mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
8b4ecc5d40
Use variadic templates instead of relying on <cstdarg> + sentinel. This enforces better type checking and makes code more readable. Differential Revision: https://reviews.llvm.org/D32541 llvm-svn: 302571
1132 lines
39 KiB
C++
1132 lines
39 KiB
C++
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some templates that are useful if you are working with the
|
|
// STL at all.
|
|
//
|
|
// No library is required when using these functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_STLEXTRAS_H
|
|
#define LLVM_ADT_STLEXTRAS_H
|
|
|
|
#include <algorithm> // for std::all_of
|
|
#include <cassert>
|
|
#include <cstddef> // for std::size_t
|
|
#include <cstdlib> // for qsort
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <utility> // for std::pair
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
namespace llvm {
|
|
|
|
// Only used by compiler if both template types are the same. Useful when
|
|
// using SFINAE to test for the existence of member functions.
|
|
template <typename T, T> struct SameType;
|
|
|
|
namespace detail {
|
|
|
|
template <typename RangeT>
|
|
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
|
|
|
|
template <typename RangeT>
|
|
using ValueOfRange = typename std::remove_reference<decltype(
|
|
*std::begin(std::declval<RangeT &>()))>::type;
|
|
|
|
} // End detail namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <functional>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<class Ty>
|
|
struct identity : public std::unary_function<Ty, Ty> {
|
|
Ty &operator()(Ty &self) const {
|
|
return self;
|
|
}
|
|
const Ty &operator()(const Ty &self) const {
|
|
return self;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *left < *right;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *right < *left;
|
|
}
|
|
};
|
|
|
|
/// An efficient, type-erasing, non-owning reference to a callable. This is
|
|
/// intended for use as the type of a function parameter that is not used
|
|
/// after the function in question returns.
|
|
///
|
|
/// This class does not own the callable, so it is not in general safe to store
|
|
/// a function_ref.
|
|
template<typename Fn> class function_ref;
|
|
|
|
template<typename Ret, typename ...Params>
|
|
class function_ref<Ret(Params...)> {
|
|
Ret (*callback)(intptr_t callable, Params ...params);
|
|
intptr_t callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(intptr_t callable, Params ...params) {
|
|
return (*reinterpret_cast<Callable*>(callable))(
|
|
std::forward<Params>(params)...);
|
|
}
|
|
|
|
public:
|
|
template <typename Callable>
|
|
function_ref(Callable &&callable,
|
|
typename std::enable_if<
|
|
!std::is_same<typename std::remove_reference<Callable>::type,
|
|
function_ref>::value>::type * = nullptr)
|
|
: callback(callback_fn<typename std::remove_reference<Callable>::type>),
|
|
callable(reinterpret_cast<intptr_t>(&callable)) {}
|
|
Ret operator()(Params ...params) const {
|
|
return callback(callable, std::forward<Params>(params)...);
|
|
}
|
|
};
|
|
|
|
// deleter - Very very very simple method that is used to invoke operator
|
|
// delete on something. It is used like this:
|
|
//
|
|
// for_each(V.begin(), B.end(), deleter<Interval>);
|
|
//
|
|
template <class T>
|
|
inline void deleter(T *Ptr) {
|
|
delete Ptr;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <iterator>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// mapped_iterator - This is a simple iterator adapter that causes a function to
|
|
// be applied whenever operator* is invoked on the iterator.
