mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
cb3df29c52
llvm-svn: 6200
963 lines
32 KiB
C++
963 lines
32 KiB
C++
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
|
|
//
|
|
// This library implements the functionality defined in llvm/Assembly/Writer.h
|
|
//
|
|
// Note that these routines must be extremely tolerant of various errors in the
|
|
// LLVM code, because it can be used for debugging transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Assembly/CachedWriter.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Assembly/PrintModulePass.h"
|
|
#include "llvm/SlotCalculator.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/StringExtras.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
static RegisterPass<PrintModulePass>
|
|
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
|
|
static RegisterPass<PrintFunctionPass>
|
|
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
|
|
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
|
|
bool PrintName,
|
|
std::map<const Type *, std::string> &TypeTable,
|
|
SlotCalculator *Table);
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const Argument *MA = dyn_cast<const Argument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : 0;
|
|
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : 0;
|
|
else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
|
|
return M ? M->getParent() : 0;
|
|
} else if (const GlobalValue *GV = dyn_cast<const GlobalValue>(V))
|
|
return GV->getParent();
|
|
return 0;
|
|
}
|
|
|
|
static SlotCalculator *createSlotCalculator(const Value *V) {
|
|
assert(!isa<Type>(V) && "Can't create an SC for a type!");
|
|
if (const Argument *FA = dyn_cast<const Argument>(V)) {
|
|
return new SlotCalculator(FA->getParent(), true);
|
|
} else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
|
|
return new SlotCalculator(I->getParent()->getParent(), true);
|
|
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
|
|
return new SlotCalculator(BB->getParent(), true);
|
|
} else if (const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V)){
|
|
return new SlotCalculator(GV->getParent(), true);
|
|
} else if (const Function *Func = dyn_cast<const Function>(V)) {
|
|
return new SlotCalculator(Func, true);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// If the module has a symbol table, take all global types and stuff their
|
|
// names into the TypeNames map.
|
|
//
|
|
static void fillTypeNameTable(const Module *M,
|
|
std::map<const Type *, std::string> &TypeNames) {
|
|
if (!M) return;
|
|
const SymbolTable &ST = M->getSymbolTable();
|
|
SymbolTable::const_iterator PI = ST.find(Type::TypeTy);
|
|
if (PI != ST.end()) {
|
|
SymbolTable::type_const_iterator I = PI->second.begin();
|
|
for (; I != PI->second.end(); ++I) {
|
|
// As a heuristic, don't insert pointer to primitive types, because
|
|
// they are used too often to have a single useful name.
|
|
//
|
|
const Type *Ty = cast<const Type>(I->second);
|
|
if (!isa<PointerType>(Ty) ||
|
|
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
|
|
TypeNames.insert(std::make_pair(Ty, "%"+I->first));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static std::string calcTypeName(const Type *Ty,
|
|
std::vector<const Type *> &TypeStack,
|
|
std::map<const Type *, std::string> &TypeNames){
|
|
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
|
|
|
|
// Check to see if the type is named.
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return I->second;
|
|
|
|
// Check to see if the Type is already on the stack...
|
|
unsigned Slot = 0, CurSize = TypeStack.size();
|
|
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
|
|
|
|
// This is another base case for the recursion. In this case, we know
|
|
// that we have looped back to a type that we have previously visited.
|
|
// Generate the appropriate upreference to handle this.
