSNumOut() const { return DFSNumOut; }
|
|
|
|
private:
|
|
// Return true if this node is dominated by other. Use this only if DFS info
|
|
// is valid.
|
|
bool DominatedBy(const DomTreeNodeBase *other) const {
|
|
return this->DFSNumIn >= other->DFSNumIn &&
|
|
this->DFSNumOut <= other->DFSNumOut;
|
|
}
|
|
|
|
void UpdateLevel() {
|
|
assert(IDom);
|
|
if (Level == IDom->Level + 1) return;
|
|
|
|
SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNodeBase *Current = WorkStack.pop_back_val();
|
|
Current->Level = Current->IDom->Level + 1;
|
|
|
|
for (DomTreeNodeBase *C : *Current) {
|
|
assert(C->IDom);
|
|
if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class NodeT>
|
|
raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
|
|
if (Node->getBlock())
|
|
Node->getBlock()->printAsOperand(O, false);
|
|
else
|
|
O << " <<exit node>>";
|
|
|
|
O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
|
|
<< Node->getLevel() << "]\n";
|
|
|
|
return O;
|
|
}
|
|
|
|
template <class NodeT>
|
|
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
|
|
unsigned Lev) {
|
|
O.indent(2 * Lev) << "[" << Lev << "] " << N;
|
|
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
|
|
E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree<NodeT>(*I, O, Lev + 1);
|
|
}
|
|
|
|
namespace DomTreeBuilder {
|
|
// The routines below are provided in a separate header but referenced here.
|
|
template <typename DomTreeT>
|
|
void Calculate(DomTreeT &DT);
|
|
|
|
template <typename DomTreeT>
|
|
void CalculateWithUpdates(DomTreeT &DT,
|
|
ArrayRef<typename DomTreeT::UpdateType> Updates);
|
|
|
|
template <typename DomTreeT>
|
|
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To);
|
|
|
|
template <typename DomTreeT>
|
|
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To);
|
|
|
|
template <typename DomTreeT>
|
|
void ApplyUpdates(DomTreeT &DT,
|
|
GraphDiff<typename DomTreeT::NodePtr,
|
|
DomTreeT::IsPostDominator> &PreViewCFG,
|
|
GraphDiff<typename DomTreeT::NodePtr,
|
|
DomTreeT::IsPostDominator> *PostViewCFG);
|
|
|
|
template <typename DomTreeT>
|
|
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
|
|
} // namespace DomTreeBuilder
|
|
|
|
/// Core dominator tree base class.
|
|
///
|
|
/// This class is a generic template over graph nodes. It is instantiated for
|
|
/// various graphs in the LLVM IR or in the code generator.
|
|
template <typename NodeT, bool IsPostDom>
|
|
class DominatorTreeBase {
|
|
public:
|
|
static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
|
|
"Currently DominatorTreeBase supports only pointer nodes");
|
|
using NodeType = NodeT;
|
|
using NodePtr = NodeT *;
|
|
using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
|
|
static_assert(std::is_pointer<ParentPtr>::value,
|
|
"Currently NodeT's parent must be a pointer type");
|
|
using ParentType = std::remove_pointer_t<ParentPtr>;
|
|
static constexpr bool IsPostDominator = IsPostDom;
|
|
|
|
using UpdateType = cfg::Update<NodePtr>;
|
|
using UpdateKind = cfg::UpdateKind;
|
|
static constexpr UpdateKind Insert = UpdateKind::Insert;
|
|
static constexpr UpdateKind Delete = UpdateKind::Delete;
|
|
|
|
enum class VerificationLevel { Fast, Basic, Full };
|
|
|
|
protected:
|
|
// Dominators always have a single root, postdominators can have more.