|
|
//
|
|
template <class RootIt, class UnaryFunc>
|
|
class mapped_iterator {
|
|
RootIt current;
|
|
UnaryFunc Fn;
|
|
public:
|
|
typedef typename std::iterator_traits<RootIt>::iterator_category
|
|
iterator_category;
|
|
typedef typename std::iterator_traits<RootIt>::difference_type
|
|
difference_type;
|
|
typedef decltype(std::declval<UnaryFunc>()(*std::declval<RootIt>()))
|
|
value_type;
|
|
|
|
typedef void pointer;
|
|
//typedef typename UnaryFunc::result_type *pointer;
|
|
typedef void reference; // Can't modify value returned by fn
|
|
|
|
typedef RootIt iterator_type;
|
|
|
|
inline const RootIt &getCurrent() const { return current; }
|
|
inline const UnaryFunc &getFunc() const { return Fn; }
|
|
|
|
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
|
|
: current(I), Fn(F) {}
|
|
|
|
inline value_type operator*() const { // All this work to do this
|
|
return Fn(*current); // little change
|
|
}
|
|
|
|
mapped_iterator &operator++() {
|
|
++current;
|
|
return *this;
|
|
}
|
|
mapped_iterator &operator--() {
|
|
--current;
|
|
return *this;
|
|
}
|
|
mapped_iterator operator++(int) {
|
|
mapped_iterator __tmp = *this;
|
|
++current;
|
|
return __tmp;
|
|
}
|
|
mapped_iterator operator--(int) {
|
|
mapped_iterator __tmp = *this;
|
|
--current;
|
|
return __tmp;
|
|
}
|
|
mapped_iterator operator+(difference_type n) const {
|
|
return mapped_iterator(current + n, Fn);
|
|
}
|
|
mapped_iterator &operator+=(difference_type n) {
|
|
current += n;
|
|
return *this;
|
|
}
|
|
mapped_iterator operator-(difference_type n) const {
|
|
return mapped_iterator(current - n, Fn);
|
|
}
|
|
mapped_iterator &operator-=(difference_type n) {
|
|
current -= n;
|
|
return *this;
|
|
}
|
|
reference operator[](difference_type n) const { return *(*this + n); }
|
|
|
|
bool operator!=(const mapped_iterator &X) const { return !operator==(X); }
|
|
bool operator==(const mapped_iterator &X) const {
|
|
return current == X.current;
|
|
}
|
|
bool operator<(const mapped_iterator &X) const { return current < X.current; }
|
|
|
|
difference_type operator-(const mapped_iterator &X) const {
|
|
return current - X.current;
|
|
}
|
|
};
|
|
|
|
template <class Iterator, class Func>
|
|
inline mapped_iterator<Iterator, Func>
|
|
operator+(typename mapped_iterator<Iterator, Func>::difference_type N,
|
|
const mapped_iterator<Iterator, Func> &X) {
|
|
return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc());
|
|
}
|
|
|
|
|
|
// map_iterator - Provide a convenient way to create mapped_iterators, just like
|
|
// make_pair is useful for creating pairs...
|
|
//
|
|
template <class ItTy, class FuncTy>
|
|
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
|
|
return mapped_iterator<ItTy, FuncTy>(I, F);
|
|
}
|
|
|
|
/// Helper to determine if type T has a member called rbegin().
|
|
template <typename Ty> class has_rbegin_impl {
|
|
typedef char yes[1];
|
|
typedef char no[2];
|
|
|
|
template <typename Inner>
|
|
static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
|
|
|
|
template <typename>
|
|
static no& test(...);
|
|
|
|
public:
|
|
static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
|
|
};
|
|
|
|
/// Metafunction to determine if T& or T has a member called rbegin().
|
|
template <typename Ty>
|
|
struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
|
|
};
|
|
|
|
// Returns an iterator_range over the given container which iterates in reverse.
|
|
// Note that the container must have rbegin()/rend() methods for this to work.
|
|
template <typename ContainerTy>
|
|
auto reverse(ContainerTy &&C,
|
|
typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
|
|
nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
|
|
return make_range(C.rbegin(), C.rend());
|
|
}
|
|
|
|
// Returns a std::reverse_iterator wrapped around the given iterator.
|
|
template <typename IteratorTy>
|
|
std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
|
|
return std::reverse_iterator<IteratorTy>(It);
|
|
}
|
|
|
|
// Returns an iterator_range over the given container which iterates in reverse.
|
|
// Note that the container must have begin()/end() methods which return
|
|
// bidirectional iterators for this to work.
|
|
template <typename ContainerTy>
|
|
auto reverse(
|
|
ContainerTy &&C,
|
|
typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
|
|
-> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
|
|
llvm::make_reverse_iterator(std::begin(C)))) {
|
|
return make_range(llvm::make_reverse_iterator(std::end(C)),
|
|
llvm::make_reverse_iterator(std::begin(C)));
|
|
}
|
|
|
|
/// An iterator adaptor that filters the elements of given inner iterators.
|
|
///
|
|
/// The predicate parameter should be a callable object that accepts the wrapped
|
|
/// iterator's reference type and returns a bool. When incrementing or
|
|
/// decrementing the iterator, it will call the predicate on each element and
|
|
/// skip any where it returns false.
|
|
///
|
|
/// \code
|
|
/// int A[] = { 1, 2, 3, 4 };
|
|
/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
|
|
/// // R contains { 1, 3 }.
|
|
/// \endcode
|
|
template <typename WrappedIteratorT, typename PredicateT>
|
|
class filter_iterator
|
|
: public iterator_adaptor_base<
|
|
filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
|
|
typename std::common_type<
|
|
std::forward_iterator_tag,
|
|
typename std::iterator_traits<
|
|
WrappedIteratorT>::iterator_category>::type> {
|
|
using BaseT = iterator_adaptor_base<
|
|
filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
|
|
typename std::common_type<
|
|
std::forward_iterator_tag,
|
|
typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
|
|
type>;
|
|
|
|
struct PayloadType {
|
|
WrappedIteratorT End;
|
|
PredicateT Pred;
|
|
};
|
|
|
|
Optional<PayloadType> Payload;
|
|
|
|
void findNextValid() {
|
|
assert(Payload && "Payload should be engaged when findNextValid is called");
|
|
while (this->I != Payload->End && !Payload->Pred(*this->I))
|
|
BaseT::operator++();
|
|
}
|
|
|
|
// Construct the begin iterator. The begin iterator requires to know where end
|
|
// is, so that it can properly stop when it hits end.
