mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
1032 lines
39 KiB
C++
1032 lines
39 KiB
C++
//===- InferAddressSpace.cpp - --------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// CUDA C/C++ includes memory space designation as variable type qualifers (such
|
|
// as __global__ and __shared__). Knowing the space of a memory access allows
|
|
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
|
|
// shared memory can be translated to `ld.shared` which is roughly 10% faster
|
|
// than a generic `ld` on an NVIDIA Tesla K40c.
|
|
//
|
|
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
|
|
// compilers must infer the memory space of an address expression from
|
|
// type-qualified variables.
|
|
//
|
|
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
|
|
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
|
|
// places only type-qualified variables in specific address spaces, and then
|
|
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
|
|
// (so-called the generic address space) for other instructions to use.
|
|
//
|
|
// For example, the Clang translates the following CUDA code
|
|
// __shared__ float a[10];
|
|
// float v = a[i];
|
|
// to
|
|
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
|
|
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
|
|
// %v = load float, float* %1 ; emits ld.f32
|
|
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
|
|
// redirected to %0 (the generic version of @a).
|
|
//
|
|
// The optimization implemented in this file propagates specific address spaces
|
|
// from type-qualified variable declarations to its users. For example, it
|
|
// optimizes the above IR to
|
|
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
|
|
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
|
|
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
|
|
// codegen is able to emit ld.shared.f32 for %v.
|
|
//
|
|
// Address space inference works in two steps. First, it uses a data-flow
|
|
// analysis to infer as many generic pointers as possible to point to only one
|
|
// specific address space. In the above example, it can prove that %1 only
|
|
// points to addrspace(3). This algorithm was published in
|
|
// CUDA: Compiling and optimizing for a GPU platform
|
|
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
|
|
// ICCS 2012
|
|
//
|
|
// Then, address space inference replaces all refinable generic pointers with
|
|
// equivalent specific pointers.
|
|
//
|
|
// The major challenge of implementing this optimization is handling PHINodes,
|
|
// which may create loops in the data flow graph. This brings two complications.
|
|
//
|
|
// First, the data flow analysis in Step 1 needs to be circular. For example,
|
|
// %generic.input = addrspacecast float addrspace(3)* %input to float*
|
|
// loop:
|
|
// %y = phi [ %generic.input, %y2 ]
|
|
// %y2 = getelementptr %y, 1
|
|
// %v = load %y2
|
|
// br ..., label %loop, ...
|
|
// proving %y specific requires proving both %generic.input and %y2 specific,
|
|
// but proving %y2 specific circles back to %y. To address this complication,
|
|
// the data flow analysis operates on a lattice:
|
|
// uninitialized > specific address spaces > generic.
|
|
// All address expressions (our implementation only considers phi, bitcast,
|
|
// addrspacecast, and getelementptr) start with the uninitialized address space.
|
|
// The monotone transfer function moves the address space of a pointer down a
|
|
// lattice path from uninitialized to specific and then to generic. A join
|
|
// operation of two different specific address spaces pushes the expression down
|
|
// to the generic address space. The analysis completes once it reaches a fixed
|
|
// point.
|
|
//
|
|
// Second, IR rewriting in Step 2 also needs to be circular. For example,
|
|
// converting %y to addrspace(3) requires the compiler to know the converted
|
|
// %y2, but converting %y2 needs the converted %y. To address this complication,
|
|
// we break these cycles using "undef" placeholders. When converting an
|
|
// instruction `I` to a new address space, if its operand `Op` is not converted
|
|
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
|
|
// For instance, our algorithm first converts %y to
|
|
// %y' = phi float addrspace(3)* [ %input, undef ]
|
|
// Then, it converts %y2 to
|
|
// %y2' = getelementptr %y', 1
|
|
// Finally, it fixes the undef in %y' so that
|
|
// %y' = phi float addrspace(3)* [ %input, %y2' ]
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "infer-address-spaces"
|
|
|
|
using namespace llvm;
|
|
|
|
static const unsigned UninitializedAddressSpace =
|
|
std::numeric_limits<unsigned>::max();
|
|
|
|
namespace {
|
|
|
|
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
|
|
|
|
/// InferAddressSpaces
|
|
class InferAddressSpaces : public FunctionPass {
|
|
const TargetTransformInfo *TTI = nullptr;
|
|
|
|
/// Target specific address space which uses of should be replaced if
|
|
/// possible.
