1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 12:33:33 +02:00
llvm-mirror/lib/Target/X86/AsmParser/X86AsmParser.cpp
Reid Kleckner bbad92826d [ms-inline-asm] Relax assertion around funky identifiers slightly
A corresponding clang change will make it so that clang can consume part
of an assembler token. The assembler treats '.' as an identifier
character while clang does not, so it's view of the token stream is a
little different.

llvm-svn: 246089
2015-08-26 21:57:25 +00:00

2984 lines
108 KiB
C++

//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86AsmInstrumentation.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "X86ISelLowering.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
using namespace llvm;
namespace {
static const char OpPrecedence[] = {
0, // IC_OR
1, // IC_XOR
2, // IC_AND
3, // IC_LSHIFT
3, // IC_RSHIFT
4, // IC_PLUS
4, // IC_MINUS
5, // IC_MULTIPLY
5, // IC_DIVIDE
6, // IC_RPAREN
7, // IC_LPAREN
0, // IC_IMM
0 // IC_REGISTER
};
class X86AsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
const MCInstrInfo &MII;
ParseInstructionInfo *InstInfo;
std::unique_ptr<X86AsmInstrumentation> Instrumentation;
private:
SMLoc consumeToken() {
MCAsmParser &Parser = getParser();
SMLoc Result = Parser.getTok().getLoc();
Parser.Lex();
return Result;
}
enum InfixCalculatorTok {
IC_OR = 0,
IC_XOR,
IC_AND,
IC_LSHIFT,
IC_RSHIFT,
IC_PLUS,
IC_MINUS,
IC_MULTIPLY,
IC_DIVIDE,
IC_RPAREN,
IC_LPAREN,
IC_IMM,
IC_REGISTER
};
class InfixCalculator {
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
SmallVector<ICToken, 4> PostfixStack;
public:
int64_t popOperand() {
assert (!PostfixStack.empty() && "Poped an empty stack!");
ICToken Op = PostfixStack.pop_back_val();
assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
&& "Expected and immediate or register!");
return Op.second;
}
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
"Unexpected operand!");
PostfixStack.push_back(std::make_pair(Op, Val));
}
void popOperator() { InfixOperatorStack.pop_back(); }
void pushOperator(InfixCalculatorTok Op) {
// Push the new operator if the stack is empty.
if (InfixOperatorStack.empty()) {
InfixOperatorStack.push_back(Op);
return;
}
// Push the new operator if it has a higher precedence than the operator
// on the top of the stack or the operator on the top of the stack is a
// left parentheses.
unsigned Idx = InfixOperatorStack.size() - 1;
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
InfixOperatorStack.push_back(Op);
return;
}
// The operator on the top of the stack has higher precedence than the
// new operator.
unsigned ParenCount = 0;
while (1) {
// Nothing to process.
if (InfixOperatorStack.empty())
break;
Idx = InfixOperatorStack.size() - 1;
StackOp = InfixOperatorStack[Idx];
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
break;
// If we have an even parentheses count and we see a left parentheses,
// then stop processing.
if (!ParenCount && StackOp == IC_LPAREN)
break;
if (StackOp == IC_RPAREN) {
++ParenCount;
InfixOperatorStack.pop_back();
} else if (StackOp == IC_LPAREN) {
--ParenCount;
InfixOperatorStack.pop_back();
} else {
InfixOperatorStack.pop_back();
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
}
// Push the new operator.
InfixOperatorStack.push_back(Op);
}
int64_t execute() {
// Push any remaining operators onto the postfix stack.
while (!InfixOperatorStack.empty()) {
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
if (PostfixStack.empty())
return 0;
SmallVector<ICToken, 16> OperandStack;
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
ICToken Op = PostfixStack[i];
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
OperandStack.push_back(Op);
} else {
assert (OperandStack.size() > 1 && "Too few operands.");
int64_t Val;
ICToken Op2 = OperandStack.pop_back_val();
ICToken Op1 = OperandStack.pop_back_val();
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_PLUS:
Val = Op1.second + Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MINUS:
Val = Op1.second - Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MULTIPLY:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Multiply operation with an immediate and a register!");
Val = Op1.second * Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_DIVIDE:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Divide operation with an immediate and a register!");
assert (Op2.second != 0 && "Division by zero!");
Val = Op1.second / Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_OR:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Or operation with an immediate and a register!");
Val = Op1.second | Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_XOR:
assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Xor operation with an immediate and a register!");
Val = Op1.second ^ Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_AND:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"And operation with an immediate and a register!");
Val = Op1.second & Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Left shift operation with an immediate and a register!");
Val = Op1.second << Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_RSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Right shift operation with an immediate and a register!");
Val = Op1.second >> Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
}
}
}
assert (OperandStack.size() == 1 && "Expected a single result.");
return OperandStack.pop_back_val().second;
}
};
enum IntelExprState {
IES_OR,
IES_XOR,
IES_AND,
IES_LSHIFT,
IES_RSHIFT,
IES_PLUS,
IES_MINUS,
IES_NOT,
IES_MULTIPLY,
IES_DIVIDE,
IES_LBRAC,
IES_RBRAC,
IES_LPAREN,
IES_RPAREN,
IES_REGISTER,
IES_INTEGER,
IES_IDENTIFIER,
IES_ERROR
};
class IntelExprStateMachine {
IntelExprState State, PrevState;
unsigned BaseReg, IndexReg, TmpReg, Scale;
int64_t Imm;
const MCExpr *Sym;
StringRef SymName;
bool StopOnLBrac, AddImmPrefix;
InfixCalculator IC;
InlineAsmIdentifierInfo Info;
public:
IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
AddImmPrefix(addimmprefix) { Info.clear(); }
unsigned getBaseReg() { return BaseReg; }
unsigned getIndexReg() { return IndexReg; }
unsigned getScale() { return Scale; }
const MCExpr *getSym() { return Sym; }
StringRef getSymName() { return SymName; }
int64_t getImm() { return Imm + IC.execute(); }
bool isValidEndState() {
return State == IES_RBRAC || State == IES_INTEGER;
}
bool getStopOnLBrac() { return StopOnLBrac; }
bool getAddImmPrefix() { return AddImmPrefix; }
bool hadError() { return State == IES_ERROR; }
InlineAsmIdentifierInfo &getIdentifierInfo() {
return Info;
}
void onOr() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_OR;
IC.pushOperator(IC_OR);
break;
}
PrevState = CurrState;
}
void onXor() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_XOR;
IC.pushOperator(IC_XOR);
break;
}
PrevState = CurrState;
}
void onAnd() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_AND;
IC.pushOperator(IC_AND);
break;
}
PrevState = CurrState;
}
void onLShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LSHIFT;
IC.pushOperator(IC_LSHIFT);
break;
}
PrevState = CurrState;
}
void onRShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_RSHIFT;
IC.pushOperator(IC_RSHIFT);
break;
}
PrevState = CurrState;
}
void onPlus() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onMinus() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_LPAREN:
case IES_RPAREN:
case IES_LBRAC:
case IES_RBRAC:
case IES_INTEGER:
case IES_REGISTER:
State = IES_MINUS;
// Only push the minus operator if it is not a unary operator.