|
|
filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
|
|
: BaseT(std::move(Begin)),
|
|
Payload(PayloadType{std::move(End), std::move(Pred)}) {
|
|
findNextValid();
|
|
}
|
|
|
|
// Construct the end iterator. It's not incrementable, so Payload doesn't
|
|
// have to be engaged.
|
|
filter_iterator(WrappedIteratorT End) : BaseT(End) {}
|
|
|
|
public:
|
|
using BaseT::operator++;
|
|
|
|
filter_iterator &operator++() {
|
|
BaseT::operator++();
|
|
findNextValid();
|
|
return *this;
|
|
}
|
|
|
|
template <typename RT, typename PT>
|
|
friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
|
|
make_filter_range(RT &&, PT);
|
|
};
|
|
|
|
/// Convenience function that takes a range of elements and a predicate,
|
|
/// and return a new filter_iterator range.
|
|
///
|
|
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
|
|
/// lifetime of that temporary is not kept by the returned range object, and the
|
|
/// temporary is going to be dropped on the floor after the make_iterator_range
|
|
/// full expression that contains this function call.
|
|
template <typename RangeT, typename PredicateT>
|
|
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
|
|
make_filter_range(RangeT &&Range, PredicateT Pred) {
|
|
using FilterIteratorT =
|
|
filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
|
|
return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
|
|
std::end(std::forward<RangeT>(Range)),
|
|
std::move(Pred)),
|
|
FilterIteratorT(std::end(std::forward<RangeT>(Range))));
|
|
}
|
|
|
|
// forward declarations required by zip_shortest/zip_first
|
|
template <typename R, typename UnaryPredicate>
|
|
bool all_of(R &&range, UnaryPredicate P);
|
|
|
|
template <size_t... I> struct index_sequence;
|
|
|
|
template <class... Ts> struct index_sequence_for;
|
|
|
|
namespace detail {
|
|
using std::declval;
|
|
|
|
// We have to alias this since inlining the actual type at the usage site
|
|
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
|
|
template<typename... Iters> struct ZipTupleType {
|
|
typedef std::tuple<decltype(*declval<Iters>())...> type;
|
|
};
|
|
|
|
template <typename ZipType, typename... Iters>
|
|
using zip_traits = iterator_facade_base<
|
|
ZipType, typename std::common_type<std::bidirectional_iterator_tag,
|
|
typename std::iterator_traits<
|
|
Iters>::iterator_category...>::type,
|
|
// ^ TODO: Implement random access methods.
|
|
typename ZipTupleType<Iters...>::type,
|
|
typename std::iterator_traits<typename std::tuple_element<
|
|
0, std::tuple<Iters...>>::type>::difference_type,
|
|
// ^ FIXME: This follows boost::make_zip_iterator's assumption that all
|
|
// inner iterators have the same difference_type. It would fail if, for
|
|
// instance, the second field's difference_type were non-numeric while the
|
|
// first is.