|
|
unsigned FlatAddrSpace = 0;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
InferAddressSpaces() :
|
|
FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
|
|
InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// Returns the new address space of V if updated; otherwise, returns None.
|
|
Optional<unsigned>
|
|
updateAddressSpace(const Value &V,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
|
|
|
|
// Tries to infer the specific address space of each address expression in
|
|
// Postorder.
|
|
void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
|
|
ValueToAddrSpaceMapTy *InferredAddrSpace) const;
|
|
|
|
bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
|
|
|
|
// Changes the flat address expressions in function F to point to specific
|
|
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
|
|
// all flat expressions in the use-def graph of function F.
|
|
bool rewriteWithNewAddressSpaces(
|
|
const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
|
|
|
|
void appendsFlatAddressExpressionToPostorderStack(
|
|
Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
|
|
DenseSet<Value *> &Visited) const;
|
|
|
|
bool rewriteIntrinsicOperands(IntrinsicInst *II,
|
|
Value *OldV, Value *NewV) const;
|
|
void collectRewritableIntrinsicOperands(
|
|
IntrinsicInst *II,
|
|
std::vector<std::pair<Value *, bool>> &PostorderStack,
|
|
DenseSet<Value *> &Visited) const;
|
|
|
|
std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
|
|
|
|
Value *cloneValueWithNewAddressSpace(
|
|
Value *V, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) const;
|
|
unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char InferAddressSpaces::ID = 0;
|
|
|
|
namespace llvm {
|
|
|
|
void initializeInferAddressSpacesPass(PassRegistry &);
|
|
|
|
} // end namespace llvm
|
|
|
|
INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
|
|
false, false)
|
|
|
|
// Returns true if V is an address expression.
|
|
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
|
|
// getelementptr operators.
|
|
static bool isAddressExpression(const Value &V) {
|
|
if (!isa<Operator>(V))
|
|
return false;
|
|
|
|
const Operator &Op = cast<Operator>(V);
|
|
switch (Op.getOpcode()) {
|
|
case Instruction::PHI:
|
|
assert(Op.getType()->isPointerTy());
|
|
return true;
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::GetElementPtr:
|
|
return true;
|
|
case Instruction::Select:
|
|
return Op.getType()->isPointerTy();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Returns the pointer operands of V.
|
|
//
|
|
// Precondition: V is an address expression.
|
|
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
|
|
const Operator &Op = cast<Operator>(V);
|
|
switch (Op.getOpcode()) {
|
|
case Instruction::PHI: {
|
|
auto IncomingValues = cast<PHINode>(Op).incoming_values();
|
|
return SmallVector<Value *, 2>(IncomingValues.begin(),
|
|
IncomingValues.end());
|
|
}
|
|
case Instruction::BitCast:
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::GetElementPtr:
|
|
return {Op.getOperand(0)};
|
|
case Instruction::Select:
|
|
return {Op.getOperand(1), Op.getOperand(2)};
|
|
default:
|
|
llvm_unreachable("Unexpected instruction type.");
|
|
}
|
|
}
|
|
|
|
// TODO: Move logic to TTI?
|
|
bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
|
|
Value *OldV,
|
|
Value *NewV) const {
|
|
Module *M = II->getParent()->getParent()->getParent();
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::objectsize: {
|
|
Type *DestTy = II->getType();
|
|
Type *SrcTy = NewV->getType();
|
|
Function *NewDecl =
|
|
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
|
|
II->setArgOperand(0, NewV);
|
|
II->setCalledFunction(NewDecl);
|
|
return true;
|
|
}
|
|
default:
|
|
return TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
|
|
}
|
|
}
|
|
|
|
void InferAddressSpaces::collectRewritableIntrinsicOperands(
|
|
IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
|
|
DenseSet<Value *> &Visited) const {
|
|
auto IID = II->getIntrinsicID();
|
|
switch (IID) {
|
|
case Intrinsic::objectsize:
|
|
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
|
|
PostorderStack, Visited);
|
|
break;
|
|
default:
|
|
SmallVector<int, 2> OpIndexes;
|
|
if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
|
|
for (int Idx : OpIndexes) {
|
|
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
|
|
PostorderStack, Visited);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Returns all flat address expressions in function F. The elements are
|
|
// If V is an unvisited flat address expression, appends V to PostorderStack
|
|
// and marks it as visited.