if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
CurrState == IES_LPAREN || CurrState == IES_LBRAC))
IC.pushOperator(IC_MINUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onNot() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_NOT:
State = IES_NOT;
break;
}
PrevState = CurrState;
}
void onRegister(unsigned Reg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_LPAREN:
State = IES_REGISTER;
TmpReg = Reg;
IC.pushOperand(IC_REGISTER);
break;
case IES_MULTIPLY:
// Index Register - Scale * Register
if (PrevState == IES_INTEGER) {
assert (!IndexReg && "IndexReg already set!");
State = IES_REGISTER;
IndexReg = Reg;
// Get the scale and replace the 'Scale * Register' with '0'.
Scale = IC.popOperand();
IC.pushOperand(IC_IMM);
IC.popOperator();
} else {
State = IES_ERROR;
}
break;
}
PrevState = CurrState;
}
void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
State = IES_INTEGER;
Sym = SymRef;
SymName = SymRefName;
IC.pushOperand(IC_IMM);
break;
}
}
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_DIVIDE:
case IES_MULTIPLY:
case IES_LPAREN:
State = IES_INTEGER;
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// Index Register - Register * Scale
assert (!IndexReg && "IndexReg already set!");
IndexReg = TmpReg;
Scale = TmpInt;
if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
return true;
}
// Get the scale and replace the 'Register * Scale' with '0'.
IC.popOperator();
} else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT || PrevState == IES_XOR) &&
CurrState == IES_MINUS) {
// Unary minus. No need to pop the minus operand because it was never
// pushed.
IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
} else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT || PrevState == IES_XOR) &&
CurrState == IES_NOT) {
// Unary not. No need to pop the not operand because it was never
// pushed.
IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
} else {
IC.pushOperand(IC_IMM, TmpInt);
}
break;
}
PrevState = CurrState;
return false;
}
void onStar() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_MULTIPLY;
IC.pushOperator(IC_MULTIPLY);
break;
}
}
void onDivide() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_DIVIDE;
IC.pushOperator(IC_DIVIDE);
break;
}
}
void onLBrac() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_RBRAC:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
break;
}
}
void onRBrac() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_RBRAC;
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onLParen() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_XOR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_LPAREN:
// FIXME: We don't handle this type of unary minus or not, yet.
if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT || PrevState == IES_XOR) &&
(CurrState == IES_MINUS || CurrState == IES_NOT)) {
State = IES_ERROR;
break;
}
State = IES_LPAREN;
IC.pushOperator(IC_LPAREN);
break;
}
PrevState = CurrState;
}
void onRParen() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_RPAREN;
IC.pushOperator(IC_RPAREN);
break;
}
}
};
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
if (MatchingInlineAsm) return true;
return Parser.Error(L, Msg, Ranges);
}
bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
Parser.eatToEndOfStatement();
return Error(L, Msg, Ranges, MatchingInlineAsm);
}
std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
Error(Loc, Msg);
return nullptr;
}
std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
void AddDefaultSrcDestOperands(
OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
std::unique_ptr<X86Operand> ParseOperand();
std::unique_ptr<X86Operand> ParseATTOperand();
std::unique_ptr<X86Operand> ParseIntelOperand();
std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
std::unique_ptr<X86Operand>
ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
std::unique_ptr<X86Operand>
ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start, SMLoc End);
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
SMLoc Start,
int64_t ImmDisp,
unsigned Size);
bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End);
std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
std::unique_ptr<X86Operand>
CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
unsigned IndexReg, unsigned Scale, SMLoc Start,
SMLoc End, unsigned Size, StringRef Identifier,
InlineAsmIdentifierInfo &Info);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
/// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
/// instrumentation around Inst.
void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
MCStreamer &Out, bool MatchingInlineAsm);
bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool OmitRegisterFromClobberLists(unsigned RegNo) override;
/// doSrcDstMatch - Returns true if operands are matching in their
/// word size (%si and %di, %esi and %edi, etc.). Order depends on
/// the parsing mode (Intel vs. AT&T).
bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
/// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
/// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
/// \return \c true if no parsing errors occurred, \c false otherwise.
bool HandleAVX512Operand(OperandVector &Operands,
const MCParsedAsmOperand &Op);
bool is64BitMode() const {
// FIXME: Can tablegen auto-generate this?
return STI.getFeatureBits()[X86::Mode64Bit];
}
bool is32BitMode() const {
// FIXME: Can tablegen auto-generate this?
return STI.getFeatureBits()[X86::Mode32Bit];
}
bool is16BitMode() const {
// FIXME: Can tablegen auto-generate this?
return STI.getFeatureBits()[X86::Mode16Bit];
}
void SwitchMode(unsigned mode) {
FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
unsigned FB = ComputeAvailableFeatures(
STI.ToggleFeature(OldMode.flip(mode)));
setAvailableFeatures(FB);
assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
}
unsigned getPointerWidth() {
if (is16BitMode()) return 16;
if (is32BitMode()) return 32;
if (is64BitMode()) return 64;
llvm_unreachable("invalid mode");
}
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &Parser,
const MCInstrInfo &mii, const MCTargetOptions &Options)
: MCTargetAsmParser(Options), STI(sti), MII(mii), InstInfo(nullptr) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
Instrumentation.reset(
CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
}
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
void SetFrameRegister(unsigned RegNo) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
StringRef &ErrMsg) {
// If we have both a base register and an index register make sure they are
// both 64-bit or 32-bit registers.