|
|
typename ZipTupleType<Iters...>::type *,
|
|
typename ZipTupleType<Iters...>::type>;
|
|
|
|
template <typename ZipType, typename... Iters>
|
|
struct zip_common : public zip_traits<ZipType, Iters...> {
|
|
using Base = zip_traits<ZipType, Iters...>;
|
|
using value_type = typename Base::value_type;
|
|
|
|
std::tuple<Iters...> iterators;
|
|
|
|
protected:
|
|
template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
|
|
return value_type(*std::get<Ns>(iterators)...);
|
|
}
|
|
|
|
template <size_t... Ns>
|
|
decltype(iterators) tup_inc(index_sequence<Ns...>) const {
|
|
return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
|
|
}
|
|
|
|
template <size_t... Ns>
|
|
decltype(iterators) tup_dec(index_sequence<Ns...>) const {
|
|
return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
|
|
}
|
|
|
|
public:
|
|
zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
|
|
|
|
value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
|
|
|
|
const value_type operator*() const {
|
|
return deref(index_sequence_for<Iters...>{});
|
|
}
|
|
|
|
ZipType &operator++() {
|
|
iterators = tup_inc(index_sequence_for<Iters...>{});
|
|
return *reinterpret_cast<ZipType *>(this);
|
|
}
|
|
|
|
ZipType &operator--() {
|
|
static_assert(Base::IsBidirectional,
|
|
"All inner iterators must be at least bidirectional.");
|
|
iterators = tup_dec(index_sequence_for<Iters...>{});
|
|
return *reinterpret_cast<ZipType *>(this);
|
|
}
|
|
};
|
|
|
|
template <typename... Iters>
|
|
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
|
|
using Base = zip_common<zip_first<Iters...>, Iters...>;
|
|
|
|
bool operator==(const zip_first<Iters...> &other) const {
|
|
return std::get<0>(this->iterators) == std::get<0>(other.iterators);
|
|
}
|
|
|
|
zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
|
|
};
|
|
|
|
template <typename... Iters>
|
|
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
|
|
template <size_t... Ns>
|
|
bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
|
|
return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
|
|
std::get<Ns>(other.iterators)...},
|
|
identity<bool>{});
|
|
}
|
|
|
|
public:
|
|
using Base = zip_common<zip_shortest<Iters...>, Iters...>;
|
|
|
|
bool operator==(const zip_shortest<Iters...> &other) const {
|
|
return !test(other, index_sequence_for<Iters...>{});
|
|
}
|
|
|
|
zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
|
|
};
|
|
|
|
template <template <typename...> class ItType, typename... Args> class zippy {
|
|
public:
|
|
using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
|
|
using iterator_category = typename iterator::iterator_category;
|
|
using value_type = typename iterator::value_type;
|
|
using difference_type = typename iterator::difference_type;
|
|
using pointer = typename iterator::pointer;
|
|
using reference = typename iterator::reference;
|
|
|
|
private:
|
|
std::tuple<Args...> ts;
|
|
|
|
template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
|
|
return iterator(std::begin(std::get<Ns>(ts))...);
|
|
}
|
|
template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
|
|
return iterator(std::end(std::get<Ns>(ts))...);
|
|
}
|
|
|
|
public:
|
|
iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
|
|
iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
|
|
zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
|
|
};
|
|
} // End detail namespace
|
|
|
|
/// zip iterator for two or more iteratable types.
|
|
template <typename T, typename U, typename... Args>
|
|
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
|
|
Args &&... args) {
|
|
return detail::zippy<detail::zip_shortest, T, U, Args...>(
|
|
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
|
|
}
|
|
|
|
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
|
|
/// be the shortest.
|
|
template <typename T, typename U, typename... Args>
|
|
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
|
|
Args &&... args) {
|
|
return detail::zippy<detail::zip_first, T, U, Args...>(
|
|
std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
|
|
}
|
|
|
|
/// Iterator wrapper that concatenates sequences together.
|
|
///
|
|
/// This can concatenate different iterators, even with different types, into
|
|
/// a single iterator provided the value types of all the concatenated
|
|
/// iterators expose `reference` and `pointer` types that can be converted to
|
|
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
|
|
/// interesting/customized pointer or reference types.
|
|
///
|
|
/// Currently this only supports forward or higher iterator categories as
|
|
/// inputs and always exposes a forward iterator interface.
|
|
template <typename ValueT, typename... IterTs>
|
|
class concat_iterator
|
|
: public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
|
|
std::forward_iterator_tag, ValueT> {
|
|
typedef typename concat_iterator::iterator_facade_base BaseT;
|
|
|
|
/// We store both the current and end iterators for each concatenated
|
|
/// sequence in a tuple of pairs.
|
|
///
|
|
/// Note that something like iterator_range seems nice at first here, but the
|
|
/// range properties are of little benefit and end up getting in the way
|
|
/// because we need to do mutation on the current iterators.
|
|
std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
|
|
|
|
/// Attempts to increment a specific iterator.
|
|
///
|
|
/// Returns true if it was able to increment the iterator. Returns false if
|
|
/// the iterator is already at the end iterator.
|
|
template <size_t Index> bool incrementHelper() {
|
|
auto &IterPair = std::get<Index>(IterPairs);
|
|
if (IterPair.first == IterPair.second)
|
|
return false;
|
|
|
|
++IterPair.first;
|
|
return true;
|
|
}
|
|
|
|
/// Increments the first non-end iterator.
|
|
///
|
|
/// It is an error to call this with all iterators at the end.
|
|
template <size_t... Ns> void increment(index_sequence<Ns...>) {
|
|
// Build a sequence of functions to increment each iterator if possible.
|
|
bool (concat_iterator::*IncrementHelperFns[])() = {
|
|
&concat_iterator::incrementHelper<Ns>...};
|
|
|
|
// Loop over them, and stop as soon as we succeed at incrementing one.
|
|
for (auto &IncrementHelperFn : IncrementHelperFns)
|
|
if ((this->*IncrementHelperFn)())
|
|
return;
|
|
|
|
llvm_unreachable("Attempted to increment an end concat iterator!");
|
|
}
|
|
|
|
/// Returns null if the specified iterator is at the end. Otherwise,
|
|
/// dereferences the iterator and returns the address of the resulting
|
|
/// reference.