|
|
void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
|
|
Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
|
|
DenseSet<Value *> &Visited) const {
|
|
assert(V->getType()->isPointerTy());
|
|
|
|
// Generic addressing expressions may be hidden in nested constant
|
|
// expressions.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
// TODO: Look in non-address parts, like icmp operands.
|
|
if (isAddressExpression(*CE) && Visited.insert(CE).second)
|
|
PostorderStack.push_back(std::make_pair(CE, false));
|
|
|
|
return;
|
|
}
|
|
|
|
if (isAddressExpression(*V) &&
|
|
V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
|
|
if (Visited.insert(V).second) {
|
|
PostorderStack.push_back(std::make_pair(V, false));
|
|
|
|
Operator *Op = cast<Operator>(V);
|
|
for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
|
|
if (isAddressExpression(*CE) && Visited.insert(CE).second)
|
|
PostorderStack.emplace_back(CE, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns all flat address expressions in function F. The elements are ordered
|
|
// ordered in postorder.
|
|
std::vector<WeakTrackingVH>
|
|
InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
|
|
// This function implements a non-recursive postorder traversal of a partial
|
|
// use-def graph of function F.
|
|
std::vector<std::pair<Value *, bool>> PostorderStack;
|
|
// The set of visited expressions.
|
|
DenseSet<Value *> Visited;
|
|
|
|
auto PushPtrOperand = [&](Value *Ptr) {
|
|
appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
|
|
Visited);
|
|
};
|
|
|
|
// Look at operations that may be interesting accelerate by moving to a known
|
|
// address space. We aim at generating after loads and stores, but pure
|
|
// addressing calculations may also be faster.
|
|
for (Instruction &I : instructions(F)) {
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
if (!GEP->getType()->isVectorTy())
|
|
PushPtrOperand(GEP->getPointerOperand());
|
|
} else if (auto *LI = dyn_cast<LoadInst>(&I))
|
|
PushPtrOperand(LI->getPointerOperand());
|
|
else if (auto *SI = dyn_cast<StoreInst>(&I))
|
|
PushPtrOperand(SI->getPointerOperand());
|
|
else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
|
|
PushPtrOperand(RMW->getPointerOperand());
|
|
else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
|
|
PushPtrOperand(CmpX->getPointerOperand());
|
|
else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
|
|
// For memset/memcpy/memmove, any pointer operand can be replaced.
|
|
PushPtrOperand(MI->getRawDest());
|
|
|
|
// Handle 2nd operand for memcpy/memmove.
|
|
if (auto *MTI = dyn_cast<MemTransferInst>(MI))
|
|
PushPtrOperand(MTI->getRawSource());
|
|
} else if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
|
|
else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
|
|
// FIXME: Handle vectors of pointers
|
|
if (Cmp->getOperand(0)->getType()->isPointerTy()) {
|
|
PushPtrOperand(Cmp->getOperand(0));
|
|
PushPtrOperand(Cmp->getOperand(1));
|
|
}
|
|
} else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
|
|
if (!ASC->getType()->isVectorTy())
|
|
PushPtrOperand(ASC->getPointerOperand());
|
|
}
|
|
}
|
|
|
|
std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
|
|
while (!PostorderStack.empty()) {
|
|
Value *TopVal = PostorderStack.back().first;
|
|
// If the operands of the expression on the top are already explored,
|
|
// adds that expression to the resultant postorder.
|
|
if (PostorderStack.back().second) {
|
|
if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
|
|
Postorder.push_back(TopVal);
|
|
PostorderStack.pop_back();
|
|
continue;
|
|
}
|
|
// Otherwise, adds its operands to the stack and explores them.
|
|
PostorderStack.back().second = true;
|
|
for (Value *PtrOperand : getPointerOperands(*TopVal)) {
|
|
appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
|
|
Visited);
|
|
}
|
|
}
|
|
return Postorder;
|
|
}
|
|
|
|
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
|
|
// of OperandUse.get() in the new address space. If the clone is not ready yet,
|
|
// returns an undef in the new address space as a placeholder.
