1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/lib/Target/AArch64/AArch64LegalizerInfo.cpp
Chandler Carruth eb66b33867 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

316 lines
9.6 KiB
C++

//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Target/TargetOpcodes.h"
using namespace llvm;
#ifndef LLVM_BUILD_GLOBAL_ISEL
#error "You shouldn't build this"
#endif
AArch64LegalizerInfo::AArch64LegalizerInfo() {
using namespace TargetOpcode;
const LLT p0 = LLT::pointer(0, 64);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT v2s32 = LLT::vector(2, 32);
const LLT v4s32 = LLT::vector(4, 32);
const LLT v2s64 = LLT::vector(2, 64);
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL}) {
// These operations naturally get the right answer when used on
// GPR32, even if the actual type is narrower.
for (auto Ty : {s32, s64, v2s32, v4s32, v2s64})
setAction({BinOp, Ty}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({BinOp, Ty}, WidenScalar);
}
setAction({G_GEP, p0}, Legal);
setAction({G_GEP, 1, s64}, Legal);
for (auto Ty : {s1, s8, s16, s32})
setAction({G_GEP, 1, Ty}, WidenScalar);
setAction({G_PTR_MASK, p0}, Legal);
for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV}) {
for (auto Ty : {s32, s64})
setAction({BinOp, Ty}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({BinOp, Ty}, WidenScalar);
}
for (unsigned BinOp : {G_SREM, G_UREM})
for (auto Ty : { s1, s8, s16, s32, s64 })
setAction({BinOp, Ty}, Lower);
for (unsigned Op : {G_SMULO, G_UMULO})
setAction({Op, s64}, Lower);
for (unsigned Op : {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_SMULH, G_UMULH}) {
for (auto Ty : { s32, s64 })
setAction({Op, Ty}, Legal);
setAction({Op, 1, s1}, Legal);
}
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
for (auto Ty : {s32, s64})
setAction({BinOp, Ty}, Legal);
for (unsigned BinOp : {G_FREM, G_FPOW}) {
setAction({BinOp, s32}, Libcall);
setAction({BinOp, s64}, Libcall);
}
for (auto Ty : {s32, s64, p0}) {
setAction({G_INSERT, Ty}, Legal);
setAction({G_INSERT, 1, Ty}, Legal);
}
for (auto Ty : {s1, s8, s16}) {
setAction({G_INSERT, Ty}, WidenScalar);
setAction({G_INSERT, 1, Ty}, Legal);
// FIXME: Can't widen the sources because that violates the constraints on
// G_INSERT (It seems entirely reasonable that inputs shouldn't overlap).
}
for (unsigned MemOp : {G_LOAD, G_STORE}) {
for (auto Ty : {s8, s16, s32, s64, p0, v2s32})
setAction({MemOp, Ty}, Legal);
setAction({MemOp, s1}, WidenScalar);
// And everything's fine in addrspace 0.
setAction({MemOp, 1, p0}, Legal);
}
// Constants
for (auto Ty : {s32, s64}) {
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
setAction({TargetOpcode::G_FCONSTANT, Ty}, Legal);
}
setAction({G_CONSTANT, p0}, Legal);
for (auto Ty : {s1, s8, s16})
setAction({TargetOpcode::G_CONSTANT, Ty}, WidenScalar);
setAction({TargetOpcode::G_FCONSTANT, s16}, WidenScalar);
setAction({G_ICMP, s1}, Legal);
setAction({G_ICMP, 1, s32}, Legal);
setAction({G_ICMP, 1, s64}, Legal);
setAction({G_ICMP, 1, p0}, Legal);
for (auto Ty : {s1, s8, s16}) {
setAction({G_ICMP, 1, Ty}, WidenScalar);
}
setAction({G_FCMP, s1}, Legal);
setAction({G_FCMP, 1, s32}, Legal);
setAction({G_FCMP, 1, s64}, Legal);
// Extensions
for (auto Ty : { s1, s8, s16, s32, s64 }) {
setAction({G_ZEXT, Ty}, Legal);
setAction({G_SEXT, Ty}, Legal);
setAction({G_ANYEXT, Ty}, Legal);
}
for (auto Ty : { s1, s8, s16, s32 }) {
setAction({G_ZEXT, 1, Ty}, Legal);
setAction({G_SEXT, 1, Ty}, Legal);
setAction({G_ANYEXT, 1, Ty}, Legal);
}
setAction({G_FPEXT, s64}, Legal);
setAction({G_FPEXT, 1, s32}, Legal);
// Truncations
for (auto Ty : { s16, s32 })
setAction({G_FPTRUNC, Ty}, Legal);
for (auto Ty : { s32, s64 })
setAction({G_FPTRUNC, 1, Ty}, Legal);
for (auto Ty : { s1, s8, s16, s32 })
setAction({G_TRUNC, Ty}, Legal);
for (auto Ty : { s8, s16, s32, s64 })