|
|
template <size_t Index> ValueT *getHelper() const {
|
|
auto &IterPair = std::get<Index>(IterPairs);
|
|
if (IterPair.first == IterPair.second)
|
|
return nullptr;
|
|
|
|
return &*IterPair.first;
|
|
}
|
|
|
|
/// Finds the first non-end iterator, dereferences, and returns the resulting
|
|
/// reference.
|
|
///
|
|
/// It is an error to call this with all iterators at the end.
|
|
template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
|
|
// Build a sequence of functions to get from iterator if possible.
|
|
ValueT *(concat_iterator::*GetHelperFns[])() const = {
|
|
&concat_iterator::getHelper<Ns>...};
|
|
|
|
// Loop over them, and return the first result we find.
|
|
for (auto &GetHelperFn : GetHelperFns)
|
|
if (ValueT *P = (this->*GetHelperFn)())
|
|
return *P;
|
|
|
|
llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
|
|
}
|
|
|
|
public:
|
|
/// Constructs an iterator from a squence of ranges.
|
|
///
|
|
/// We need the full range to know how to switch between each of the
|
|
/// iterators.
|
|
template <typename... RangeTs>
|
|
explicit concat_iterator(RangeTs &&... Ranges)
|
|
: IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
|
|
|
|
using BaseT::operator++;
|
|
concat_iterator &operator++() {
|
|
increment(index_sequence_for<IterTs...>());
|
|
return *this;
|
|
}
|
|
|
|
ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
|
|
|
|
bool operator==(const concat_iterator &RHS) const {
|
|
return IterPairs == RHS.IterPairs;
|
|
}
|
|
};
|
|
|
|
namespace detail {
|
|
/// Helper to store a sequence of ranges being concatenated and access them.
|
|
///
|
|
/// This is designed to facilitate providing actual storage when temporaries
|
|
/// are passed into the constructor such that we can use it as part of range
|
|
/// based for loops.
|
|
template <typename ValueT, typename... RangeTs> class concat_range {
|
|
public:
|
|
typedef concat_iterator<ValueT,
|
|
decltype(std::begin(std::declval<RangeTs &>()))...>
|
|
iterator;
|
|
|
|
private:
|
|
std::tuple<RangeTs...> Ranges;
|
|
|
|
template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
|
|
return iterator(std::get<Ns>(Ranges)...);
|
|
}
|
|
template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
|
|
return iterator(make_range(std::end(std::get<Ns>(Ranges)),
|
|
std::end(std::get<Ns>(Ranges)))...);
|
|
}
|
|
|
|
public:
|
|
iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
|
|
iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
|
|
concat_range(RangeTs &&... Ranges)
|
|
: Ranges(std::forward<RangeTs>(Ranges)...) {}
|
|
};
|
|
}
|
|
|
|
/// Concatenated range across two or more ranges.
|
|
///
|
|
/// The desired value type must be explicitly specified.
|
|
template <typename ValueT, typename... RangeTs>
|
|
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
|
|
static_assert(sizeof...(RangeTs) > 1,
|
|
"Need more than one range to concatenate!");
|
|
return detail::concat_range<ValueT, RangeTs...>(
|
|
std::forward<RangeTs>(Ranges)...);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <utility>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Function object to check whether the first component of a std::pair
|
|
/// compares less than the first component of another std::pair.
|
|
struct less_first {
|
|
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
|
|
return lhs.first < rhs.first;
|
|
}
|
|
};
|
|
|
|
/// \brief Function object to check whether the second component of a std::pair
|
|
/// compares less than the second component of another std::pair.
|
|
struct less_second {
|
|
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
|
|
return lhs.second < rhs.second;
|
|
}
|
|
};
|
|
|
|
// A subset of N3658. More stuff can be added as-needed.
|
|
|
|
/// \brief Represents a compile-time sequence of integers.
|
|
template <class T, T... I> struct integer_sequence {
|
|
typedef T value_type;
|
|
|
|
static constexpr size_t size() { return sizeof...(I); }
|
|
};
|
|
|
|
/// \brief Alias for the common case of a sequence of size_ts.
|
|
template <size_t... I>
|
|
struct index_sequence : integer_sequence<std::size_t, I...> {};
|
|
|
|
template <std::size_t N, std::size_t... I>
|
|
struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
|
|
template <std::size_t... I>
|
|
struct build_index_impl<0, I...> : index_sequence<I...> {};
|
|
|
|
/// \brief Creates a compile-time integer sequence for a parameter pack.
|
|
template <class... Ts>
|
|
struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
|
|
|
|
/// Utility type to build an inheritance chain that makes it easy to rank
|
|
/// overload candidates.