|
|
static Value *operandWithNewAddressSpaceOrCreateUndef(
|
|
const Use &OperandUse, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
|
Value *Operand = OperandUse.get();
|
|
|
|
Type *NewPtrTy =
|
|
Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
|
|
|
if (Constant *C = dyn_cast<Constant>(Operand))
|
|
return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
|
|
|
|
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
|
|
return NewOperand;
|
|
|
|
UndefUsesToFix->push_back(&OperandUse);
|
|
return UndefValue::get(NewPtrTy);
|
|
}
|
|
|
|
// Returns a clone of `I` with its operands converted to those specified in
|
|
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
|
|
// operand whose address space needs to be modified might not exist in
|
|
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
|
|
// adds that operand use to UndefUsesToFix so that caller can fix them later.
|
|
//
|
|
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
|
|
// from a pointer whose type already matches. Therefore, this function returns a
|
|
// Value* instead of an Instruction*.
|
|
static Value *cloneInstructionWithNewAddressSpace(
|
|
Instruction *I, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
|
Type *NewPtrType =
|
|
I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
|
|
|
if (I->getOpcode() == Instruction::AddrSpaceCast) {
|
|
Value *Src = I->getOperand(0);
|
|
// Because `I` is flat, the source address space must be specific.
|
|
// Therefore, the inferred address space must be the source space, according
|
|
// to our algorithm.
|
|
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
|
|
if (Src->getType() != NewPtrType)
|
|
return new BitCastInst(Src, NewPtrType);
|
|
return Src;
|
|
}
|
|
|
|
// Computes the converted pointer operands.
|
|
SmallVector<Value *, 4> NewPointerOperands;
|
|
for (const Use &OperandUse : I->operands()) {
|
|
if (!OperandUse.get()->getType()->isPointerTy())
|
|
NewPointerOperands.push_back(nullptr);
|
|
else
|
|
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
|
|
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::BitCast:
|
|
return new BitCastInst(NewPointerOperands[0], NewPtrType);
|
|
case Instruction::PHI: {
|
|
assert(I->getType()->isPointerTy());
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
|
|
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
|
|
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
|
|
NewPHI->addIncoming(NewPointerOperands[OperandNo],
|
|
PHI->getIncomingBlock(Index));
|
|
}
|
|
return NewPHI;
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
|
|
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
|
|
GEP->getSourceElementType(), NewPointerOperands[0],
|
|
SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
|
|
NewGEP->setIsInBounds(GEP->isInBounds());
|
|
return NewGEP;
|
|
}
|
|
case Instruction::Select:
|
|
assert(I->getType()->isPointerTy());
|
|
return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
|
|
NewPointerOperands[2], "", nullptr, I);
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
}
|
|
}
|
|
|
|
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
|
|
// constant expression `CE` with its operands replaced as specified in
|
|
// ValueWithNewAddrSpace.
|
|
static Value *cloneConstantExprWithNewAddressSpace(
|
|
ConstantExpr *CE, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace) {
|
|
Type *TargetType =
|
|
CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
|
|
|
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
|
|
// Because CE is flat, the source address space must be specific.
|
|
// Therefore, the inferred address space must be the source space according
|
|
// to our algorithm.
|
|
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
|
|
NewAddrSpace);
|
|
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::BitCast) {
|
|
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
|
|
return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
|
|
return ConstantExpr::getAddrSpaceCast(CE, TargetType);
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::Select) {
|
|
Constant *Src0 = CE->getOperand(1);
|
|
Constant *Src1 = CE->getOperand(2);
|
|
if (Src0->getType()->getPointerAddressSpace() ==
|
|
Src1->getType()->getPointerAddressSpace()) {
|
|
|
|
return ConstantExpr::getSelect(
|
|
CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
|
|
ConstantExpr::getAddrSpaceCast(Src1, TargetType));
|
|
}
|
|
}
|
|
|
|
// Computes the operands of the new constant expression.
|
|
bool IsNew = false;
|
|
SmallVector<Constant *, 4> NewOperands;
|
|
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
|
|
Constant *Operand = CE->getOperand(Index);
|
|
// If the address space of `Operand` needs to be modified, the new operand
|
|
// with the new address space should already be in ValueWithNewAddrSpace
|
|
// because (1) the constant expressions we consider (i.e. addrspacecast,
|
|
// bitcast, and getelementptr) do not incur cycles in the data flow graph
|
|
// and (2) this function is called on constant expressions in postorder.