setAction({G_TRUNC, 1, Ty}, Legal);
// Conversions
for (auto Ty : { s32, s64 }) {
setAction({G_FPTOSI, 0, Ty}, Legal);
setAction({G_FPTOUI, 0, Ty}, Legal);
setAction({G_SITOFP, 1, Ty}, Legal);
setAction({G_UITOFP, 1, Ty}, Legal);
}
for (auto Ty : { s1, s8, s16 }) {
setAction({G_FPTOSI, 0, Ty}, WidenScalar);
setAction({G_FPTOUI, 0, Ty}, WidenScalar);
setAction({G_SITOFP, 1, Ty}, WidenScalar);
setAction({G_UITOFP, 1, Ty}, WidenScalar);
}
for (auto Ty : { s32, s64 }) {
setAction({G_FPTOSI, 1, Ty}, Legal);
setAction({G_FPTOUI, 1, Ty}, Legal);
setAction({G_SITOFP, 0, Ty}, Legal);
setAction({G_UITOFP, 0, Ty}, Legal);
}
// Control-flow
for (auto Ty : {s1, s8, s16, s32})
setAction({G_BRCOND, Ty}, Legal);
setAction({G_BRINDIRECT, p0}, Legal);
// Select
for (auto Ty : {s1, s8, s16})
setAction({G_SELECT, Ty}, WidenScalar);
for (auto Ty : {s32, s64, p0})
setAction({G_SELECT, Ty}, Legal);
setAction({G_SELECT, 1, s1}, Legal);
// Pointer-handling
setAction({G_FRAME_INDEX, p0}, Legal);
setAction({G_GLOBAL_VALUE, p0}, Legal);
for (auto Ty : {s1, s8, s16, s32, s64})
setAction({G_PTRTOINT, 0, Ty}, Legal);
setAction({G_PTRTOINT, 1, p0}, Legal);
setAction({G_INTTOPTR, 0, p0}, Legal);
setAction({G_INTTOPTR, 1, s64}, Legal);
// Casts for 32 and 64-bit width type are just copies.
for (auto Ty : {s1, s8, s16, s32, s64}) {
setAction({G_BITCAST, 0, Ty}, Legal);
setAction({G_BITCAST, 1, Ty}, Legal);
}
// For the sake of copying bits around, the type does not really
// matter as long as it fits a register.
for (int EltSize = 8; EltSize <= 64; EltSize *= 2) {
setAction({G_BITCAST, 0, LLT::vector(128/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(128/EltSize, EltSize)}, Legal);
if (EltSize >= 64)
continue;
setAction({G_BITCAST, 0, LLT::vector(64/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(64/EltSize, EltSize)}, Legal);
if (EltSize >= 32)
continue;
setAction({G_BITCAST, 0, LLT::vector(32/EltSize, EltSize)}, Legal);
setAction({G_BITCAST, 1, LLT::vector(32/EltSize, EltSize)}, Legal);
}
setAction({G_VASTART, p0}, Legal);
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
setAction({G_VAARG, 1, p0}, Legal);
for (auto Ty : {s8, s16, s32, s64, p0})
setAction({G_VAARG, Ty}, Custom);
computeTables();
}
bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_VAARG:
return legalizeVaArg(MI, MRI, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MIRBuilder.setInstr(MI);
MachineFunction &MF = MIRBuilder.getMF();
unsigned Align = MI.getOperand(2).getImm();
unsigned Dst = MI.getOperand(0).getReg();
unsigned ListPtr = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(ListPtr);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
unsigned List = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildLoad(
List, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
PtrSize, /* Align = */ PtrSize));
unsigned DstPtr;
if (Align > PtrSize) {
// Realign the list to the actual required alignment.
unsigned AlignMinus1 = MRI.createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildConstant(AlignMinus1, Align - 1);
unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(ListTmp, List, AlignMinus1);
DstPtr = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
} else
DstPtr = List;
uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
MIRBuilder.buildLoad(
Dst, DstPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
ValSize, std::max(Align, PtrSize)));
unsigned SizeReg = MRI.createGenericVirtualRegister(IntPtrTy);
MIRBuilder.buildConstant(SizeReg, alignTo(ValSize, PtrSize));
unsigned NewList = MRI.createGenericVirtualRegister(PtrTy);
MIRBuilder.buildGEP(NewList, DstPtr, SizeReg);
MIRBuilder.buildStore(
NewList, ListPtr,
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
PtrSize, /* Align = */ PtrSize));
MI.eraseFromParent();
return true;
}