|
|
template <int N> struct rank : rank<N - 1> {};
|
|
template <> struct rank<0> {};
|
|
|
|
/// \brief traits class for checking whether type T is one of any of the given
|
|
/// types in the variadic list.
|
|
template <typename T, typename... Ts> struct is_one_of {
|
|
static const bool value = false;
|
|
};
|
|
|
|
template <typename T, typename U, typename... Ts>
|
|
struct is_one_of<T, U, Ts...> {
|
|
static const bool value =
|
|
std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
|
|
};
|
|
|
|
/// \brief traits class for checking whether type T is a base class for all
|
|
/// the given types in the variadic list.
|
|
template <typename T, typename... Ts> struct are_base_of {
|
|
static const bool value = true;
|
|
};
|
|
|
|
template <typename T, typename U, typename... Ts>
|
|
struct are_base_of<T, U, Ts...> {
|
|
static const bool value =
|
|
std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions for arrays
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Find the length of an array.
|
|
template <class T, std::size_t N>
|
|
constexpr inline size_t array_lengthof(T (&)[N]) {
|
|
return N;
|
|
}
|
|
|
|
/// Adapt std::less<T> for array_pod_sort.
|
|
template<typename T>
|
|
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
|
|
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
|
|
*reinterpret_cast<const T*>(P2)))
|
|
return -1;
|
|
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
|
|
*reinterpret_cast<const T*>(P1)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/// get_array_pod_sort_comparator - This is an internal helper function used to
|
|
/// get type deduction of T right.
|
|
template<typename T>
|
|
inline int (*get_array_pod_sort_comparator(const T &))
|
|
(const void*, const void*) {
|
|
return array_pod_sort_comparator<T>;
|
|
}
|
|
|
|
|
|
/// array_pod_sort - This sorts an array with the specified start and end
|
|
/// extent. This is just like std::sort, except that it calls qsort instead of
|
|
/// using an inlined template. qsort is slightly slower than std::sort, but
|
|
/// most sorts are not performance critical in LLVM and std::sort has to be
|
|
/// template instantiated for each type, leading to significant measured code
|
|
/// bloat. This function should generally be used instead of std::sort where
|
|
/// possible.
|
|
///
|
|
/// This function assumes that you have simple POD-like types that can be
|
|
/// compared with std::less and can be moved with memcpy. If this isn't true,
|
|
/// you should use std::sort.
|
|
///
|
|
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
|
|
/// default to std::less.
|
|
template<class IteratorTy>
|
|
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
|
|
// Don't inefficiently call qsort with one element or trigger undefined
|
|
// behavior with an empty sequence.
|
|
auto NElts = End - Start;
|
|
if (NElts <= 1) return;
|
|
qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
|
|
}
|
|
|
|
template <class IteratorTy>
|
|
inline void array_pod_sort(
|
|
IteratorTy Start, IteratorTy End,
|
|
int (*Compare)(
|
|
const typename std::iterator_traits<IteratorTy>::value_type *,
|
|
const typename std::iterator_traits<IteratorTy>::value_type *)) {
|
|
// Don't inefficiently call qsort with one element or trigger undefined
|
|
// behavior with an empty sequence.
|
|
auto NElts = End - Start;
|
|
if (NElts <= 1) return;
|
|
qsort(&*Start, NElts, sizeof(*Start),
|
|
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <algorithm>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// For a container of pointers, deletes the pointers and then clears the
|
|
/// container.
|
|
template<typename Container>
|
|
void DeleteContainerPointers(Container &C) {
|
|
for (auto V : C)
|
|
delete V;
|
|
C.clear();
|
|
}
|
|
|
|
/// In a container of pairs (usually a map) whose second element is a pointer,
|
|
/// deletes the second elements and then clears the container.
|
|
template<typename Container>
|
|
void DeleteContainerSeconds(Container &C) {
|
|
for (auto &V : C)
|
|
delete V.second;
|
|
C.clear();
|
|
}
|
|
|
|
/// Provide wrappers to std::all_of which take ranges instead of having to pass
|
|
/// begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
bool all_of(R &&Range, UnaryPredicate P) {
|
|
return std::all_of(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Provide wrappers to std::any_of which take ranges instead of having to pass
|
|
/// begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
bool any_of(R &&Range, UnaryPredicate P) {
|
|
return std::any_of(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Provide wrappers to std::none_of which take ranges instead of having to pass
|
|
/// begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
bool none_of(R &&Range, UnaryPredicate P) {
|
|
return std::none_of(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Provide wrappers to std::find which take ranges instead of having to pass
|
|
/// begin/end explicitly.