|
|
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
|
|
IsNew = true;
|
|
NewOperands.push_back(cast<Constant>(NewOperand));
|
|
continue;
|
|
}
|
|
if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
|
|
if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
|
|
CExpr, NewAddrSpace, ValueWithNewAddrSpace)) {
|
|
IsNew = true;
|
|
NewOperands.push_back(cast<Constant>(NewOperand));
|
|
continue;
|
|
}
|
|
// Otherwise, reuses the old operand.
|
|
NewOperands.push_back(Operand);
|
|
}
|
|
|
|
// If !IsNew, we will replace the Value with itself. However, replaced values
|
|
// are assumed to wrapped in a addrspace cast later so drop it now.
|
|
if (!IsNew)
|
|
return nullptr;
|
|
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// Needs to specify the source type while constructing a getelementptr
|
|
// constant expression.
|
|
return CE->getWithOperands(
|
|
NewOperands, TargetType, /*OnlyIfReduced=*/false,
|
|
NewOperands[0]->getType()->getPointerElementType());
|
|
}
|
|
|
|
return CE->getWithOperands(NewOperands, TargetType);
|
|
}
|
|
|
|
// Returns a clone of the value `V`, with its operands replaced as specified in
|
|
// ValueWithNewAddrSpace. This function is called on every flat address
|
|
// expression whose address space needs to be modified, in postorder.
|
|
//
|
|
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
|
|
Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
|
|
Value *V, unsigned NewAddrSpace,
|
|
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
|
SmallVectorImpl<const Use *> *UndefUsesToFix) const {
|
|
// All values in Postorder are flat address expressions.
|
|
assert(isAddressExpression(*V) &&
|
|
V->getType()->getPointerAddressSpace() == FlatAddrSpace);
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
Value *NewV = cloneInstructionWithNewAddressSpace(
|
|
I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
|
|
if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
|
|
if (NewI->getParent() == nullptr) {
|
|
NewI->insertBefore(I);
|
|
NewI->takeName(I);
|
|
}
|
|
}
|
|
return NewV;
|
|
}
|
|
|
|
return cloneConstantExprWithNewAddressSpace(
|
|
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
|
|
}
|
|
|
|
// Defines the join operation on the address space lattice (see the file header
|
|
// comments).
|
|
unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
|
|
unsigned AS2) const {
|
|
if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
|
|
return FlatAddrSpace;
|
|
|
|
if (AS1 == UninitializedAddressSpace)
|
|
return AS2;
|
|
if (AS2 == UninitializedAddressSpace)
|
|
return AS1;
|
|
|
|
// The join of two different specific address spaces is flat.
|
|
return (AS1 == AS2) ? AS1 : FlatAddrSpace;
|
|
}
|
|
|
|
bool InferAddressSpaces::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
if (FlatAddrSpace == UninitializedAddressSpace) {
|
|
FlatAddrSpace = TTI->getFlatAddressSpace();
|
|
if (FlatAddrSpace == UninitializedAddressSpace)
|
|
return false;
|
|
}
|
|
|
|
// Collects all flat address expressions in postorder.
|
|
std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
|
|
|
|
// Runs a data-flow analysis to refine the address spaces of every expression
|
|
// in Postorder.
|
|
ValueToAddrSpaceMapTy InferredAddrSpace;
|
|
inferAddressSpaces(Postorder, &InferredAddrSpace);
|
|
|
|
// Changes the address spaces of the flat address expressions who are inferred
|
|
// to point to a specific address space.
|
|
return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F);
|
|
}
|
|
|
|
// Constants need to be tracked through RAUW to handle cases with nested
|
|
// constant expressions, so wrap values in WeakTrackingVH.
|
|
void InferAddressSpaces::inferAddressSpaces(
|
|
ArrayRef<WeakTrackingVH> Postorder,
|
|
ValueToAddrSpaceMapTy *InferredAddrSpace) const {
|
|
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
|
|
// Initially, all expressions are in the uninitialized address space.
|
|
for (Value *V : Postorder)
|
|
(*InferredAddrSpace)[V] = UninitializedAddressSpace;
|
|
|
|
while (!Worklist.empty()) {
|
|
Value *V = Worklist.pop_back_val();
|
|
|
|
// Tries to update the address space of the stack top according to the
|
|
// address spaces of its operands.