|
|
//
|
|
if (Slot < CurSize)
|
|
return "\\" + utostr(CurSize-Slot); // Here's the upreference
|
|
|
|
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
|
|
|
|
std::string Result;
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy = cast<const FunctionType>(Ty);
|
|
Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
|
|
for (FunctionType::ParamTypes::const_iterator
|
|
I = FTy->getParamTypes().begin(),
|
|
E = FTy->getParamTypes().end(); I != E; ++I) {
|
|
if (I != FTy->getParamTypes().begin())
|
|
Result += ", ";
|
|
Result += calcTypeName(*I, TypeStack, TypeNames);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (!FTy->getParamTypes().empty()) Result += ", ";
|
|
Result += "...";
|
|
}
|
|
Result += ")";
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *STy = cast<const StructType>(Ty);
|
|
Result = "{ ";
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I) {
|
|
if (I != STy->getElementTypes().begin())
|
|
Result += ", ";
|
|
Result += calcTypeName(*I, TypeStack, TypeNames);
|
|
}
|
|
Result += " }";
|
|
break;
|
|
}
|
|
case Type::PointerTyID:
|
|
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
|
|
TypeStack, TypeNames) + "*";
|
|
break;
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<const ArrayType>(Ty);
|
|
Result = "[" + utostr(ATy->getNumElements()) + " x ";
|
|
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
|
|
break;
|
|
}
|
|
case Type::OpaqueTyID:
|
|
Result = "opaque";
|
|
break;
|
|
default:
|
|
Result = "<unrecognized-type>";
|
|
}
|
|
|
|
TypeStack.pop_back(); // Remove self from stack...
|
|
return Result;
|
|
}
|
|
|
|
|
|
// printTypeInt - The internal guts of printing out a type that has a
|
|
// potentially named portion.
|
|
//
|
|
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
|
|
std::map<const Type *, std::string> &TypeNames) {
|
|
// Primitive types always print out their description, regardless of whether
|
|
// they have been named or not.
|
|
//
|
|
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
|
|
|
|
// Check to see if the type is named.
|
|
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
|
|
if (I != TypeNames.end()) return Out << I->second;
|
|
|
|
// Otherwise we have a type that has not been named but is a derived type.
|
|
// Carefully recurse the type hierarchy to print out any contained symbolic
|
|
// names.
|
|
//
|
|
std::vector<const Type *> TypeStack;
|
|
std::string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
|
|
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
|
|
return Out << TypeName;
|
|
}
|
|
|
|
|
|
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
|
|
// type, iff there is an entry in the modules symbol table for the specified
|
|
// type or one of it's component types. This is slower than a simple x << Type;
|
|
//
|
|
std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
|
|
const Module *M) {
|
|
Out << " ";
|
|
|
|
// If they want us to print out a type, attempt to make it symbolic if there
|
|
// is a symbol table in the module...
|
|
if (M) {
|
|
std::map<const Type *, std::string> TypeNames;
|
|
fillTypeNameTable(M, TypeNames);
|
|
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
} else {
|
|
return Out << Ty->getDescription();
|
|
}
|
|
}
|
|
|
|
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
|
|
bool PrintName,
|
|
std::map<const Type *, std::string> &TypeTable,
|
|
SlotCalculator *Table) {
|
|
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
|
|
Out << (CB == ConstantBool::True ? "true" : "false");
|
|
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
|
|
Out << CI->getValue();
|
|
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
|
|
Out << CI->getValue();
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
// We would like to output the FP constant value in exponential notation,
|
|
// but we cannot do this if doing so will lose precision. Check here to
|
|
// make sure that we only output it in exponential format if we can parse
|
|
// the value back and get the same value.
|
|
//
|
|
std::string StrVal = ftostr(CFP->getValue());
|
|
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
|
|
// the string matches the "[-+]?[0-9]" regex.
|
|
//
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[0] >= '0' && StrVal[0] <= '9')))
|
|
// Reparse stringized version!
|
|
if (atof(StrVal.c_str()) == CFP->getValue()) {
|
|
Out << StrVal; return;
|
|
}
|
|
|
|
// Otherwise we could not reparse it to exactly the same value, so we must
|
|
// output the string in hexadecimal format!
|
|
//
|
|
// Behave nicely in the face of C TBAA rules... see:
|
|
// http://www.nullstone.com/htmls/category/aliastyp.htm
|
|
//
|
|
double Val = CFP->getValue();
|
|
char *Ptr = (char*)&Val;
|
|
assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
|
|
"assuming that double is 64 bits!");
|
|
Out << "0x" << utohexstr(*(uint64_t*)Ptr);
|
|
|
|
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
// As a special case, print the array as a string if it is an array of
|
|
// ubytes or an array of sbytes with positive values.
