1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/tools/llvm-dwarfdump/Statistics.cpp
Adrian Prantl d11782d299 llvm-dwarfdump: Add an option to collect debug info quality metrics.
At the last LLVM dev meeting we had a debug info for optimized code
BoF session. In that session I presented some graphs that showed how
the quality of the debug info produced by LLVM changed over the last
couple of years. This is a cleaned up version of the patch I used to
collect the this data. It is implemented as an extension of
llvm-dwarfdump, adding a new --statistics option. The intended
use-case is to automatically run this on the debug info produced by,
e.g., our bots, to identify eyebrow-raising changes or regressions
introduced by new transformations that we could act on.

In the current form, two kinds of data are being collected:

- The number of variables that have a debug location versus the number
  of variables in total (this takes into account inlined instances of
  the same function, so if a variable is completely missing form only
  one instance it will be found).

- The PC range covered by variable location descriptions versus the PC
  range of all variables' containing lexical scopes.

The output format is versioned and extensible, so I'm looking forward
to both bug fixes and ideas for other data that would be interesting
to track.

Differential Revision: https://reviews.llvm.org/D36627

llvm-svn: 315101
2017-10-06 20:24:34 +00:00

240 lines
9.4 KiB
C++

#include "llvm/ADT/DenseMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/Object/ObjectFile.h"
#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace object;
/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
/// Number of inlined instances of this function.
unsigned NumFnInlined = 0;
/// Number of variables with location across all inlined instances.
unsigned TotalVarWithLoc = 0;
/// Number of constants with location across all inlined instances.
unsigned ConstantMembers = 0;
/// List of all Variables in this function.
SmallDenseSet<uint32_t, 4> VarsInFunction;
/// Compile units also cover a PC range, but have this flag set to false.
bool IsFunction = false;
};
/// Holds accumulated global statistics about local variables.
struct GlobalStats {
/// Total number of PC range bytes covered by DW_AT_locations.
unsigned ScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope,
/// starting from the first definition of the variable.
unsigned ScopeBytesFromFirstDefinition = 0;
};
/// Extract the low pc from a Die.
static uint64_t getLowPC(DWARFDie Die) {
if (Die.getAddressRanges().size())
return Die.getAddressRanges()[0].LowPC;
return dwarf::toAddress(Die.find(dwarf::DW_AT_low_pc), 0);
}
/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, std::string Prefix,
uint64_t ScopeLowPC, uint64_t BytesInScope,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats) {
bool HasLoc = false;
uint64_t BytesCovered = 0;
uint64_t OffsetToFirstDefinition = 0;
if (Die.find(dwarf::DW_AT_const_value)) {
// This catches constant members *and* variables.
HasLoc = true;
BytesCovered = BytesInScope;
} else if (Die.getTag() == dwarf::DW_TAG_variable ||
Die.getTag() == dwarf::DW_TAG_formal_parameter) {
// Handle variables and function arguments.
auto FormValue = Die.find(dwarf::DW_AT_location);
HasLoc = FormValue.hasValue();
if (HasLoc) {
// Get PC coverage.
if (auto DebugLocOffset = FormValue->getAsSectionOffset()) {
auto *DebugLoc = Die.getDwarfUnit()->getContext().getDebugLoc();
if (auto List = DebugLoc->getLocationListAtOffset(*DebugLocOffset)) {
for (auto Entry : List->Entries)
BytesCovered += Entry.End - Entry.Begin;
if (List->Entries.size()) {
uint64_t FirstDef = List->Entries[0].Begin;
uint64_t UnitOfs = getLowPC(Die.getDwarfUnit()->getUnitDIE());
// Ranges sometimes start before the lexical scope.
if (UnitOfs + FirstDef >= ScopeLowPC)
OffsetToFirstDefinition = UnitOfs + FirstDef - ScopeLowPC;
// Or even after it. Count that as a failure.
if (OffsetToFirstDefinition > BytesInScope)
OffsetToFirstDefinition = 0;
}
}
assert(BytesInScope);
} else {
// Assume the entire range is covered by a single location.
BytesCovered = BytesInScope;
}
}
} else {
// Not a variable or constant member.
return;
}
// Collect PC range coverage data.
auto &FnStats = FnStatMap[Prefix];
if (DWARFDie D =
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
Die = D;
// This is a unique ID for the variable inside the current object file.
unsigned CanonicalDieOffset = Die.getOffset();
FnStats.VarsInFunction.insert(CanonicalDieOffset);
if (BytesInScope) {