|
|
LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
|
|
Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
|
|
if (!NewAS.hasValue())
|
|
continue;
|
|
// If any updates are made, grabs its users to the worklist because
|
|
// their address spaces can also be possibly updated.
|
|
LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
|
|
(*InferredAddrSpace)[V] = NewAS.getValue();
|
|
|
|
for (Value *User : V->users()) {
|
|
// Skip if User is already in the worklist.
|
|
if (Worklist.count(User))
|
|
continue;
|
|
|
|
auto Pos = InferredAddrSpace->find(User);
|
|
// Our algorithm only updates the address spaces of flat address
|
|
// expressions, which are those in InferredAddrSpace.
|
|
if (Pos == InferredAddrSpace->end())
|
|
continue;
|
|
|
|
// Function updateAddressSpace moves the address space down a lattice
|
|
// path. Therefore, nothing to do if User is already inferred as flat (the
|
|
// bottom element in the lattice).
|
|
if (Pos->second == FlatAddrSpace)
|
|
continue;
|
|
|
|
Worklist.insert(User);
|
|
}
|
|
}
|
|
}
|
|
|
|
Optional<unsigned> InferAddressSpaces::updateAddressSpace(
|
|
const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
|
|
assert(InferredAddrSpace.count(&V));
|
|
|
|
// The new inferred address space equals the join of the address spaces
|
|
// of all its pointer operands.
|
|
unsigned NewAS = UninitializedAddressSpace;
|
|
|
|
const Operator &Op = cast<Operator>(V);
|
|
if (Op.getOpcode() == Instruction::Select) {
|
|
Value *Src0 = Op.getOperand(1);
|
|
Value *Src1 = Op.getOperand(2);
|
|
|
|
auto I = InferredAddrSpace.find(Src0);
|
|
unsigned Src0AS = (I != InferredAddrSpace.end()) ?
|
|
I->second : Src0->getType()->getPointerAddressSpace();
|
|
|
|
auto J = InferredAddrSpace.find(Src1);
|
|
unsigned Src1AS = (J != InferredAddrSpace.end()) ?
|
|
J->second : Src1->getType()->getPointerAddressSpace();
|
|
|
|
auto *C0 = dyn_cast<Constant>(Src0);
|
|
auto *C1 = dyn_cast<Constant>(Src1);
|
|
|
|
// If one of the inputs is a constant, we may be able to do a constant
|
|
// addrspacecast of it. Defer inferring the address space until the input
|
|
// address space is known.
|
|
if ((C1 && Src0AS == UninitializedAddressSpace) ||
|
|
(C0 && Src1AS == UninitializedAddressSpace))
|
|
return None;
|
|
|
|
if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
|
|
NewAS = Src1AS;
|
|
else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
|
|
NewAS = Src0AS;
|
|
else
|
|
NewAS = joinAddressSpaces(Src0AS, Src1AS);
|
|
} else {
|
|
for (Value *PtrOperand : getPointerOperands(V)) {
|
|
auto I = InferredAddrSpace.find(PtrOperand);
|
|
unsigned OperandAS = I != InferredAddrSpace.end() ?
|
|
I->second : PtrOperand->getType()->getPointerAddressSpace();
|
|
|
|
// join(flat, *) = flat. So we can break if NewAS is already flat.
|
|
NewAS = joinAddressSpaces(NewAS, OperandAS);
|
|
if (NewAS == FlatAddrSpace)
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned OldAS = InferredAddrSpace.lookup(&V);
|
|
assert(OldAS != FlatAddrSpace);
|
|
if (OldAS == NewAS)
|
|
return None;
|
|
return NewAS;
|
|
}
|
|
|
|
/// \p returns true if \p U is the pointer operand of a memory instruction with
|
|
/// a single pointer operand that can have its address space changed by simply
|
|
/// mutating the use to a new value. If the memory instruction is volatile,
|
|
/// return true only if the target allows the memory instruction to be volatile
|
|
/// in the new address space.