|
|
template <typename R, typename T>
|
|
auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) {
|
|
return std::find(std::begin(Range), std::end(Range), Val);
|
|
}
|
|
|
|
/// Provide wrappers to std::find_if which take ranges instead of having to pass
|
|
/// begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
|
|
return std::find_if(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
template <typename R, typename UnaryPredicate>
|
|
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
|
|
return std::find_if_not(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Provide wrappers to std::remove_if which take ranges instead of having to
|
|
/// pass begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
|
|
return std::remove_if(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Provide wrappers to std::copy_if which take ranges instead of having to
|
|
/// pass begin/end explicitly.
|
|
template <typename R, typename OutputIt, typename UnaryPredicate>
|
|
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
|
|
return std::copy_if(std::begin(Range), std::end(Range), Out, P);
|
|
}
|
|
|
|
/// Wrapper function around std::find to detect if an element exists
|
|
/// in a container.
|
|
template <typename R, typename E>
|
|
bool is_contained(R &&Range, const E &Element) {
|
|
return std::find(std::begin(Range), std::end(Range), Element) !=
|
|
std::end(Range);
|
|
}
|
|
|
|
/// Wrapper function around std::count to count the number of times an element
|
|
/// \p Element occurs in the given range \p Range.
|
|
template <typename R, typename E>
|
|
auto count(R &&Range, const E &Element) -> typename std::iterator_traits<
|
|
decltype(std::begin(Range))>::difference_type {
|
|
return std::count(std::begin(Range), std::end(Range), Element);
|
|
}
|
|
|
|
/// Wrapper function around std::count_if to count the number of times an
|
|
/// element satisfying a given predicate occurs in a range.
|
|
template <typename R, typename UnaryPredicate>
|
|
auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits<
|
|
decltype(std::begin(Range))>::difference_type {
|
|
return std::count_if(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// Wrapper function around std::transform to apply a function to a range and
|
|
/// store the result elsewhere.
|
|
template <typename R, typename OutputIt, typename UnaryPredicate>
|
|
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
|
|
return std::transform(std::begin(Range), std::end(Range), d_first, P);
|
|
}
|
|
|
|
/// Provide wrappers to std::partition which take ranges instead of having to
|
|
/// pass begin/end explicitly.
|
|
template <typename R, typename UnaryPredicate>
|
|
auto partition(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
|
|
return std::partition(std::begin(Range), std::end(Range), P);
|
|
}
|
|
|
|
/// \brief Given a range of type R, iterate the entire range and return a
|
|
/// SmallVector with elements of the vector. This is useful, for example,
|
|
/// when you want to iterate a range and then sort the results.
|
|
template <unsigned Size, typename R>
|
|
SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
|
|
to_vector(R &&Range) {
|
|
return {std::begin(Range), std::end(Range)};
|
|
}
|
|
|
|
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
|
|
/// `erase_if` which is equivalent to:
|
|
///
|
|
/// C.erase(remove_if(C, pred), C.end());
|
|
///
|
|
/// This version works for any container with an erase method call accepting
|
|
/// two iterators.
|
|
template <typename Container, typename UnaryPredicate>
|
|
void erase_if(Container &C, UnaryPredicate P) {
|
|
C.erase(remove_if(C, P), C.end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <memory>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implement make_unique according to N3656.
|
|
|
|
/// \brief Constructs a `new T()` with the given args and returns a
|
|
/// `unique_ptr<T>` which owns the object.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// auto p = make_unique<int>();
|
|
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
|
|
template <class T, class... Args>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Args &&... args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
|
|
/// \brief Constructs a `new T[n]` with the given args and returns a
|
|
/// `unique_ptr<T[]>` which owns the object.
|
|
///
|
|
/// \param n size of the new array.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
|
|
template <class T>
|
|
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
|
|
std::unique_ptr<T>>::type
|
|
make_unique(size_t n) {
|
|
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
|
|
}
|
|
|
|
/// This function isn't used and is only here to provide better compile errors.
|
|
template <class T, class... Args>
|
|
typename std::enable_if<std::extent<T>::value != 0>::type
|
|
make_unique(Args &&...) = delete;
|
|
|
|
struct FreeDeleter {
|
|
void operator()(void* v) {
|
|
::free(v);
|
|
}
|
|
};
|
|
|
|
template<typename First, typename Second>
|
|
struct pair_hash {
|
|
size_t operator()(const std::pair<First, Second> &P) const {
|
|
return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
|
|
}
|
|
};
|
|
|
|
/// A functor like C++14's std::less<void> in its absence.
|
|
struct less {
|
|
template <typename A, typename B> bool operator()(A &&a, B &&b) const {
|
|
return std::forward<A>(a) < std::forward<B>(b);
|
|
}
|
|
};
|
|
|
|
/// A functor like C++14's std::equal<void> in its absence.