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
// Adjust for the fact the variables often start their lifetime in the
// middle of the scope.
BytesInScope -= OffsetToFirstDefinition;
// Turns out we have a lot of ranges that extend past the lexical scope.
GlobalStats.ScopeBytesCovered += std::min(BytesInScope, BytesCovered);
GlobalStats.ScopeBytesFromFirstDefinition += BytesInScope;
assert(GlobalStats.ScopeBytesCovered <=
GlobalStats.ScopeBytesFromFirstDefinition);
} else {
FnStats.ConstantMembers++;
}
}
/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(DWARFDie Die, std::string Prefix,
uint64_t ScopeLowPC, uint64_t BytesInScope,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats) {
// Handle any kind of lexical scope.
if (Die.getTag() == dwarf::DW_TAG_subprogram ||
Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
Die.getTag() == dwarf::DW_TAG_lexical_block) {
// Ignore forward declarations.
if (Die.find(dwarf::DW_AT_declaration))
return;
// Count the function.
if (Die.getTag() != dwarf::DW_TAG_lexical_block) {
StringRef Name = Die.getName(DINameKind::LinkageName);
if (Name.empty())
Name = Die.getName(DINameKind::ShortName);
Prefix = Name;
// Skip over abstract origins.
if (Die.find(dwarf::DW_AT_inline))
return;
// We've seen an (inlined) instance of this function.
auto &FnStats = FnStatMap[Name];
FnStats.NumFnInlined++;
FnStats.IsFunction = true;
}
// PC Ranges.
auto Ranges = Die.getAddressRanges();
uint64_t BytesInThisScope = 0;
for (auto Range : Ranges)
BytesInThisScope += Range.HighPC - Range.LowPC;
ScopeLowPC = getLowPC(Die);
if (BytesInThisScope)
BytesInScope = BytesInThisScope;
} else {
// Not a scope, visit the Die itself. It could be a variable.
collectStatsForDie(Die, Prefix, ScopeLowPC, BytesInScope, FnStatMap,
GlobalStats);
}
// Traverse children.
DWARFDie Child = Die.getFirstChild();
while (Child) {
collectStatsRecursive(Child, Prefix, ScopeLowPC, BytesInScope, FnStatMap,
GlobalStats);
Child = Child.getSibling();
}
}
/// Print machine-readable output.
/// The machine-readable format is single-line JSON output.
/// \{
static void printDatum(raw_ostream &OS, const char *Key, StringRef Value) {
OS << ",\"" << Key << "\":\"" << Value << '"';
DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printDatum(raw_ostream &OS, const char *Key, uint64_t Value) {
OS << ",\"" << Key << "\":" << Value;
DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
/// \}
/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
Twine Filename, raw_ostream &OS) {
StringRef FormatName = Obj.getFileFormatName();
GlobalStats GlobalStats;
StringMap<PerFunctionStats> Statistics;
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units())
if (DWARFDie CUDie = CU->getUnitDIE(false))
collectStatsRecursive(CUDie, "/", 0, 0, Statistics, GlobalStats);
/// The version number should be increased every time the algorithm is changed
/// (including bug fixes). New metrics may be added without increasing the
/// version.
unsigned Version = 1;
unsigned VarTotal = 0;
unsigned VarUnique = 0;
unsigned VarWithLoc = 0;
unsigned NumFunctions = 0;
unsigned NumInlinedFunctions = 0;
for (auto &Entry : Statistics) {
PerFunctionStats &Stats = Entry.getValue();
unsigned TotalVars = Stats.VarsInFunction.size() * Stats.NumFnInlined;
unsigned Constants = Stats.ConstantMembers;
VarWithLoc += Stats.TotalVarWithLoc + Constants;
VarTotal += TotalVars + Constants;
VarUnique += Stats.VarsInFunction.size();
DEBUG(for (auto V : Stats.VarsInFunction)
llvm::dbgs() << Entry.getKey() << ": " << V << "\n");
NumFunctions += Stats.IsFunction;
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
}
// Print summary.
OS.SetBufferSize(1024);
OS << "{\"version\":\"" << Version << '"';
DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
llvm::dbgs() << "---------------------------------\n");
printDatum(OS, "file", Filename.str());
printDatum(OS, "format", FormatName);
printDatum(OS, "source functions", NumFunctions);
printDatum(OS, "inlined functions", NumInlinedFunctions);
printDatum(OS, "unique source variables", VarUnique);
printDatum(OS, "source variables", VarTotal);
printDatum(OS, "variables with location", VarWithLoc);
printDatum(OS, "scope bytes total",
GlobalStats.ScopeBytesFromFirstDefinition);
printDatum(OS, "scope bytes covered", GlobalStats.ScopeBytesCovered);
OS << "}\n";
DEBUG(
llvm::dbgs() << "Total Availability: "
<< (int)std::round((VarWithLoc * 100.0) / VarTotal) << "%\n";
llvm::dbgs() << "PC Ranges covered: "
<< (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) /
GlobalStats.ScopeBytesFromFirstDefinition)
<< "%\n");
return true;
}