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
if (BaseReg != 0 && IndexReg != 0) {
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
IndexReg != X86::RIZ) {
ErrMsg = "base register is 64-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
IndexReg != X86::EIZ){
ErrMsg = "base register is 32-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
ErrMsg = "base register is 16-bit, but index register is not";
return true;
}
if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
IndexReg != X86::SI && IndexReg != X86::DI) ||
((BaseReg == X86::SI || BaseReg == X86::DI) &&
IndexReg != X86::BX && IndexReg != X86::BP)) {
ErrMsg = "invalid 16-bit base/index register combination";
return true;
}
}
}
return false;
}
bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
{
// Return true and let a normal complaint about bogus operands happen.
if (!Op1.isMem() || !Op2.isMem())
return true;
// Actually these might be the other way round if Intel syntax is
// being used. It doesn't matter.
unsigned diReg = Op1.Mem.BaseReg;
unsigned siReg = Op2.Mem.BaseReg;
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
// Again, return true and let another error happen.
return true;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
MCAsmParser &Parser = getParser();
RegNo = 0;
const AsmToken &PercentTok = Parser.getTok();
StartLoc = PercentTok.getLoc();
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
Parser.Lex(); // Eat percent token.
const AsmToken &Tok = Parser.getTok();
EndLoc = Tok.getEndLoc();
if (Tok.isNot(AsmToken::Identifier)) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
RegNo = MatchRegisterName(Tok.getString());
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(Tok.getString().lower());
// The "flags" register cannot be referenced directly.
// Treat it as an identifier instead.
if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS)
RegNo = 0;
if (!is64BitMode()) {
// FIXME: This should be done using Requires<Not64BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
// checked.
// FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
// REX prefix.
if (RegNo == X86::RIZ ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
X86II::isX86_64NonExtLowByteReg(RegNo) ||
X86II::isX86_64ExtendedReg(RegNo))
return Error(StartLoc, "register %"
+ Tok.getString() + " is only available in 64-bit mode",
SMRange(StartLoc, EndLoc));
}
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
RegNo = X86::ST0;
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (getLexer().isNot(AsmToken::LParen))
return false;
// Lex the paren.
getParser().Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer))
return Error(IntTok.getLoc(), "expected stack index");
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default: return Error(IntTok.getLoc(), "invalid stack index");
}
if (getParser().Lex().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat ')'
return false;
}
EndLoc = Parser.getTok().getEndLoc();
// If this is "db[0-7]", match it as an alias
// for dr[0-7].
if (RegNo == 0 && Tok.getString().size() == 3 &&
Tok.getString().startswith("db")) {
switch (Tok.getString()[2]) {
case '0': RegNo = X86::DR0; break;
case '1': RegNo = X86::DR1; break;
case '2': RegNo = X86::DR2; break;
case '3': RegNo = X86::DR3; break;
case '4': RegNo = X86::DR4; break;
case '5': RegNo = X86::DR5; break;
case '6': RegNo = X86::DR6; break;
case '7': RegNo = X86::DR7; break;
}
if (RegNo != 0) {
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat it.
return false;
}
}
if (RegNo == 0) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
Parser.Lex(); // Eat identifier token.
return false;
}
void X86AsmParser::SetFrameRegister(unsigned RegNo) {
Instrumentation->SetInitialFrameRegister(RegNo);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
const MCExpr *Disp = MCConstantExpr::create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
void X86AsmParser::AddDefaultSrcDestOperands(
OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
if (isParsingIntelSyntax()) {
Operands.push_back(std::move(Dst));
Operands.push_back(std::move(Src));
}
else {
Operands.push_back(std::move(Src));
Operands.push_back(std::move(Dst));
}
}
std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
if (isParsingIntelSyntax())
return ParseIntelOperand();
return ParseATTOperand();
}
/// getIntelMemOperandSize - Return intel memory operand size.
static unsigned getIntelMemOperandSize(StringRef OpStr) {
unsigned Size = StringSwitch<unsigned>(OpStr)
.Cases("BYTE", "byte", 8)
.Cases("WORD", "word", 16)
.Cases("DWORD", "dword", 32)
.Cases("QWORD", "qword", 64)
.Cases("MMWORD","mmword", 64)
.Cases("XWORD", "xword", 80)
.Cases("TBYTE", "tbyte", 80)
.Cases("XMMWORD", "xmmword", 128)
.Cases("YMMWORD", "ymmword", 256)
.Cases("ZMMWORD", "zmmword", 512)
.Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
.Default(0);
return Size;
}
std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
InlineAsmIdentifierInfo &Info) {
// If we found a decl other than a VarDecl, then assume it is a FuncDecl or
// some other label reference.
if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
// Insert an explicit size if the user didn't have one.
if (!Size) {
Size = getPointerWidth();
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
/*Len=*/0, Size));
}
// Create an absolute memory reference in order to match against
// instructions taking a PC relative operand.
return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
Identifier, Info.OpDecl);
}
// We either have a direct symbol reference, or an offset from a symbol. The
// parser always puts the symbol on the LHS, so look there for size
// calculation purposes.
const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
bool IsSymRef =
isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
if (IsSymRef) {
if (!Size) {
Size = Info.Type * 8; // Size is in terms of bits in this context.
if (Size)
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
/*Len=*/0, Size));
}
}
// When parsing inline assembly we set the base register to a non-zero value
// if we don't know the actual value at this time. This is necessary to
// get the matching correct in some cases.
BaseReg = BaseReg ? BaseReg : 1;
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, Start, End, Size, Identifier,
Info.OpDecl);
}
static void
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
StringRef SymName, int64_t ImmDisp,
int64_t FinalImmDisp, SMLoc &BracLoc,
SMLoc &StartInBrac, SMLoc &End) {
// Remove the '[' and ']' from the IR string.
AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
// If ImmDisp is non-zero, then we parsed a displacement before the
// bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
// If ImmDisp doesn't match the displacement computed by the state machine
// then we have an additional displacement in the bracketed expression.
if (ImmDisp != FinalImmDisp) {
if (ImmDisp) {
// We have an immediate displacement before the bracketed expression.
// Adjust this to match the final immediate displacement.
bool Found = false;
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
E = AsmRewrites->end(); I != E; ++I) {
if ((*I).Loc.getPointer() > BracLoc.getPointer())
continue;
if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
assert (!Found && "ImmDisp already rewritten.");
(*I).Kind = AOK_Imm;
(*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
(*I).Val = FinalImmDisp;
Found = true;
break;
}
}
assert (Found && "Unable to rewrite ImmDisp.");
(void)Found;
} else {
// We have a symbolic and an immediate displacement, but no displacement
// before the bracketed expression. Put the immediate displacement
// before the bracketed expression.
AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
}
}
// Remove all the ImmPrefix rewrites within the brackets.
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
E = AsmRewrites->end(); I != E; ++I) {
if ((*I).Loc.getPointer() < StartInBrac.getPointer())
continue;
if ((*I).Kind == AOK_ImmPrefix)
(*I).Kind = AOK_Delete;
}
const char *SymLocPtr = SymName.data();
// Skip everything before the symbol.
if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
assert(Len > 0 && "Expected a non-negative length.");
AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
}
// Skip everything after the symbol.
if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
assert(Len > 0 && "Expected a non-negative length.");
AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
}
}
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
bool Done = false;
while (!Done) {
bool UpdateLocLex = true;
// The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
// identifier. Don't try an parse it as a register.
if (Tok.getString().startswith("."))
break;
// If we're parsing an immediate expression, we don't expect a '['.
if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
break;
AsmToken::TokenKind TK = getLexer().getKind();
switch (TK) {
default: {
if (SM.isValidEndState()) {
Done = true;
break;
}
return Error(Tok.getLoc(), "unknown token in expression");
}
case AsmToken::EndOfStatement: {
Done = true;
break;
}
case AsmToken::String:
case AsmToken::Identifier: {
// This could be a register or a symbolic displacement.
unsigned TmpReg;
const MCExpr *Val;
SMLoc IdentLoc = Tok.getLoc();
StringRef Identifier = Tok.getString();
if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
SM.onRegister(TmpReg);
UpdateLocLex = false;
break;
} else {
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return Error(Tok.getLoc(), "Unexpected identifier!");
} else {
// This is a dot operator, not an adjacent identifier.
if (Identifier.find('.') != StringRef::npos) {
return false;
} else {
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return true;
}
}
SM.onIdentifierExpr(Val, Identifier);
UpdateLocLex = false;
break;
}
return Error(Tok.getLoc(), "Unexpected identifier!");
}
case AsmToken::Integer: {
StringRef ErrMsg;
if (isParsingInlineAsm() && SM.getAddImmPrefix())
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
Tok.getLoc()));
// Look for 'b' or 'f' following an Integer as a directional label
SMLoc Loc = getTok().getLoc();
int64_t IntVal = getTok().getIntVal();
End = consumeToken();
UpdateLocLex = false;
if (getLexer().getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
if (IDVal == "f" || IDVal == "b") {
MCSymbol *Sym =
getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *Val =
MCSymbolRefExpr::create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "invalid reference to undefined symbol");
StringRef Identifier = Sym->getName();
SM.onIdentifierExpr(Val, Identifier);
End = consumeToken();
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
break;
}
case AsmToken::Plus: SM.onPlus(); break;
case AsmToken::Minus: SM.onMinus(); break;
case AsmToken::Tilde: SM.onNot(); break;
case AsmToken::Star: SM.onStar(); break;
case AsmToken::Slash: SM.onDivide(); break;
case AsmToken::Pipe: SM.onOr(); break;
case AsmToken::Caret: SM.onXor(); break;
case AsmToken::Amp: SM.onAnd(); break;
case AsmToken::LessLess:
SM.onLShift(); break;
case AsmToken::GreaterGreater:
SM.onRShift(); break;
case AsmToken::LBrac: SM.onLBrac(); break;
case AsmToken::RBrac: SM.onRBrac(); break;
case AsmToken::LParen: SM.onLParen(); break;
case AsmToken::RParen: SM.onRParen(); break;
}
if (SM.hadError())
return Error(Tok.getLoc(), "unknown token in expression");
if (!Done && UpdateLocLex)
End = consumeToken();
}
return false;
}
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
int64_t ImmDisp, unsigned Size) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
if (getLexer().isNot(AsmToken::LBrac))
return ErrorOperand(BracLoc, "Expected '[' token!");
Parser.Lex(); // Eat '['
SMLoc StartInBrac = Tok.getLoc();
// Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We
// may have already parsed an immediate displacement before the bracketed
// expression.
IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
if (ParseIntelExpression(SM, End))
return nullptr;
const MCExpr *Disp = nullptr;
if (const MCExpr *Sym = SM.getSym()) {
// A symbolic displacement.
Disp = Sym;
if (isParsingInlineAsm())
RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
ImmDisp, SM.getImm(), BracLoc, StartInBrac,
End);
}
if (SM.getImm() || !Disp) {
const MCExpr *Imm = MCConstantExpr::create(SM.getImm(), getContext());
if (Disp)
Disp = MCBinaryExpr::createAdd(Disp, Imm, getContext());
else
Disp = Imm; // An immediate displacement only.
}
// Parse struct field access. Intel requires a dot, but MSVC doesn't. MSVC
// will in fact do global lookup the field name inside all global typedefs,
// but we don't emulate that.
if (Tok.getString().find('.') != StringRef::npos) {
const MCExpr *NewDisp;
if (ParseIntelDotOperator(Disp, NewDisp))
return nullptr;
End = Tok.getEndLoc();
Parser.Lex(); // Eat the field.
Disp = NewDisp;
}
int BaseReg = SM.getBaseReg();
int IndexReg = SM.getIndexReg();
int Scale = SM.getScale();
if (!isParsingInlineAsm()) {
// handle [-42]
if (!BaseReg && !IndexReg) {
if (!SegReg)
return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
Start, End, Size);
}
StringRef ErrMsg;
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
Error(StartInBrac, ErrMsg);
return nullptr;
}
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, Start, End, Size);
}
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
End, Size, SM.getSymName(), Info);
}
// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End) {
MCAsmParser &Parser = getParser();
assert(isParsingInlineAsm() && "Expected to be parsing inline assembly.");
Val = nullptr;
StringRef LineBuf(Identifier.data());
void *Result =
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
// Advance the token stream until the end of the current token is
// after the end of what the frontend claimed.
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
do {
End = Tok.getEndLoc();
getLexer().Lex();
} while (End.getPointer() < EndPtr);
Identifier = LineBuf;
// The frontend should end parsing on an assembler token boundary, unless it
// failed parsing.
assert((End.getPointer() == EndPtr || !Result) &&
"frontend claimed part of a token?");
// If the identifier lookup was unsuccessful, assume that we are dealing with
// a label.
if (!Result) {
StringRef InternalName =
SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
Loc, false);
assert(InternalName.size() && "We should have an internal name here.");
// Push a rewrite for replacing the identifier name with the internal name.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Label, Loc,
Identifier.size(),
InternalName));
}
// Create the symbol reference.