|
|
SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
|
|
|
|
using DomTreeNodeMapType =
|
|
DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
|
|
DomTreeNodeMapType DomTreeNodes;
|
|
DomTreeNodeBase<NodeT> *RootNode = nullptr;
|
|
ParentPtr Parent = nullptr;
|
|
|
|
mutable bool DFSInfoValid = false;
|
|
mutable unsigned int SlowQueries = 0;
|
|
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
|
|
|
|
public:
|
|
DominatorTreeBase() {}
|
|
|
|
DominatorTreeBase(DominatorTreeBase &&Arg)
|
|
: Roots(std::move(Arg.Roots)),
|
|
DomTreeNodes(std::move(Arg.DomTreeNodes)),
|
|
RootNode(Arg.RootNode),
|
|
Parent(Arg.Parent),
|
|
DFSInfoValid(Arg.DFSInfoValid),
|
|
SlowQueries(Arg.SlowQueries) {
|
|
Arg.wipe();
|
|
}
|
|
|
|
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
|
|
Roots = std::move(RHS.Roots);
|
|
DomTreeNodes = std::move(RHS.DomTreeNodes);
|
|
RootNode = RHS.RootNode;
|
|
Parent = RHS.Parent;
|
|
DFSInfoValid = RHS.DFSInfoValid;
|
|
SlowQueries = RHS.SlowQueries;
|
|
RHS.wipe();
|
|
return *this;
|
|
}
|
|
|
|
DominatorTreeBase(const DominatorTreeBase &) = delete;
|
|
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
|
|
|
|
/// Iteration over roots.
|
|
///
|
|
/// This may include multiple blocks if we are computing post dominators.
|
|
/// For forward dominators, this will always be a single block (the entry
|
|
/// block).
|
|
using root_iterator = typename SmallVectorImpl<NodeT *>::iterator;
|
|
using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator;
|
|
|
|
root_iterator root_begin() { return Roots.begin(); }
|
|
const_root_iterator root_begin() const { return Roots.begin(); }
|
|
root_iterator root_end() { return Roots.end(); }
|
|
const_root_iterator root_end() const { return Roots.end(); }
|
|
|
|
size_t root_size() const { return Roots.size(); }
|
|
|
|
iterator_range<root_iterator> roots() {
|
|
return make_range(root_begin(), root_end());
|
|
}
|
|
iterator_range<const_root_iterator> roots() const {
|
|
return make_range(root_begin(), root_end());
|
|
}
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominator; }
|
|
|
|
/// compare - Return false if the other dominator tree base matches this
|
|
/// dominator tree base. Otherwise return true.
|
|
bool compare(const DominatorTreeBase &Other) const {
|
|
if (Parent != Other.Parent) return true;
|
|
|
|
if (Roots.size() != Other.Roots.size())
|
|
return true;
|
|
|
|
if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
|
|
return true;
|
|
|
|
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
|
|
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
|
|
return true;
|
|
|
|
for (const auto &DomTreeNode : DomTreeNodes) {
|
|
NodeT *BB = DomTreeNode.first;
|
|
typename DomTreeNodeMapType::const_iterator OI =
|
|
OtherDomTreeNodes.find(BB);
|
|
if (OI == OtherDomTreeNodes.end())
|
|
return true;
|
|
|
|
DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
|
|
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
|
|
|
|
if (MyNd.compare(&OtherNd))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class. The result
|
|
/// may (but is not required to) be null for a forward (backwards)
|
|
/// statically unreachable block.
|
|
DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
|
|
auto I = DomTreeNodes.find(BB);
|
|
if (I != DomTreeNodes.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
/// See getNode.
|
|
DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
|
|
return getNode(BB);
|
|
}
|
|
|
|
/// getRootNode - This returns the entry node for the CFG of the function. If
|
|
/// this tree represents the post-dominance relations for a function, however,
|
|
/// this root may be a node with the block == NULL. This is the case when
|
|
/// there are multiple exit nodes from a particular function. Consumers of
|
|
/// post-dominance information must be capable of dealing with this
|
|
/// possibility.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
|
|
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
|
|
|
|
/// Get all nodes dominated by R, including R itself.
|
|
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
|
|
Result.clear();
|
|
const DomTreeNodeBase<NodeT> *RN = getNode(R);
|
|
if (!RN)
|
|
return; // If R is unreachable, it will not be present in the DOM tree.
|
|
SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
|
|
WL.push_back(RN);
|
|
|
|
while (!WL.empty()) {
|
|
const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
|
|
Result.push_back(N->getBlock());
|
|
WL.append(N->begin(), N->end());
|
|
}
|
|
}
|
|
|
|
/// properlyDominates - Returns true iff A dominates B and A != B.
|
|
/// Note that this is not a constant time operation!