|
|
//
|
|
const Type *ETy = CA->getType()->getElementType();
|
|
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
|
|
|
|
if (ETy == Type::SByteTy)
|
|
for (unsigned i = 0; i < CA->getNumOperands(); ++i)
|
|
if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
|
|
isString = false;
|
|
break;
|
|
}
|
|
|
|
if (isString) {
|
|
Out << "c\"";
|
|
for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
|
|
unsigned char C = (ETy == Type::SByteTy) ?
|
|
(unsigned char)cast<ConstantSInt>(CA->getOperand(i))->getValue() :
|
|
(unsigned char)cast<ConstantUInt>(CA->getOperand(i))->getValue();
|
|
|
|
if (isprint(C) && C != '"' && C != '\\') {
|
|
Out << C;
|
|
} else {
|
|
Out << '\\'
|
|
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
|
|
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
|
|
}
|
|
}
|
|
Out << "\"";
|
|
|
|
} else { // Cannot output in string format...
|
|
Out << "[";
|
|
if (CA->getNumOperands()) {
|
|
Out << " ";
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CA->getOperand(0),
|
|
PrintName, TypeTable, Table);
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
printTypeInt(Out, ETy, TypeTable);
|
|
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
|
|
TypeTable, Table);
|
|
}
|
|
}
|
|
Out << " ]";
|
|
}
|
|
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
Out << "{";
|
|
if (CS->getNumOperands()) {
|
|
Out << " ";
|
|
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(0),
|
|
PrintName, TypeTable, Table);
|
|
|
|
for (unsigned i = 1; i < CS->getNumOperands(); i++) {
|
|
Out << ", ";
|
|
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(i),
|
|
PrintName, TypeTable, Table);
|
|
}
|
|
}
|
|
|
|
Out << " }";
|
|
} else if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "null";
|
|
|
|
} else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
|
|
const GlobalValue *V = PR->getValue();
|
|
if (V->hasName()) {
|
|
Out << "%" << V->getName();
|
|
} else if (Table) {
|
|
int Slot = Table->getValSlot(V);
|
|
if (Slot >= 0)
|
|
Out << "%" << Slot;
|
|
else
|
|
Out << "<pointer reference badref>";
|
|
} else {
|
|
Out << "<pointer reference without context info>";
|
|
}
|
|
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
Out << CE->getOpcodeName() << " (";
|
|
|
|
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
|
|
printTypeInt(Out, (*OI)->getType(), TypeTable);
|
|
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
|
|
if (OI+1 != CE->op_end())
|
|
Out << ", ";
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::Cast) {
|
|
Out << " to ";
|
|
printTypeInt(Out, CE->getType(), TypeTable);
|
|
}
|
|
Out << ")";
|
|
|
|
} else {
|
|
Out << "<placeholder or erroneous Constant>";
|
|
}
|
|
}
|
|
|
|
|
|
// WriteAsOperand - Write the name of the specified value out to the specified
|
|
// ostream. This can be useful when you just want to print int %reg126, not the
|
|
// whole instruction that generated it.
|
|
//
|
|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
|
|
bool PrintName,
|
|
std::map<const Type*, std::string> &TypeTable,
|
|
SlotCalculator *Table) {
|
|
Out << " ";
|
|
if (PrintName && V->hasName()) {
|
|
Out << "%" << V->getName();
|
|
} else {
|
|
if (const Constant *CV = dyn_cast<const Constant>(V)) {
|
|
WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
|
|
} else {
|
|
int Slot;
|
|
if (Table) {
|
|
Slot = Table->getValSlot(V);
|
|
} else {
|
|
if (const Type *Ty = dyn_cast<const Type>(V)) {
|
|
Out << Ty->getDescription();
|
|
return;
|
|
}
|
|
|
|
Table = createSlotCalculator(V);
|
|
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
|
|
|
|
Slot = Table->getValSlot(V);
|
|
delete Table;
|
|
}
|
|
if (Slot >= 0) Out << "%" << Slot;
|
|
else if (PrintName)
|
|
Out << "<badref>"; // Not embeded into a location?