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
return false;
}
/// \brief Parse intel style segment override.
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
unsigned Size) {
MCAsmParser &Parser = getParser();
assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
const AsmToken &Tok = Parser.getTok(); // Eat colon.
if (Tok.isNot(AsmToken::Colon))
return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
Parser.Lex(); // Eat ':'
int64_t ImmDisp = 0;
if (getLexer().is(AsmToken::Integer)) {
ImmDisp = Tok.getIntVal();
AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
if (isParsingInlineAsm())
InstInfo->AsmRewrites->push_back(
AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
if (getLexer().isNot(AsmToken::LBrac)) {
// An immediate following a 'segment register', 'colon' token sequence can
// be followed by a bracketed expression. If it isn't we know we have our
// final segment override.
const MCExpr *Disp = MCConstantExpr::create(ImmDisp, getContext());
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
/*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1,
Start, ImmDispToken.getEndLoc(), Size);
}
}
if (getLexer().is(AsmToken::LBrac))
return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
const MCExpr *Val;
SMLoc End;
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
/*Scale=*/1, Start, End, Size, Identifier, Info);
}
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
std::unique_ptr<X86Operand>
X86AsmParser::ParseRoundingModeOp(SMLoc Start, SMLoc End) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
if (Tok.getIdentifier().startswith("r")){
int rndMode = StringSwitch<int>(Tok.getIdentifier())
.Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
.Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
.Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
.Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
.Default(-1);
if (-1 == rndMode)
return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
Parser.Lex(); // Eat "r*" of r*-sae
if (!getLexer().is(AsmToken::Minus))
return ErrorOperand(Tok.getLoc(), "Expected - at this point");
Parser.Lex(); // Eat "-"
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return ErrorOperand(Tok.getLoc(), "Expected } at this point");
Parser.Lex(); // Eat "}"
const MCExpr *RndModeOp =
MCConstantExpr::create(rndMode, Parser.getContext());
return X86Operand::CreateImm(RndModeOp, Start, End);
}
if(Tok.getIdentifier().equals("sae")){
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return ErrorOperand(Tok.getLoc(), "Expected } at this point");
Parser.Lex(); // Eat "}"
return X86Operand::CreateToken("{sae}", consumedToken);
}
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
}
/// ParseIntelMemOperand - Parse intel style memory operand.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
SMLoc Start,
unsigned Size) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc End;
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
if (getLexer().is(AsmToken::LBrac))
return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
assert(ImmDisp == 0);
const MCExpr *Val;
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
if (!getLexer().is(AsmToken::LBrac))
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
/*Scale=*/1, Start, End, Size, Identifier, Info);
Parser.Lex(); // Eat '['
// Parse Identifier [ ImmDisp ]
IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
/*AddImmPrefix=*/false);
if (ParseIntelExpression(SM, End))
return nullptr;
if (SM.getSym()) {
Error(Start, "cannot use more than one symbol in memory operand");
return nullptr;
}
if (SM.getBaseReg()) {
Error(Start, "cannot use base register with variable reference");
return nullptr;
}
if (SM.getIndexReg()) {
Error(Start, "cannot use index register with variable reference");
return nullptr;
}
const MCExpr *Disp = MCConstantExpr::create(SM.getImm(), getContext());
// BaseReg is non-zero to avoid assertions. In the context of inline asm,
// we're pointing to a local variable in memory, so the base register is
// really the frame or stack pointer.
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/1, /*IndexReg=*/0, /*Scale=*/1,
Start, End, Size, Identifier, Info.OpDecl);
}
/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
const MCExpr *&NewDisp) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
int64_t OrigDispVal, DotDispVal;
// FIXME: Handle non-constant expressions.
if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
OrigDispVal = OrigDisp->getValue();
else
return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
// Drop the optional '.'.
StringRef DotDispStr = Tok.getString();
if (DotDispStr.startswith("."))
DotDispStr = DotDispStr.drop_front(1);
// .Imm gets lexed as a real.
if (Tok.is(AsmToken::Real)) {
APInt DotDisp;
DotDispStr.getAsInteger(10, DotDisp);
DotDispVal = DotDisp.getZExtValue();
} else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
unsigned DotDisp;
std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
DotDisp))
return Error(Tok.getLoc(), "Unable to lookup field reference!");
DotDispVal = DotDisp;
} else
return Error(Tok.getLoc(), "Unexpected token type!");
if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
unsigned Len = DotDispStr.size();
unsigned Val = OrigDispVal + DotDispVal;
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
Val));
}
NewDisp = MCConstantExpr::create(OrigDispVal + DotDispVal, getContext());
return false;
}
/// Parse the 'offset' operator. This operator is used to specify the
/// location rather then the content of a variable.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc OffsetOfLoc = Tok.getLoc();
Parser.Lex(); // Eat offset.
const MCExpr *Val;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
// Don't emit the offset operator.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
// The offset operator will have an 'r' constraint, thus we need to create
// register operand to ensure proper matching. Just pick a GPR based on
// the size of a pointer.
unsigned RegNo =
is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
OffsetOfLoc, Identifier, Info.OpDecl);
}
enum IntelOperatorKind {
IOK_LENGTH,
IOK_SIZE,
IOK_TYPE
};
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZE operator returns the size of a C or C++
/// variable. A variable's size is the product of its LENGTH and TYPE. The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc TypeLoc = Tok.getLoc();
Parser.Lex(); // Eat operator.
const MCExpr *Val = nullptr;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/true, End))
return nullptr;
if (!Info.OpDecl)
return ErrorOperand(Start, "unable to lookup expression");
unsigned CVal = 0;
switch(OpKind) {
default: llvm_unreachable("Unexpected operand kind!");
case IOK_LENGTH: CVal = Info.Length; break;
case IOK_SIZE: CVal = Info.Size; break;
case IOK_TYPE: CVal = Info.Type; break;
}
// Rewrite the type operator and the C or C++ type or variable in terms of an
// immediate. E.g. TYPE foo -> $$4
unsigned Len = End.getPointer() - TypeLoc.getPointer();
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
const MCExpr *Imm = MCConstantExpr::create(CVal, getContext());
return X86Operand::CreateImm(Imm, Start, End);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc Start, End;
// Offset, length, type and size operators.
if (isParsingInlineAsm()) {
StringRef AsmTokStr = Tok.getString();
if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
return ParseIntelOffsetOfOperator();
if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
return ParseIntelOperator(IOK_LENGTH);
if (AsmTokStr == "size" || AsmTokStr == "SIZE")
return ParseIntelOperator(IOK_SIZE);
if (AsmTokStr == "type" || AsmTokStr == "TYPE")
return ParseIntelOperator(IOK_TYPE);
}
unsigned Size = getIntelMemOperandSize(Tok.getString());
if (Size) {
Parser.Lex(); // Eat operand size (e.g., byte, word).
if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
Parser.Lex(); // Eat ptr.