|
|
///
|
|
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
if (!A || !B)
|
|
return false;
|
|
if (A == B)
|
|
return false;
|
|
return dominates(A, B);
|
|
}
|
|
|
|
bool properlyDominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
bool isReachableFromEntry(const NodeT *A) const {
|
|
assert(!this->isPostDominator() &&
|
|
"This is not implemented for post dominators");
|
|
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
|
|
}
|
|
|
|
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
|
|
|
|
/// dominates - Returns true iff A dominates B. Note that this is not a
|
|
/// constant time operation!
|
|
///
|
|
bool dominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
// A node trivially dominates itself.
|
|
if (B == A)
|
|
return true;
|
|
|
|
// An unreachable node is dominated by anything.
|
|
if (!isReachableFromEntry(B))
|
|
return true;
|
|
|
|
// And dominates nothing.
|
|
if (!isReachableFromEntry(A))
|
|
return false;
|
|
|
|
if (B->getIDom() == A) return true;
|
|
|
|
if (A->getIDom() == B) return false;
|
|
|
|
// A can only dominate B if it is higher in the tree.
|
|
if (A->getLevel() >= B->getLevel()) return false;
|
|
|
|
// Compare the result of the tree walk and the dfs numbers, if expensive
|
|
// checks are enabled.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert((!DFSInfoValid ||
|
|
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
|
|
"Tree walk disagrees with dfs numbers!");
|
|
#endif
|
|
|
|
if (DFSInfoValid)
|
|
return B->DominatedBy(A);
|
|
|
|
// If we end up with too many slow queries, just update the
|
|
// DFS numbers on the theory that we are going to keep querying.
|
|
SlowQueries++;
|
|
if (SlowQueries > 32) {
|
|
updateDFSNumbers();
|
|
return B->DominatedBy(A);
|
|
}
|
|
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
bool dominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
NodeT *getRoot() const {
|
|
assert(this->Roots.size() == 1 && "Should always have entry node!");
|
|
return this->Roots[0];
|
|
}
|
|
|
|
/// Find nearest common dominator basic block for basic block A and B. A and B
|
|
/// must have tree nodes.
|
|
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
|
|
assert(A && B && "Pointers are not valid");
|
|
assert(A->getParent() == B->getParent() &&
|
|
"Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator
|
|
// (for forward-dominators).
|
|
if (!isPostDominator()) {
|
|
NodeT &Entry = A->getParent()->front();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
|
|
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
|
|
assert(NodeA && "A must be in the tree");
|
|
assert(NodeB && "B must be in the tree");
|
|
|
|
// Use level information to go up the tree until the levels match. Then
|
|
// continue going up til we arrive at the same node.
|
|
while (NodeA != NodeB) {
|
|
if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
|
|
|
|
NodeA = NodeA->IDom;
|
|
}
|
|
|
|
return NodeA->getBlock();
|
|
}
|
|
|
|
const NodeT *findNearestCommonDominator(const NodeT *A,
|
|
const NodeT *B) const {
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// const is re-introduced on the return type.
|
|
return findNearestCommonDominator(const_cast<NodeT *>(A),
|
|
const_cast<NodeT *>(B));
|
|
}
|
|
|
|
bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
|
|
return isPostDominator() && !A->getBlock();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// Inform the dominator tree about a sequence of CFG edge insertions and
|
|
/// deletions and perform a batch update on the tree.
|
|
///
|
|
/// This function should be used when there were multiple CFG updates after
|
|
/// the last dominator tree update. It takes care of performing the updates
|
|
/// in sync with the CFG and optimizes away the redundant operations that
|
|
/// cancel each other.
|
|
/// The functions expects the sequence of updates to be balanced. Eg.:
|
|
/// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
|
|
/// logically it results in a single insertions.
|
|
/// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
|
|
/// sense to insert the same edge twice.
|
|
///
|
|
/// What's more, the functions assumes that it's safe to ask every node in the
|
|
/// CFG about its children and inverse children. This implies that deletions
|
|
/// of CFG edges must not delete the CFG nodes before calling this function.
|
|
///
|
|
/// The applyUpdates function can reorder the updates and remove redundant
|
|
/// ones internally. The batch updater is also able to detect sequences of
|
|
/// zero and exactly one update -- it's optimized to do less work in these
|
|
/// cases.
|
|
///
|
|
/// Note that for postdominators it automatically takes care of applying
|
|
/// updates on reverse edges internally (so there's no need to swap the
|
|
/// From and To pointers when constructing DominatorTree::UpdateType).