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// WriteAsOperand - Write the name of the specified value out to the specified
|
|
// ostream. This can be useful when you just want to print int %reg126, not the
|
|
// whole instruction that generated it.
|
|
//
|
|
std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
|
|
bool PrintName, const Module *Context) {
|
|
std::map<const Type *, std::string> TypeNames;
|
|
if (Context == 0) Context = getModuleFromVal(V);
|
|
|
|
if (Context)
|
|
fillTypeNameTable(Context, TypeNames);
|
|
|
|
if (PrintType)
|
|
printTypeInt(Out, V->getType(), TypeNames);
|
|
|
|
WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
|
|
return Out;
|
|
}
|
|
|
|
|
|
|
|
class AssemblyWriter {
|
|
std::ostream &Out;
|
|
SlotCalculator &Table;
|
|
const Module *TheModule;
|
|
std::map<const Type *, std::string> TypeNames;
|
|
public:
|
|
inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M)
|
|
: Out(o), Table(Tab), TheModule(M) {
|
|
|
|
// If the module has a symbol table, take all global types and stuff their
|
|
// names into the TypeNames map.
|
|
//
|
|
fillTypeNameTable(M, TypeNames);
|
|
}
|
|
|
|
inline void write(const Module *M) { printModule(M); }
|
|
inline void write(const GlobalVariable *G) { printGlobal(G); }
|
|
inline void write(const Function *F) { printFunction(F); }
|
|
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
|
|
inline void write(const Instruction *I) { printInstruction(*I); }
|
|
inline void write(const Constant *CPV) { printConstant(CPV); }
|
|
inline void write(const Type *Ty) { printType(Ty); }
|
|
|
|
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
|
|
|
|
private :
|
|
void printModule(const Module *M);
|
|
void printSymbolTable(const SymbolTable &ST);
|
|
void printConstant(const Constant *CPV);
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printFunction(const Function *F);
|
|
void printArgument(const Argument *FA);
|
|
void printBasicBlock(const BasicBlock *BB);
|
|
void printInstruction(const Instruction &I);
|
|
|
|
// printType - Go to extreme measures to attempt to print out a short,
|
|
// symbolic version of a type name.
|
|
//
|
|
std::ostream &printType(const Type *Ty) {
|
|
return printTypeInt(Out, Ty, TypeNames);
|
|
}
|
|
|
|
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
|
|
// without considering any symbolic types that we may have equal to it.
|
|
//
|
|
std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
void printInfoComment(const Value &V);
|
|
};
|
|
|
|
|
|
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
|
|
// without considering any symbolic types that we may have equal to it.
|
|
//
|
|
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
|
|
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
|
|
printType(FTy->getReturnType()) << " (";
|
|
for (FunctionType::ParamTypes::const_iterator
|
|
I = FTy->getParamTypes().begin(),
|
|
E = FTy->getParamTypes().end(); I != E; ++I) {
|
|
if (I != FTy->getParamTypes().begin())
|
|
Out << ", ";
|
|
printType(*I);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (!FTy->getParamTypes().empty()) Out << ", ";
|
|
Out << "...";
|
|
}
|
|
Out << ")";
|
|
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
Out << "{ ";
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I) {
|
|
if (I != STy->getElementTypes().begin())
|
|
Out << ", ";
|
|
printType(*I);
|
|
}
|
|
Out << " }";
|
|
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
|
|
printType(PTy->getElementType()) << "*";
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
Out << "[" << ATy->getNumElements() << " x ";
|
|
printType(ATy->getElementType()) << "]";
|
|
} else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
|
|
Out << OTy->getDescription();
|
|
} else {
|
|
if (!Ty->isPrimitiveType())
|
|
Out << "<unknown derived type>";
|
|
printType(Ty);
|
|
}
|
|
return Out;
|
|
}
|
|
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
|
|
bool PrintName) {
|
|
if (PrintType) { Out << " "; printType(Operand->getType()); }
|
|
WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
|
|
}
|
|
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
Out << "target endian = " << (M->isLittleEndian() ? "little" : "big") << "\n";
|
|
Out << "target pointersize = " << (M->has32BitPointers() ? 32 : 64) << "\n";
|
|
|
|
// Loop over the symbol table, emitting all named constants...
|
|
printSymbolTable(M->getSymbolTable());
|
|
|
|
for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
|
|
printGlobal(I);
|
|
|
|
Out << "\nimplementation ; Functions:\n";
|
|
|
|
// Output all of the functions...