}
Start = Tok.getLoc();
// Immediate.
if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
AsmToken StartTok = Tok;
IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
/*AddImmPrefix=*/false);
if (ParseIntelExpression(SM, End))
return nullptr;
int64_t Imm = SM.getImm();
if (isParsingInlineAsm()) {
unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
if (StartTok.getString().size() == Len)
// Just add a prefix if this wasn't a complex immediate expression.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
else
// Otherwise, rewrite the complex expression as a single immediate.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
}
if (getLexer().isNot(AsmToken::LBrac)) {
// If a directional label (ie. 1f or 2b) was parsed above from
// ParseIntelExpression() then SM.getSym() was set to a pointer to
// to the MCExpr with the directional local symbol and this is a
// memory operand not an immediate operand.
if (SM.getSym())
return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End,
Size);
const MCExpr *ImmExpr = MCConstantExpr::create(Imm, getContext());
return X86Operand::CreateImm(ImmExpr, Start, End);
}
// Only positive immediates are valid.
if (Imm < 0)
return ErrorOperand(Start, "expected a positive immediate displacement "
"before bracketed expr.");
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
return ParseIntelMemOperand(Imm, Start, Size);
}
// rounding mode token
if (STI.getFeatureBits()[X86::FeatureAVX512] &&
getLexer().is(AsmToken::LCurly))
return ParseRoundingModeOp(Start, End);
// Register.
unsigned RegNo = 0;
if (!ParseRegister(RegNo, Start, End)) {
// If this is a segment register followed by a ':', then this is the start
// of a segment override, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
}
// Memory operand.
return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
return ParseMemOperand(0, Parser.getTok().getLoc());
case AsmToken::Percent: {
// Read the register.
unsigned RegNo;
SMLoc Start, End;
if (ParseRegister(RegNo, Start, End)) return nullptr;
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
Error(Start, "%eiz and %riz can only be used as index registers",
SMRange(Start, End));
return nullptr;
}
// If this is a segment register followed by a ':', then this is the start
// of a memory reference, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
return ErrorOperand(Start, "invalid segment register");
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
case AsmToken::Dollar: {
// $42 -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
if (getParser().parseExpression(Val, End))
return nullptr;
return X86Operand::CreateImm(Val, Start, End);
}
case AsmToken::LCurly:{
SMLoc Start = Parser.getTok().getLoc(), End;
if (STI.getFeatureBits()[X86::FeatureAVX512])
return ParseRoundingModeOp(Start, End);
return ErrorOperand(Start, "unknown token in expression");
}
}
}
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
const MCParsedAsmOperand &Op) {
MCAsmParser &Parser = getParser();
if(STI.getFeatureBits()[X86::FeatureAVX512]) {
if (getLexer().is(AsmToken::LCurly)) {
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
// Distinguish {1to<NUM>} from {%k<NUM>}.
if(getLexer().is(AsmToken::Integer)) {
// Parse memory broadcasting ({1to<NUM>}).
if (getLexer().getTok().getIntVal() != 1)
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected 1to<NUM> at this point");
Parser.Lex(); // Eat "1" of 1to8
if (!getLexer().is(AsmToken::Identifier) ||
!getLexer().getTok().getIdentifier().startswith("to"))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected 1to<NUM> at this point");
// Recognize only reasonable suffixes.
const char *BroadcastPrimitive =
StringSwitch<const char*>(getLexer().getTok().getIdentifier())
.Case("to2", "{1to2}")
.Case("to4", "{1to4}")
.Case("to8", "{1to8}")
.Case("to16", "{1to16}")
.Default(nullptr);
if (!BroadcastPrimitive)
return !ErrorAndEatStatement(getLexer().getLoc(),
"Invalid memory broadcast primitive.");
Parser.Lex(); // Eat "toN" of 1toN
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
consumedToken));
// No AVX512 specific primitives can pass
// after memory broadcasting, so return.
return true;
} else {
// Parse mask register {%k1}
Operands.push_back(X86Operand::CreateToken("{", consumedToken));
if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
Operands.push_back(std::move(Op));
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
// Parse "zeroing non-masked" semantic {z}
if (getLexer().is(AsmToken::LCurly)) {
Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
if (!getLexer().is(AsmToken::Identifier) ||
getLexer().getTok().getIdentifier() != "z")
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected z at this point");
Parser.Lex(); // Eat the z
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Parser.Lex(); // Eat the }
}
}
}
}
}
return true;
}
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
/// has already been parsed if present.
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
SMLoc MemStart) {
MCAsmParser &Parser = getParser();
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
// after it.
const MCExpr *Disp = MCConstantExpr::create(0, getParser().getContext());
if (getLexer().isNot(AsmToken::LParen)) {
SMLoc ExprEnd;
if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
SMLoc LParenLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '('.
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
SMLoc ExprEnd;
// It must be an parenthesized expression, parse it now.
if (getParser().parseParenExpression(Disp, ExprEnd))
return nullptr;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
ExprEnd);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc IndexLoc, BaseLoc;
if (getLexer().is(AsmToken::Percent)) {
SMLoc StartLoc, EndLoc;
BaseLoc = Parser.getTok().getLoc();
if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
Error(StartLoc, "eiz and riz can only be used as index registers",
SMRange(StartLoc, EndLoc));
return nullptr;
}
}
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
IndexLoc = Parser.getTok().getLoc();
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Not that even though it would be completely consistent to support syntax
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(IndexReg, L, L)) return nullptr;
if (getLexer().isNot(AsmToken::RParen)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
if (getLexer().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(),
"expected comma in scale expression");
return nullptr;
}
Parser.Lex(); // Eat the comma.
if (getLexer().isNot(AsmToken::RParen)) {
SMLoc Loc = Parser.getTok().getLoc();
int64_t ScaleVal;
if (getParser().parseAbsoluteExpression(ScaleVal)){
Error(Loc, "expected scale expression");
return nullptr;
}
// Validate the scale amount.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
ScaleVal != 1) {
Error(Loc, "scale factor in 16-bit address must be 1");
return nullptr;
}
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
return nullptr;
}
Scale = (unsigned)ScaleVal;
}
}
} else if (getLexer().isNot(AsmToken::RParen)) {
// A scale amount without an index is ignored.