|
|
/// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
|
|
/// with the same template parameter T.
|
|
///
|
|
/// \param Updates An unordered sequence of updates to perform. The current
|
|
/// CFG and the reverse of these updates provides the pre-view of the CFG.
|
|
///
|
|
void applyUpdates(ArrayRef<UpdateType> Updates) {
|
|
GraphDiff<NodePtr, IsPostDominator> PreViewCFG(
|
|
Updates, /*ReverseApplyUpdates=*/true);
|
|
DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr);
|
|
}
|
|
|
|
/// \param Updates An unordered sequence of updates to perform. The current
|
|
/// CFG and the reverse of these updates provides the pre-view of the CFG.
|
|
/// \param PostViewUpdates An unordered sequence of update to perform in order
|
|
/// to obtain a post-view of the CFG. The DT will be updated assuming the
|
|
/// obtained PostViewCFG is the desired end state.
|
|
void applyUpdates(ArrayRef<UpdateType> Updates,
|
|
ArrayRef<UpdateType> PostViewUpdates) {
|
|
if (Updates.empty()) {
|
|
GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
|
|
DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG);
|
|
} else {
|
|
// PreViewCFG needs to merge Updates and PostViewCFG. The updates in
|
|
// Updates need to be reversed, and match the direction in PostViewCFG.
|
|
// The PostViewCFG is created with updates reversed (equivalent to changes
|
|
// made to the CFG), so the PreViewCFG needs all the updates reverse
|
|
// applied.
|
|
SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end());
|
|
append_range(AllUpdates, PostViewUpdates);
|
|
GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates,
|
|
/*ReverseApplyUpdates=*/true);
|
|
GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
|
|
DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG);
|
|
}
|
|
}
|
|
|
|
/// Inform the dominator tree about a CFG edge insertion and update the tree.
|
|
///
|
|
/// This function has to be called just before or just after making the update
|
|
/// on the actual CFG. There cannot be any other updates that the dominator
|
|
/// tree doesn't know about.
|
|
///
|
|
/// Note that for postdominators it automatically takes care of inserting
|
|
/// a reverse edge internally (so there's no need to swap the parameters).
|
|
///
|
|
void insertEdge(NodeT *From, NodeT *To) {
|
|
assert(From);
|
|
assert(To);
|
|
assert(From->getParent() == Parent);
|
|
assert(To->getParent() == Parent);
|
|
DomTreeBuilder::InsertEdge(*this, From, To);
|
|
}
|
|
|
|
/// Inform the dominator tree about a CFG edge deletion and update the tree.
|
|
///
|
|
/// This function has to be called just after making the update on the actual
|
|
/// CFG. An internal functions checks if the edge doesn't exist in the CFG in
|
|
/// DEBUG mode. There cannot be any other updates that the
|
|
/// dominator tree doesn't know about.
|
|
///
|
|
/// Note that for postdominators it automatically takes care of deleting
|
|
/// a reverse edge internally (so there's no need to swap the parameters).
|
|
///
|
|
void deleteEdge(NodeT *From, NodeT *To) {
|
|
assert(From);
|
|
assert(To);
|
|
assert(From->getParent() == Parent);
|
|
assert(To->getParent() == Parent);
|
|
DomTreeBuilder::DeleteEdge(*this, From, To);
|
|
}
|
|
|
|
/// Add a new node to the dominator tree information.
|
|
///
|
|
/// This creates a new node as a child of DomBB dominator node, linking it
|
|
/// into the children list of the immediate dominator.
|
|
///
|
|
/// \param BB New node in CFG.
|
|
/// \param DomBB CFG node that is dominator for BB.
|
|
/// \returns New dominator tree node that represents new CFG node.
|
|
///
|
|
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
|
|
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
DFSInfoValid = false;
|
|
return createChild(BB, IDomNode);
|
|
}
|
|
|
|
/// Add a new node to the forward dominator tree and make it a new root.
|
|
///
|
|
/// \param BB New node in CFG.
|
|
/// \returns New dominator tree node that represents new CFG node.