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
printFunction(I);
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->hasName()) Out << "%" << GV->getName() << " = ";
|
|
|
|
if (!GV->hasInitializer())
|
|
Out << "external ";
|
|
else
|
|
switch (GV->getLinkage()) {
|
|
case GlobalValue::InternalLinkage: Out << "internal "; break;
|
|
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
|
|
case GlobalValue::AppendingLinkage: Out << "appending "; break;
|
|
case GlobalValue::ExternalLinkage: break;
|
|
}
|
|
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
printType(GV->getType()->getElementType());
|
|
|
|
if (GV->hasInitializer())
|
|
writeOperand(GV->getInitializer(), false, false);
|
|
|
|
printInfoComment(*GV);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
// printSymbolTable - Run through symbol table looking for named constants
|
|
// if a named constant is found, emit it's declaration...
|
|
//
|
|
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
|
|
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
|
|
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
|
|
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
|
|
|
|
for (; I != End; ++I) {
|
|
const Value *V = I->second;
|
|
if (const Constant *CPV = dyn_cast<const Constant>(V)) {
|
|
printConstant(CPV);
|
|
} else if (const Type *Ty = dyn_cast<const Type>(V)) {
|
|
Out << "\t%" << I->first << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %FILE = type %FILE
|
|
//
|
|
printTypeAtLeastOneLevel(Ty) << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// printConstant - Print out a constant pool entry...
|
|
//
|
|
void AssemblyWriter::printConstant(const Constant *CPV) {
|
|
// Don't print out unnamed constants, they will be inlined
|
|
if (!CPV->hasName()) return;
|
|
|
|
// Print out name...
|
|
Out << "\t%" << CPV->getName() << " =";
|
|
|
|
// Write the value out now...
|
|
writeOperand(CPV, true, false);
|
|
|
|
printInfoComment(*CPV);
|
|
Out << "\n";
|
|
}
|
|
|
|
// printFunction - Print all aspects of a function.
|
|
//
|
|
void AssemblyWriter::printFunction(const Function *F) {
|
|
// Print out the return type and name...
|
|
Out << "\n";
|
|
|
|
if (F->isExternal())
|
|
Out << "declare ";
|
|
else
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::InternalLinkage: Out << "internal "; break;
|
|
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
|
|
case GlobalValue::AppendingLinkage: Out << "appending "; break;
|
|
case GlobalValue::ExternalLinkage: break;
|
|
}
|
|
|
|
printType(F->getReturnType()) << " %" << F->getName() << "(";
|
|
Table.incorporateFunction(F);
|
|
|
|
// Loop over the arguments, printing them...
|
|
const FunctionType *FT = F->getFunctionType();
|
|
|
|
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
|
|
printArgument(I);
|
|
|
|
// Finish printing arguments...
|
|
if (FT->isVarArg()) {
|
|
if (FT->getParamTypes().size()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ")";
|
|
|
|
if (F->isExternal()) {
|
|
Out << "\n";
|
|
} else {
|
|
Out << " {";
|
|
|
|
// Output all of its basic blocks... for the function
|
|
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
printBasicBlock(I);
|
|
|
|
Out << "}\n";
|
|
}
|
|
|
|
Table.purgeFunction();
|
|
}
|
|
|
|
// printArgument - This member is called for every argument that
|
|
// is passed into the function. Simply print it out
|
|
//
|
|
void AssemblyWriter::printArgument(const Argument *Arg) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (Arg != &Arg->getParent()->afront()) Out << ", ";
|
|
|
|
// Output type...
|
|
printType(Arg->getType());
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName())
|
|
Out << " %" << Arg->getName();
|
|
else if (Table.getValSlot(Arg) < 0)
|
|
Out << "<badref>";
|
|
}
|
|
|
|
// printBasicBlock - This member is called for each basic block in a methd.
|
|
//
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n" << BB->getName() << ":";
|
|
} else if (!BB->use_empty()) { // Don't print block # of no uses...
|
|
int Slot = Table.getValSlot(BB);
|
|
Out << "\n; <label>:";
|
|
if (Slot >= 0)
|
|
Out << Slot; // Extra newline seperates out label's
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
// Output predecessors for the block...