|
|
static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
|
|
Use &U, unsigned AddrSpace) {
|
|
User *Inst = U.getUser();
|
|
unsigned OpNo = U.getOperandNo();
|
|
bool VolatileIsAllowed = false;
|
|
if (auto *I = dyn_cast<Instruction>(Inst))
|
|
VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(Inst))
|
|
return OpNo == LoadInst::getPointerOperandIndex() &&
|
|
(VolatileIsAllowed || !LI->isVolatile());
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst))
|
|
return OpNo == StoreInst::getPointerOperandIndex() &&
|
|
(VolatileIsAllowed || !SI->isVolatile());
|
|
|
|
if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
|
|
return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
|
|
(VolatileIsAllowed || !RMW->isVolatile());
|
|
|
|
if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
|
|
return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
|
|
(VolatileIsAllowed || !CmpX->isVolatile());
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Update memory intrinsic uses that require more complex processing than
|
|
/// simple memory instructions. Thse require re-mangling and may have multiple
|
|
/// pointer operands.
|
|
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
|
|
Value *NewV) {
|
|
IRBuilder<> B(MI);
|
|
MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
|
|
MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
|
|
MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
|
|
|
|
if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
|
|
B.CreateMemSet(NewV, MSI->getValue(),
|
|
MSI->getLength(), MSI->getDestAlignment(),
|
|
false, // isVolatile
|
|
TBAA, ScopeMD, NoAliasMD);
|
|
} else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
Value *Src = MTI->getRawSource();
|
|
Value *Dest = MTI->getRawDest();
|
|
|
|
// Be careful in case this is a self-to-self copy.
|
|
if (Src == OldV)
|
|
Src = NewV;
|
|
|
|
if (Dest == OldV)
|
|
Dest = NewV;
|
|
|
|
if (isa<MemCpyInst>(MTI)) {
|
|
MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
|
|
B.CreateMemCpy(Dest, MTI->getDestAlignment(),
|
|
Src, MTI->getSourceAlignment(),
|
|
MTI->getLength(),
|
|
false, // isVolatile
|
|
TBAA, TBAAStruct, ScopeMD, NoAliasMD);
|
|
} else {
|
|
assert(isa<MemMoveInst>(MTI));
|
|
B.CreateMemMove(Dest, MTI->getDestAlignment(),
|
|
Src, MTI->getSourceAlignment(),
|
|
MTI->getLength(),
|
|
false, // isVolatile
|
|
TBAA, ScopeMD, NoAliasMD);
|
|
}
|
|
} else
|
|
llvm_unreachable("unhandled MemIntrinsic");
|
|
|
|
MI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// \p returns true if it is OK to change the address space of constant \p C with
|
|
// a ConstantExpr addrspacecast.
|
|
bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
|
|
assert(NewAS != UninitializedAddressSpace);
|
|
|
|
unsigned SrcAS = C->getType()->getPointerAddressSpace();
|
|
if (SrcAS == NewAS || isa<UndefValue>(C))
|
|
return true;
|
|
|
|
// Prevent illegal casts between different non-flat address spaces.
|
|
if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
|
|
return false;
|
|
|
|
if (isa<ConstantPointerNull>(C))
|
|
return true;
|
|
|
|
if (auto *Op = dyn_cast<Operator>(C)) {
|
|
// If we already have a constant addrspacecast, it should be safe to cast it
|
|
// off.
|
|
if (Op->getOpcode() == Instruction::AddrSpaceCast)
|
|
return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
|
|
|
|
if (Op->getOpcode() == Instruction::IntToPtr &&
|
|
Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static Value::use_iterator skipToNextUser(Value::use_iterator I,
|
|
Value::use_iterator End) {
|
|
User *CurUser = I->getUser();
|
|
++I;
|
|
|
|
while (I != End && I->getUser() == CurUser)
|
|
++I;
|
|
|
|
return I;
|
|
}
|
|
|
|
bool InferAddressSpaces::rewriteWithNewAddressSpaces(
|
|
const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
|
|
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
|
|
// For each address expression to be modified, creates a clone of it with its
|
|
// pointer operands converted to the new address space. Since the pointer
|
|
// operands are converted, the clone is naturally in the new address space by
|
|
// construction.
