mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 20:51:52 +01:00
39fe1739db
Calling null or undef results in immediate undefined behavior. Return poison instead of undef in this case, similar to what we do for immediate UB due to division by zero.
218 lines
7.1 KiB
LLVM
218 lines
7.1 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; Tests that check our handling of volatile instructions encountered
|
|
; when scanning for dependencies
|
|
; RUN: opt -basic-aa -gvn -S < %s | FileCheck %s
|
|
|
|
; Check that we can bypass a volatile load when searching
|
|
; for dependencies of a non-volatile load
|
|
define i32 @test1(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test1(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; We can not value forward if the query instruction is
|
|
; volatile, this would be (in effect) removing the volatile load
|
|
define i32 @test2(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test2(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
%y = load volatile i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; If the query instruction is itself volatile, we *cannot*
|
|
; reorder it even if p and q are noalias
|
|
define i32 @test3(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test3(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load volatile i32, i32* %q
|
|
%y = load volatile i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; If an encountered instruction is both volatile and ordered,
|
|
; we need to use the strictest ordering of either. In this
|
|
; case, the ordering prevents forwarding.
|
|
define i32 @test4(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test4(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load atomic volatile i32, i32* [[Q:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] seq_cst, align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load atomic volatile i32, i32* %q seq_cst, align 4
|
|
%y = load atomic i32, i32* %p seq_cst, align 4
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; Value forwarding from a volatile load is perfectly legal
|
|
define i32 @test5(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test5(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%x = load volatile i32, i32* %p
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; Does cross block redundancy elimination work with volatiles?
|
|
define i32 @test6(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test6(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y1]], [[X]]
|
|
; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0
|
|
; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
%cnd = icmp eq i32 %add, 0
|
|
br i1 %cnd, label %exit, label %header
|
|
exit:
|
|
ret i32 %add
|
|
}
|
|
|
|
; Does cross block PRE work with volatiles?
|
|
define i32 @test7(i1 %c, i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test7(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: br i1 [[C:%.*]], label [[ENTRY_HEADER_CRIT_EDGE:%.*]], label [[SKIP:%.*]]
|
|
; CHECK: entry.header_crit_edge:
|
|
; CHECK-NEXT: [[Y_PRE:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: skip:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE]], [[ENTRY_HEADER_CRIT_EDGE]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[SKIP]] ]
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0
|
|
; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
br i1 %c, label %header, label %skip
|
|
skip:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
%cnd = icmp eq i32 %add, 0
|
|
br i1 %cnd, label %exit, label %header
|
|
exit:
|
|
ret i32 %add
|
|
}
|
|
|
|
; Another volatile PRE case - two paths through a loop
|
|
; load in preheader, one path read only, one not
|
|
define i32 @test8(i1 %b, i1 %c, i32* noalias %p, i32* noalias %q) {
|
|
; CHECK-LABEL: @test8(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE:%.*]], [[SKIP_HEADER_CRIT_EDGE:%.*]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[ENTRY:%.*]] ]
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y]])
|
|
; CHECK-NEXT: br i1 [[B:%.*]], label [[SKIP:%.*]], label [[HEADER]]
|
|
; CHECK: skip:
|
|
; CHECK-NEXT: call void @clobber(i32* [[P]], i32* [[Q]])
|
|
; CHECK-NEXT: br i1 [[C:%.*]], label [[SKIP_HEADER_CRIT_EDGE]], label [[EXIT:%.*]]
|
|
; CHECK: skip.header_crit_edge:
|
|
; CHECK-NEXT: [[Y_PRE]] = load i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: br label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
call void @use(i32 %y)
|
|
br i1 %b, label %skip, label %header
|
|
skip:
|
|
; escaping the arguments is explicitly required since we marked
|
|
; them noalias
|
|
call void @clobber(i32* %p, i32* %q)
|
|
br i1 %c, label %header, label %exit
|
|
exit:
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; This test checks that we don't optimize away instructions that are
|
|
; simplified by SimplifyInstruction(), but are not trivially dead.
|
|
|
|
define i32 @test9(i32* %V) {
|
|
; CHECK-LABEL: @test9(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[LOAD:%.*]] = call i32 undef()
|
|
; CHECK-NEXT: ret i32 poison
|
|
;
|
|
entry:
|
|
%load = call i32 undef()
|
|
ret i32 %load
|
|
}
|
|
|
|
declare void @use(i32) readonly
|
|
declare void @clobber(i32* %p, i32* %q)
|
|
|
|
!0 = !{ i32 0, i32 1 }
|