|
|
Out << "\t\t;";
|
|
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE) {
|
|
Out << " No predecessors!";
|
|
} else {
|
|
Out << " preds =";
|
|
writeOperand(*PI, false, true);
|
|
for (++PI; PI != PE; ++PI) {
|
|
Out << ",";
|
|
writeOperand(*PI, false, true);
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
printInstruction(*I);
|
|
}
|
|
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
//
|
|
void AssemblyWriter::printInfoComment(const Value &V) {
|
|
if (V.getType() != Type::VoidTy) {
|
|
Out << "\t\t; <";
|
|
printType(V.getType()) << ">";
|
|
|
|
if (!V.hasName()) {
|
|
int Slot = Table.getValSlot(&V); // Print out the def slot taken...
|
|
if (Slot >= 0) Out << ":" << Slot;
|
|
else Out << ":<badref>";
|
|
}
|
|
Out << " [#uses=" << V.use_size() << "]"; // Output # uses
|
|
}
|
|
}
|
|
|
|
// printInstruction - This member is called for each Instruction in a methd.
|
|
//
|
|
void AssemblyWriter::printInstruction(const Instruction &I) {
|
|
Out << "\t";
|
|
|
|
// Print out name if it exists...
|
|
if (I.hasName())
|
|
Out << "%" << I.getName() << " = ";
|
|
|
|
// Print out the opcode...
|
|
Out << I.getOpcodeName();
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
|
|
writeOperand(I.getOperand(2), true);
|
|
Out << ",";
|
|
writeOperand(Operand, true);
|
|
Out << ",";
|
|
writeOperand(I.getOperand(1), true);
|
|
|
|
} else if (isa<SwitchInst>(I)) {
|
|
// Special case switch statement to get formatting nice and correct...
|
|
writeOperand(Operand , true); Out << ",";
|
|
writeOperand(I.getOperand(1), true); Out << " [";
|
|
|
|
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
|
|
Out << "\n\t\t";
|
|
writeOperand(I.getOperand(op ), true); Out << ",";
|
|
writeOperand(I.getOperand(op+1), true);
|
|
}
|
|
Out << "\n\t]";
|
|
} else if (isa<PHINode>(I)) {
|
|
Out << " ";
|
|
printType(I.getType());
|
|
Out << " ";
|
|
|
|
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
|
|
if (op) Out << ", ";
|
|
Out << "[";
|
|
writeOperand(I.getOperand(op ), false); Out << ",";
|
|
writeOperand(I.getOperand(op+1), false); Out << " ]";
|
|
}
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (isa<CallInst>(I)) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
|
|
const FunctionType*MTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()):0;
|
|
const Type *RetTy = MTy ? MTy->getReturnType() : 0;
|
|
|
|
// If possible, print out the short form of the call instruction, but we can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the value returned is not a pointer to a function.
|
|
//
|
|
if (RetTy && MTy && !MTy->isVarArg() &&
|
|
(!isa<PointerType>(RetTy) ||
|
|
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
|
|
Out << " "; printType(RetTy);
|
|
writeOperand(Operand, false);
|
|
} else {
|
|
writeOperand(Operand, true);
|
|
}
|
|
Out << "(";
|
|
if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
|
|
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
|
|
Out << ",";
|
|
writeOperand(I.getOperand(op), true);
|
|
}
|
|
|
|
Out << " )";
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
// TODO: Should try to print out short form of the Invoke instruction
|
|
writeOperand(Operand, true);
|
|
Out << "(";
|
|
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
|
|
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
|
|
Out << ",";
|
|
writeOperand(I.getOperand(op), true);
|
|
}
|
|
|
|
Out << " )\n\t\t\tto";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " except";
|
|
writeOperand(II->getExceptionalDest(), true);
|
|
|
|
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
|
|
Out << " ";
|
|
printType(AI->getType()->getElementType());
|
|
if (AI->isArrayAllocation()) {
|
|
Out << ",";
|
|
writeOperand(AI->getArraySize(), true);
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
writeOperand(Operand, true);
|
|
Out << " to ";
|
|
printType(I.getType());
|
|
} else if (isa<VarArgInst>(I)) {
|
|
writeOperand(Operand, true);
|
|
Out << ", ";
|
|
printType(I.getType());
|
|
} else if (Operand) { // Print the normal way...