// index.
SMLoc Loc = Parser.getTok().getLoc();
int64_t Value;
if (getParser().parseAbsoluteExpression(Value))
return nullptr;
if (Value != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
return nullptr;
}
SMLoc MemEnd = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat the ')'.
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
// and then only in non-64-bit modes. Except for DX, which is a special case
// because an unofficial form of in/out instructions uses it.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
(is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
BaseReg != X86::SI && BaseReg != X86::DI)) &&
BaseReg != X86::DX) {
Error(BaseLoc, "invalid 16-bit base register");
return nullptr;
}
if (BaseReg == 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
Error(IndexLoc, "16-bit memory operand may not include only index register");
return nullptr;
}
StringRef ErrMsg;
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
Error(BaseLoc, ErrMsg);
return nullptr;
}
if (SegReg || BaseReg || IndexReg)
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, MemStart, MemEnd);
return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
}
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
InstInfo = &Info;
StringRef PatchedName = Name;
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName[0] == 'v';
unsigned CCIdx = IsVCMP ? 4 : 3;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(CCIdx, PatchedName.size() - 2))
.Case("eq", 0x00)
.Case("lt", 0x01)
.Case("le", 0x02)
.Case("unord", 0x03)
.Case("neq", 0x04)
.Case("nlt", 0x05)
.Case("nle", 0x06)
.Case("ord", 0x07)
/* AVX only from here */
.Case("eq_uq", 0x08)
.Case("nge", 0x09)
.Case("ngt", 0x0A)
.Case("false", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("gt", 0x0E)
.Case("true", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) {
Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx),
NameLoc));
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - 2);
}
}
// FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcmp") &&
(PatchedName.endswith("b") || PatchedName.endswith("w") ||
PatchedName.endswith("d") || PatchedName.endswith("q"))) {
unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - CCIdx))
.Case("eq", 0x0) // Only allowed on unsigned. Checked below.
.Case("lt", 0x1)
.Case("le", 0x2)
//.Case("false", 0x3) // Not a documented alias.
.Case("neq", 0x4)
.Case("nlt", 0x5)
.Case("nle", 0x6)
//.Case("true", 0x7) // Not a documented alias.
.Default(~0U);
if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) {
Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc));
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
}
}
// FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcom") &&
(PatchedName.endswith("b") || PatchedName.endswith("w") ||
PatchedName.endswith("d") || PatchedName.endswith("q"))) {
unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - CCIdx))
.Case("lt", 0x0)
.Case("le", 0x1)
.Case("gt", 0x2)
.Case("ge", 0x3)
.Case("eq", 0x4)
.Case("neq", 0x5)
.Case("false", 0x6)
.Case("true", 0x7)
.Default(~0U);
if (ComparisonCode != ~0U) {
Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc));
const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
// Determine whether this is an instruction prefix.
bool isPrefix =
Name == "lock" || Name == "rep" ||
Name == "repe" || Name == "repz" ||
Name == "repne" || Name == "repnz" ||
Name == "rex64" || Name == "data16";
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
// Read the operands.
while(1) {
if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
Operands.push_back(std::move(Op));
if (!HandleAVX512Operand(Operands, *Operands.back()))
return true;
} else {
Parser.eatToEndOfStatement();
return true;
}
// check for comma and eat it
if (getLexer().is(AsmToken::Comma))
Parser.Lex();
else
break;
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return ErrorAndEatStatement(getLexer().getLoc(),
"unexpected token in argument list");
}
// Consume the EndOfStatement or the prefix separator Slash
if (getLexer().is(AsmToken::EndOfStatement) ||
(isPrefix && getLexer().is(AsmToken::Slash)))
Parser.Lex();
// This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands.back();
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
}
}
// Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
}
}
// Append default arguments to "ins[bwld]"
if (Name.startswith("ins") && Operands.size() == 1 &&
(Name == "insb" || Name == "insw" || Name == "insl" ||
Name == "insd" )) {
AddDefaultSrcDestOperands(Operands,
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
DefaultMemDIOperand(NameLoc));
}
// Append default arguments to "outs[bwld]"
if (Name.startswith("outs") && Operands.size() == 1 &&
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
Name == "outsd" )) {
AddDefaultSrcDestOperands(Operands,
DefaultMemSIOperand(NameLoc),
X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
}
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
// values of $SIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("lods") && Operands.size() == 1 &&
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
Operands.push_back(DefaultMemSIOperand(NameLoc));
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("stos") && Operands.size() == 1 &&
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
Name == "stosl" || Name == "stosd" || Name == "stosq"))
Operands.push_back(DefaultMemDIOperand(NameLoc));
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("scas") && Operands.size() == 1 &&
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
Name == "scasl" || Name == "scasd" || Name == "scasq"))
Operands.push_back(DefaultMemDIOperand(NameLoc));
// Add default SI and DI operands to "cmps[bwlq]".
if (Name.startswith("cmps") &&
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
if (Operands.size() == 1) {
AddDefaultSrcDestOperands(Operands,
DefaultMemDIOperand(NameLoc),
DefaultMemSIOperand(NameLoc));
} else if (Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
if (!doSrcDstMatch(Op, Op2))
return Error(Op.getStartLoc(),
"mismatching source and destination index registers");
}
}
// Add default SI and DI operands to "movs[bwlq]".
if ((Name.startswith("movs") &&
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
(Name.startswith("smov") &&
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
if (Operands.size() == 1) {
if (Name == "movsd")
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
AddDefaultSrcDestOperands(Operands,
DefaultMemSIOperand(NameLoc),
DefaultMemDIOperand(NameLoc));
} else if (Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
if (!doSrcDstMatch(Op, Op2))
return Error(Op.getStartLoc(),
"mismatching source and destination index registers");
}
}
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
// "shift <op>".