|
|
///
|
|
DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
|
|
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
|
|
assert(!this->isPostDominator() &&
|
|
"Cannot change root of post-dominator tree");
|
|
DFSInfoValid = false;
|
|
DomTreeNodeBase<NodeT> *NewNode = createNode(BB);
|
|
if (Roots.empty()) {
|
|
addRoot(BB);
|
|
} else {
|
|
assert(Roots.size() == 1);
|
|
NodeT *OldRoot = Roots.front();
|
|
auto &OldNode = DomTreeNodes[OldRoot];
|
|
OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
|
|
OldNode->IDom = NewNode;
|
|
OldNode->UpdateLevel();
|
|
Roots[0] = BB;
|
|
}
|
|
return RootNode = NewNode;
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
|
|
DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(N && NewIDom && "Cannot change null node pointers!");
|
|
DFSInfoValid = false;
|
|
N->setIDom(NewIDom);
|
|
}
|
|
|
|
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
|
|
changeImmediateDominator(getNode(BB), getNode(NewBB));
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void eraseNode(NodeT *BB) {
|
|
DomTreeNodeBase<NodeT> *Node = getNode(BB);
|
|
assert(Node && "Removing node that isn't in dominator tree.");
|
|
assert(Node->isLeaf() && "Node is not a leaf node.");
|
|
|
|
DFSInfoValid = false;
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
const auto I = find(IDom->Children, Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
|
|
if (!IsPostDom) return;
|
|
|
|
// Remember to update PostDominatorTree roots.
|
|
auto RIt = llvm::find(Roots, BB);
|
|
if (RIt != Roots.end()) {
|
|
std::swap(*RIt, Roots.back());
|
|
Roots.pop_back();
|
|
}
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
void splitBlock(NodeT *NewBB) {
|
|
if (IsPostDominator)
|
|
Split<Inverse<NodeT *>>(NewBB);
|
|
else
|
|
Split<NodeT *>(NewBB);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
void print(raw_ostream &O) const {
|
|
O << "=============================--------------------------------\n";
|
|
if (IsPostDominator)
|
|
O << "Inorder PostDominator Tree: ";
|
|
else
|
|
O << "Inorder Dominator Tree: ";
|
|
if (!DFSInfoValid)
|
|
O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
O << "\n";
|
|
|
|
// The postdom tree can have a null root if there are no returns.
|
|
if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
|
|
O << "Roots: ";
|
|
for (const NodePtr Block : Roots) {
|
|
Block->printAsOperand(O, false);
|
|
O << " ";
|
|
}
|
|
O << "\n";
|
|
}
|
|
|
|
public:
|
|
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
|
|
/// dominator tree in dfs order.
|
|
void updateDFSNumbers() const {
|
|
if (DFSInfoValid) {
|
|
SlowQueries = 0;
|
|
return;
|
|
}
|
|
|
|
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
|
|
typename DomTreeNodeBase<NodeT>::const_iterator>,
|
|
32> WorkStack;
|
|
|
|
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
|
|
assert((!Parent || ThisRoot) && "Empty constructed DomTree");
|
|
if (!ThisRoot)
|
|
return;
|
|
|
|
// Both dominators and postdominators have a single root node. In the case
|
|
// case of PostDominatorTree, this node is a virtual root.
|
|
WorkStack.push_back({ThisRoot, ThisRoot->begin()});
|
|
|
|
unsigned DFSNum = 0;
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
|
|
const auto ChildIt = WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back({Child, Child->begin()});
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
/// recalculate - compute a dominator tree for the given function
|
|
void recalculate(ParentType &Func) {
|
|
Parent = &Func;
|
|
DomTreeBuilder::Calculate(*this);
|
|
}
|
|
|
|
void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
|
|
Parent = &Func;
|
|
DomTreeBuilder::CalculateWithUpdates(*this, Updates);
|
|
}
|
|
|
|
/// verify - checks if the tree is correct. There are 3 level of verification:
|
|
/// - Full -- verifies if the tree is correct by making sure all the
|
|
/// properties (including the parent and the sibling property)
|
|
/// hold.
|
|
/// Takes O(N^3) time.
|
|
///
|
|
/// - Basic -- checks if the tree is correct, but compares it to a freshly
|
|
/// constructed tree instead of checking the sibling property.
|
|
/// Takes O(N^2) time.
|
|
///
|
|
/// - Fast -- checks basic tree structure and compares it with a freshly
|
|
/// constructed tree.
|
|
/// Takes O(N^2) time worst case, but is faster in practise (same
|
|
/// as tree construction).