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
const Type *TheType = Operand->getType();
|
|
|
|
// Shift Left & Right print both types even for Ubyte LHS
|
|
if (isa<ShiftInst>(I)) {
|
|
PrintAllTypes = true;
|
|
} else {
|
|
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
|
|
Operand = I.getOperand(i);
|
|
if (Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << " ";
|
|
printType(TheType);
|
|
}
|
|
|
|
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ",";
|
|
writeOperand(I.getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
printInfoComment(I);
|
|
Out << "\n";
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
void Module::print(std::ostream &o) const {
|
|
SlotCalculator SlotTable(this, true);
|
|
AssemblyWriter W(o, SlotTable, this);
|
|
W.write(this);
|
|
}
|
|
|
|
void GlobalVariable::print(std::ostream &o) const {
|
|
SlotCalculator SlotTable(getParent(), true);
|
|
AssemblyWriter W(o, SlotTable, getParent());
|
|
W.write(this);
|
|
}
|
|
|
|
void Function::print(std::ostream &o) const {
|
|
SlotCalculator SlotTable(getParent(), true);
|
|
AssemblyWriter W(o, SlotTable, getParent());
|
|
|
|
W.write(this);
|
|
}
|
|
|
|
void BasicBlock::print(std::ostream &o) const {
|
|
SlotCalculator SlotTable(getParent(), true);
|
|
AssemblyWriter W(o, SlotTable,
|
|
getParent() ? getParent()->getParent() : 0);
|
|
W.write(this);
|
|
}
|
|
|
|
void Instruction::print(std::ostream &o) const {
|
|
const Function *F = getParent() ? getParent()->getParent() : 0;
|
|
SlotCalculator SlotTable(F, true);
|
|
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
|
|
|
|
W.write(this);
|
|
}
|
|
|
|
void Constant::print(std::ostream &o) const {
|
|
if (this == 0) { o << "<null> constant value\n"; return; }
|
|
|
|
// Handle CPR's special, because they have context information...
|
|
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
|
|
CPR->getValue()->print(o); // Print as a global value, with context info.
|
|
return;
|
|
}
|
|
|
|
o << " " << getType()->getDescription() << " ";
|
|
|
|
std::map<const Type *, std::string> TypeTable;
|
|
WriteConstantInt(o, this, false, TypeTable, 0);
|
|
}
|
|
|
|
void Type::print(std::ostream &o) const {
|
|
if (this == 0)
|
|
o << "<null Type>";
|
|
else
|
|
o << getDescription();
|
|
}
|
|
|
|
void Argument::print(std::ostream &o) const {
|
|
o << getType() << " " << getName();
|
|
}
|
|
|
|
void Value::dump() const { print(std::cerr); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CachedWriter Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CachedWriter::setModule(const Module *M) {
|
|
delete SC; delete AW;
|
|
if (M) {
|
|
SC = new SlotCalculator(M, true);
|
|
AW = new AssemblyWriter(Out, *SC, M);
|
|
} else {
|
|
SC = 0; AW = 0;
|
|
}
|
|
}
|
|
|
|
CachedWriter::~CachedWriter() {
|
|
delete AW;
|
|
delete SC;
|
|
}
|
|
|
|
CachedWriter &CachedWriter::operator<<(const Value *V) {
|
|
assert(AW && SC && "CachedWriter does not have a current module!");
|
|
switch (V->getValueType()) {
|
|
case Value::ConstantVal:
|
|
case Value::ArgumentVal: AW->writeOperand(V, true, true); break;
|
|
case Value::TypeVal: AW->write(cast<const Type>(V)); break;
|
|
case Value::InstructionVal: AW->write(cast<Instruction>(V)); break;
|
|
case Value::BasicBlockVal: AW->write(cast<BasicBlock>(V)); break;
|
|
case Value::FunctionVal: AW->write(cast<Function>(V)); break;
|
|
case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
|
|
default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
|
|
}
|
|
return *this;
|
|
}
|