|
|
struct equal {
|
|
template <typename A, typename B> bool operator()(A &&a, B &&b) const {
|
|
return std::forward<A>(a) == std::forward<B>(b);
|
|
}
|
|
};
|
|
|
|
/// Binary functor that adapts to any other binary functor after dereferencing
|
|
/// operands.
|
|
template <typename T> struct deref {
|
|
T func;
|
|
// Could be further improved to cope with non-derivable functors and
|
|
// non-binary functors (should be a variadic template member function
|
|
// operator()).
|
|
template <typename A, typename B>
|
|
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
|
|
assert(lhs);
|
|
assert(rhs);
|
|
return func(*lhs, *rhs);
|
|
}
|
|
};
|
|
|
|
namespace detail {
|
|
template <typename R> class enumerator_iter;
|
|
|
|
template <typename R> struct result_pair {
|
|
friend class enumerator_iter<R>;
|
|
|
|
result_pair() : Index(-1) {}
|
|
result_pair(std::size_t Index, IterOfRange<R> Iter)
|
|
: Index(Index), Iter(Iter) {}
|
|
|
|
result_pair<R> &operator=(const result_pair<R> &Other) {
|
|
Index = Other.Index;
|
|
Iter = Other.Iter;
|
|
return *this;
|
|
}
|
|
|
|
std::size_t index() const { return Index; }
|
|
const ValueOfRange<R> &value() const { return *Iter; }
|
|
ValueOfRange<R> &value() { return *Iter; }
|
|
|
|
private:
|
|
std::size_t Index;
|
|
IterOfRange<R> Iter;
|
|
};
|
|
|
|
template <typename R>
|
|
class enumerator_iter
|
|
: public iterator_facade_base<
|
|
enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
|
|
typename std::iterator_traits<IterOfRange<R>>::difference_type,
|
|
typename std::iterator_traits<IterOfRange<R>>::pointer,
|
|
typename std::iterator_traits<IterOfRange<R>>::reference> {
|
|
using result_type = result_pair<R>;
|
|
|
|
public:
|
|
explicit enumerator_iter(IterOfRange<R> EndIter)
|
|
: Result(std::numeric_limits<size_t>::max(), EndIter) { }
|
|
|
|
enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
|
|
: Result(Index, Iter) {}
|
|
|
|
result_type &operator*() { return Result; }
|
|
const result_type &operator*() const { return Result; }
|
|
|
|
enumerator_iter<R> &operator++() {
|
|
assert(Result.Index != std::numeric_limits<size_t>::max());
|
|
++Result.Iter;
|
|
++Result.Index;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const enumerator_iter<R> &RHS) const {
|
|
// Don't compare indices here, only iterators. It's possible for an end
|
|
// iterator to have different indices depending on whether it was created
|
|
// by calling std::end() versus incrementing a valid iterator.
|
|
return Result.Iter == RHS.Result.Iter;
|
|
}
|
|
|
|
enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
|
|
Result = Other.Result;
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
result_type Result;
|
|
};
|
|
|
|
template <typename R> class enumerator {
|
|
public:
|
|
explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
|
|
|
|
enumerator_iter<R> begin() {
|
|
return enumerator_iter<R>(0, std::begin(TheRange));
|
|
}
|
|
enumerator_iter<R> end() {
|
|
return enumerator_iter<R>(std::end(TheRange));
|
|
}
|
|
|
|
private:
|
|
R TheRange;
|
|
};
|
|
}
|
|
|
|
/// Given an input range, returns a new range whose values are are pair (A,B)
|
|
/// such that A is the 0-based index of the item in the sequence, and B is
|
|
/// the value from the original sequence. Example:
|
|
///
|
|
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
|
|
/// for (auto X : enumerate(Items)) {
|
|
/// printf("Item %d - %c\n", X.index(), X.value());
|
|
/// }
|
|
///
|
|
/// Output:
|
|
/// Item 0 - A
|
|
/// Item 1 - B
|
|
/// Item 2 - C
|
|
/// Item 3 - D
|
|
///
|
|
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
|
|
return detail::enumerator<R>(std::forward<R>(TheRange));
|
|
}
|
|
|
|
namespace detail {
|
|
template <typename F, typename Tuple, std::size_t... I>
|
|
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
|
|
-> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
|
|
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
|
|
}
|
|
}
|
|
|
|
/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
|
|
/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
|
|
/// return the result.
|
|
template <typename F, typename Tuple>
|
|
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
|
|
std::forward<F>(f), std::forward<Tuple>(t),
|
|
build_index_impl<
|
|
std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
|
|
using Indices = build_index_impl<
|
|
std::tuple_size<typename std::decay<Tuple>::type>::value>;
|
|
|
|
return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
|
|
Indices{});
|
|
}
|
|
} // End llvm namespace
|
|
|
|
#endif
|