|
|
bool verify(VerificationLevel VL = VerificationLevel::Full) const {
|
|
return DomTreeBuilder::Verify(*this, VL);
|
|
}
|
|
|
|
void reset() {
|
|
DomTreeNodes.clear();
|
|
Roots.clear();
|
|
RootNode = nullptr;
|
|
Parent = nullptr;
|
|
DFSInfoValid = false;
|
|
SlowQueries = 0;
|
|
}
|
|
|
|
protected:
|
|
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
|
|
|
|
DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
|
|
return (DomTreeNodes[BB] = IDom->addChild(
|
|
std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
|
|
.get();
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
|
|
return (DomTreeNodes[BB] =
|
|
std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
|
|
.get();
|
|
}
|
|
|
|
// NewBB is split and now it has one successor. Update dominator tree to
|
|
// reflect this change.
|
|
template <class N>
|
|
void Split(typename GraphTraits<N>::NodeRef NewBB) {
|
|
using GraphT = GraphTraits<N>;
|
|
using NodeRef = typename GraphT::NodeRef;
|
|
assert(std::distance(GraphT::child_begin(NewBB),
|
|
GraphT::child_end(NewBB)) == 1 &&
|
|
"NewBB should have a single successor!");
|
|
NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
|
|
|
|
SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB));
|
|
|
|
assert(!PredBlocks.empty() && "No predblocks?");
|
|
|
|
bool NewBBDominatesNewBBSucc = true;
|
|
for (auto Pred : children<Inverse<N>>(NewBBSucc)) {
|
|
if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
|
|
isReachableFromEntry(Pred)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find NewBB's immediate dominator and create new dominator tree node for
|
|
// NewBB.
|
|
NodeT *NewBBIDom = nullptr;
|
|
unsigned i = 0;
|
|
for (i = 0; i < PredBlocks.size(); ++i)
|
|
if (isReachableFromEntry(PredBlocks[i])) {
|
|
NewBBIDom = PredBlocks[i];
|
|
break;
|
|
}
|
|
|
|
// It's possible that none of the predecessors of NewBB are reachable;
|
|
// in that case, NewBB itself is unreachable, so nothing needs to be
|
|
// changed.
|
|
if (!NewBBIDom) return;
|
|
|
|
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
|
if (isReachableFromEntry(PredBlocks[i]))
|
|
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
|
}
|
|
|
|
// Create the new dominator tree node... and set the idom of NewBB.
|
|
DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
|
|
|
|
// If NewBB strictly dominates other blocks, then it is now the immediate
|
|
// dominator of NewBBSucc. Update the dominator tree as appropriate.
|
|
if (NewBBDominatesNewBBSucc) {
|
|
DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
|
|
changeImmediateDominator(NewBBSuccNode, NewBBNode);
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
assert(A != B);
|
|
assert(isReachableFromEntry(B));
|
|
assert(isReachableFromEntry(A));
|
|
|
|
const unsigned ALevel = A->getLevel();
|
|
const DomTreeNodeBase<NodeT> *IDom;
|
|
|
|
// Don't walk nodes above A's subtree. When we reach A's level, we must
|
|
// either find A or be in some other subtree not dominated by A.
|
|
while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
|
|
B = IDom; // Walk up the tree
|
|
|
|
return B == A;
|
|
}
|
|
|
|
/// Wipe this tree's state without releasing any resources.
|
|
///
|
|
/// This is essentially a post-move helper only. It leaves the object in an
|
|
/// assignable and destroyable state, but otherwise invalid.
|
|
void wipe() {
|
|
DomTreeNodes.clear();
|
|
RootNode = nullptr;
|
|
Parent = nullptr;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using DomTreeBase = DominatorTreeBase<T, false>;
|
|
|
|
template <typename T>
|
|
using PostDomTreeBase = DominatorTreeBase<T, true>;
|
|
|
|
// These two functions are declared out of line as a workaround for building
|
|
// with old (< r147295) versions of clang because of pr11642.
|
|
template <typename NodeT, bool IsPostDom>
|
|
bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
|
|
const NodeT *B) const {
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
template <typename NodeT, bool IsPostDom>
|
|
bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
|
|
const NodeT *A, const NodeT *B) const {
|
|
if (A == B)
|
|
return false;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_SUPPORT_GENERICDOMTREE_H
|