|
|
ValueToValueMapTy ValueWithNewAddrSpace;
|
|
SmallVector<const Use *, 32> UndefUsesToFix;
|
|
for (Value* V : Postorder) {
|
|
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
|
|
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
|
|
ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
|
|
V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
|
|
}
|
|
}
|
|
|
|
if (ValueWithNewAddrSpace.empty())
|
|
return false;
|
|
|
|
// Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
|
|
for (const Use *UndefUse : UndefUsesToFix) {
|
|
User *V = UndefUse->getUser();
|
|
User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
|
|
unsigned OperandNo = UndefUse->getOperandNo();
|
|
assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
|
|
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
|
|
}
|
|
|
|
SmallVector<Instruction *, 16> DeadInstructions;
|
|
|
|
// Replaces the uses of the old address expressions with the new ones.
|
|
for (const WeakTrackingVH &WVH : Postorder) {
|
|
assert(WVH && "value was unexpectedly deleted");
|
|
Value *V = WVH;
|
|
Value *NewV = ValueWithNewAddrSpace.lookup(V);
|
|
if (NewV == nullptr)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
|
|
<< *NewV << '\n');
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
|
|
C->getType());
|
|
if (C != Replace) {
|
|
LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
|
|
<< ": " << *Replace << '\n');
|
|
C->replaceAllUsesWith(Replace);
|
|
V = Replace;
|
|
}
|
|
}
|
|
|
|
Value::use_iterator I, E, Next;
|
|
for (I = V->use_begin(), E = V->use_end(); I != E; ) {
|
|
Use &U = *I;
|
|
|
|
// Some users may see the same pointer operand in multiple operands. Skip
|
|
// to the next instruction.
|
|
I = skipToNextUser(I, E);
|
|
|
|
if (isSimplePointerUseValidToReplace(
|
|
TTI, U, V->getType()->getPointerAddressSpace())) {
|
|
// If V is used as the pointer operand of a compatible memory operation,
|
|
// sets the pointer operand to NewV. This replacement does not change
|
|
// the element type, so the resultant load/store is still valid.
|
|
U.set(NewV);
|
|
continue;
|
|
}
|
|
|
|
User *CurUser = U.getUser();
|
|
// Handle more complex cases like intrinsic that need to be remangled.
|
|
if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
|
|
if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
|
|
continue;
|
|
}
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
|
|
if (rewriteIntrinsicOperands(II, V, NewV))
|
|
continue;
|
|
}
|
|
|
|
if (isa<Instruction>(CurUser)) {
|
|
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
|
|
// If we can infer that both pointers are in the same addrspace,
|
|
// transform e.g.
|
|
// %cmp = icmp eq float* %p, %q
|
|
// into
|
|
// %cmp = icmp eq float addrspace(3)* %new_p, %new_q
|
|
|
|
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
|
|
int SrcIdx = U.getOperandNo();
|
|
int OtherIdx = (SrcIdx == 0) ? 1 : 0;
|
|
Value *OtherSrc = Cmp->getOperand(OtherIdx);
|
|
|
|
if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
|
|
if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
|
|
Cmp->setOperand(OtherIdx, OtherNewV);
|
|
Cmp->setOperand(SrcIdx, NewV);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Even if the type mismatches, we can cast the constant.
|
|
if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
|
|
if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
|
|
Cmp->setOperand(SrcIdx, NewV);
|
|
Cmp->setOperand(OtherIdx,
|
|
ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
|
|
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
|
|
if (ASC->getDestAddressSpace() == NewAS) {
|
|
if (ASC->getType()->getPointerElementType() !=
|
|
NewV->getType()->getPointerElementType()) {
|
|
NewV = CastInst::Create(Instruction::BitCast, NewV,
|
|
ASC->getType(), "", ASC);
|
|
}
|
|
ASC->replaceAllUsesWith(NewV);
|
|
DeadInstructions.push_back(ASC);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, replaces the use with flat(NewV).
|
|
if (Instruction *Inst = dyn_cast<Instruction>(V)) {
|
|
// Don't create a copy of the original addrspacecast.
|
|
if (U == V && isa<AddrSpaceCastInst>(V))
|
|
continue;
|
|
|
|
BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
|
|
while (isa<PHINode>(InsertPos))
|
|
++InsertPos;
|
|
U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
|
|
} else {
|
|
U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
|
|
V->getType()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (V->use_empty()) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
DeadInstructions.push_back(I);
|
|
}
|
|
}
|
|
|
|
for (Instruction *I : DeadInstructions)
|
|
RecursivelyDeleteTriviallyDeadInstructions(I);
|
|
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
|
|
return new InferAddressSpaces(AddressSpace);
|
|
}
|