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl") || Name.startswith("sal") ||
Name.startswith("rcl") || Name.startswith("rcr") ||
Name.startswith("rol") || Name.startswith("ror")) &&
Operands.size() == 3) {
if (isParsingIntelSyntax()) {
// Intel syntax
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.pop_back();
} else {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.erase(Operands.begin() + 1);
}
}
// Transforms "int $3" into "int3" as a size optimization. We can't write an
// instalias with an immediate operand yet.
if (Name == "int" && Operands.size() == 2) {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm())
if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
if (CE->getValue() == 3) {
Operands.erase(Operands.begin() + 1);
static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
}
}
return false;
}
static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
bool isCmp) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
if (!isCmp)
TmpInst.addOperand(MCOperand::createReg(Reg));
TmpInst.addOperand(MCOperand::createReg(Reg));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
}
static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
}
static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
}
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
switch (Inst.getOpcode()) {
default: return true;
case X86::INT:
X86Operand &Op = static_cast<X86Operand &>(*Ops[1]);
assert(Op.isImm() && "expected immediate");
int64_t Res;
if (!Op.getImm()->evaluateAsAbsolute(Res) || Res > 255) {
Error(Op.getStartLoc(), "interrupt vector must be in range [0-255]");
return false;
}
return true;
}
llvm_unreachable("handle the instruction appropriately");
}
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
switch (Inst.getOpcode()) {
default: return false;
case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8);
case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8);
case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8);
case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
!X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
!X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
}
}
static const char *getSubtargetFeatureName(uint64_t Val);
void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
MCStreamer &Out) {
Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
MII, Out);
}
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
if (isParsingIntelSyntax())
return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
}
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
OperandVector &Operands, MCStreamer &Out,
bool MatchingInlineAsm) {
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
const char *Repl = StringSwitch<const char *>(Op.getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(nullptr);
if (Repl) {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
}
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
bool MatchingInlineAsm) {
assert(ErrorInfo && "Unknown missing feature!");
ArrayRef<SMRange> EmptyRanges = None;
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "instruction requires:";
uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask)
OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
Mask <<= 1;
}
return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
}
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
ArrayRef<SMRange> EmptyRanges = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
bool WasOriginallyInvalidOperand = false;
MCInst Inst;
// First, try a direct match.
switch (MatchInstructionImpl(Operands, Inst,
ErrorInfo, MatchingInlineAsm,
isParsingIntelSyntax())) {
default: llvm_unreachable("Unexpected match result!");
case Match_Success:
if (!validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
case Match_MissingFeature:
return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
case Match_InvalidOperand:
WasOriginallyInvalidOperand = true;
break;
case Match_MnemonicFail:
break;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op.getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op.setTokenValue(Tmp);
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// Check for the various suffix matches.
uint64_t ErrorInfoIgnore;
uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
unsigned Match[4];
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
Tmp.back() = Suffixes[I];
Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
MatchingInlineAsm, isParsingIntelSyntax());
// If this returned as a missing feature failure, remember that.
if (Match[I] == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfoIgnore;
}
// Restore the old token.
Op.setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
if (Match[I] == Match_Success)
MatchChars[NumMatches++] = Suffixes[I];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
if (!WasOriginallyInvalidOperand) {
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
Ranges, MatchingInlineAsm);
}
// Recover location info for the operand if we know which was the problem.
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction",
EmptyRanges, MatchingInlineAsm);
X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
if (Operand.getStartLoc().isValid()) {
SMRange OperandRange = Operand.getLocRange();
return Error(Operand.getStartLoc(), "invalid operand for instruction",
OperandRange, MatchingInlineAsm);
}
}
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = ErrorInfoMissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
EmptyRanges, MatchingInlineAsm);
return true;
}
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
StringRef Mnemonic = Op.getToken();
ArrayRef<SMRange> EmptyRanges = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
MCInst Inst;
// Find one unsized memory operand, if present.
X86Operand *UnsizedMemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isMemUnsized())
UnsizedMemOp = X86Op;
}
// Allow some instructions to have implicitly pointer-sized operands. This is
// compatible with gas.
if (UnsizedMemOp) {
static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
for (const char *Instr : PtrSizedInstrs) {
if (Mnemonic == Instr) {
UnsizedMemOp->Mem.Size = getPointerWidth();
break;
}
}
}
// If an unsized memory operand is present, try to match with each memory
// operand size. In Intel assembly, the size is not part of the instruction
// mnemonic.
SmallVector<unsigned, 8> Match;
uint64_t ErrorInfoMissingFeature = 0;
if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
for (unsigned Size : MopSizes) {
UnsizedMemOp->Mem.Size = Size;
uint64_t ErrorInfoIgnore;
unsigned LastOpcode = Inst.getOpcode();
unsigned M =
MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
MatchingInlineAsm, isParsingIntelSyntax());
if (Match.empty() || LastOpcode != Inst.getOpcode())
Match.push_back(M);
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfoIgnore;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
}
// If we haven't matched anything yet, this is not a basic integer or FPU
// operation. There shouldn't be any ambiguity in our mnemonic table, so try
// matching with the unsized operand.
if (Match.empty()) {
Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm,
isParsingIntelSyntax()));
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfo;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
// If it's a bad mnemonic, all results will be the same.
if (Match.back() == Match_MnemonicFail) {
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
Ranges, MatchingInlineAsm);
}
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
if (!validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the individual
// transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
} else if (NumSuccessfulMatches > 1) {
assert(UnsizedMemOp &&
"multiple matches only possible with unsized memory operands");
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange();
return Error(UnsizedMemOp->getStartLoc(),
"ambiguous operand size for instruction '" + Mnemonic + "\'",
Ranges, MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = ErrorInfoMissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges,
MatchingInlineAsm);
}
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
else if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".att_syntax")) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "prefix")
Parser.Lex();
else if (Parser.getTok().getString() == "noprefix")
return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
"supported: registers must have a "
"'%' prefix in .att_syntax");
}
getParser().setAssemblerDialect(0);
return false;
} else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "noprefix")
Parser.Lex();
else if (Parser.getTok().getString() == "prefix")
return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
"supported: registers must not have "
"a '%' prefix in .intel_syntax");
}
return false;
}
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return false;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma)) {
Error(L, "unexpected token in directive");
return false;
}
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveCode
/// ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
MCAsmParser &Parser = getParser();
if (IDVal == ".code16") {
Parser.Lex();
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code32") {
Parser.Lex();
if (!is32BitMode()) {
SwitchMode(X86::Mode32Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
}
} else if (IDVal == ".code64") {
Parser.Lex();
if (!is64BitMode()) {
SwitchMode(X86::Mode64Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
}
} else {
Error(L, "unknown directive " + IDVal);
return false;
}
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"