1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/include/llvm/IR/Instruction.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

765 lines
28 KiB
C++

//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Instruction class, which is the
// base class for all of the LLVM instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTION_H
#define LLVM_IR_INSTRUCTION_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
namespace llvm {
class BasicBlock;
class FastMathFlags;
class MDNode;
class Module;
struct AAMDNodes;
template <> struct ilist_alloc_traits<Instruction> {
static inline void deleteNode(Instruction *V);
};
class Instruction : public User,
public ilist_node_with_parent<Instruction, BasicBlock> {
BasicBlock *Parent;
DebugLoc DbgLoc; // 'dbg' Metadata cache.
enum {
/// This is a bit stored in the SubClassData field which indicates whether
/// this instruction has metadata attached to it or not.
HasMetadataBit = 1 << 15
};
protected:
~Instruction(); // Use deleteValue() to delete a generic Instruction.
public:
Instruction(const Instruction &) = delete;
Instruction &operator=(const Instruction &) = delete;
/// Specialize the methods defined in Value, as we know that an instruction
/// can only be used by other instructions.
Instruction *user_back() { return cast<Instruction>(*user_begin());}
const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
inline const BasicBlock *getParent() const { return Parent; }
inline BasicBlock *getParent() { return Parent; }
/// Return the module owning the function this instruction belongs to
/// or nullptr it the function does not have a module.
///
/// Note: this is undefined behavior if the instruction does not have a
/// parent, or the parent basic block does not have a parent function.
const Module *getModule() const;
Module *getModule() {
return const_cast<Module *>(
static_cast<const Instruction *>(this)->getModule());
}
/// Return the function this instruction belongs to.
///
/// Note: it is undefined behavior to call this on an instruction not
/// currently inserted into a function.
const Function *getFunction() const;
Function *getFunction() {
return const_cast<Function *>(
static_cast<const Instruction *>(this)->getFunction());
}
/// This method unlinks 'this' from the containing basic block, but does not
/// delete it.
void removeFromParent();
/// This method unlinks 'this' from the containing basic block and deletes it.
///
/// \returns an iterator pointing to the element after the erased one
SymbolTableList<Instruction>::iterator eraseFromParent();
/// Insert an unlinked instruction into a basic block immediately before
/// the specified instruction.
void insertBefore(Instruction *InsertPos);
/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void insertAfter(Instruction *InsertPos);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that MovePos lives in, right before MovePos.
void moveBefore(Instruction *MovePos);
/// Unlink this instruction and insert into BB before I.
///
/// \pre I is a valid iterator into BB.
void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that MovePos lives in, right after MovePos.
void moveAfter(Instruction *MovePos);
//===--------------------------------------------------------------------===//
// Subclass classification.
//===--------------------------------------------------------------------===//
/// Returns a member of one of the enums like Instruction::Add.
unsigned getOpcode() const { return getValueID() - InstructionVal; }
const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
bool isTerminator() const { return isTerminator(getOpcode()); }
bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
bool isShift() { return isShift(getOpcode()); }
bool isCast() const { return isCast(getOpcode()); }
bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
bool isExceptionalTerminator() const {
return isExceptionalTerminator(getOpcode());
}
static const char* getOpcodeName(unsigned OpCode);
static inline bool isTerminator(unsigned OpCode) {
return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
}
static inline bool isUnaryOp(unsigned Opcode) {
return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
}
static inline bool isBinaryOp(unsigned Opcode) {
return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
}
static inline bool isIntDivRem(unsigned Opcode) {
return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
}
/// Determine if the Opcode is one of the shift instructions.
static inline bool isShift(unsigned Opcode) {
return Opcode >= Shl && Opcode <= AShr;
}
/// Return true if this is a logical shift left or a logical shift right.
inline bool isLogicalShift() const {
return getOpcode() == Shl || getOpcode() == LShr;
}
/// Return true if this is an arithmetic shift right.
inline bool isArithmeticShift() const {
return getOpcode() == AShr;
}
/// Determine if the Opcode is and/or/xor.
static inline bool isBitwiseLogicOp(unsigned Opcode) {
return Opcode == And || Opcode == Or || Opcode == Xor;
}
/// Return true if this is and/or/xor.
inline bool isBitwiseLogicOp() const {
return isBitwiseLogicOp(getOpcode());
}
/// Determine if the OpCode is one of the CastInst instructions.
static inline bool isCast(unsigned OpCode) {
return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
}
/// Determine if the OpCode is one of the FuncletPadInst instructions.
static inline bool isFuncletPad(unsigned OpCode) {
return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
}
/// Returns true if the OpCode is a terminator related to exception handling.
static inline bool isExceptionalTerminator(unsigned OpCode) {
switch (OpCode) {
case Instruction::CatchSwitch:
case Instruction::CatchRet:
case Instruction::CleanupRet:
case Instruction::Invoke:
case Instruction::Resume:
return true;
default:
return false;
}
}
//===--------------------------------------------------------------------===//
// Metadata manipulation.
//===--------------------------------------------------------------------===//
/// Return true if this instruction has any metadata attached to it.
bool hasMetadata() const { return DbgLoc || hasMetadataHashEntry(); }
/// Return true if this instruction has metadata attached to it other than a
/// debug location.
bool hasMetadataOtherThanDebugLoc() const {
return hasMetadataHashEntry();
}
/// Get the metadata of given kind attached to this Instruction.
/// If the metadata is not found then return null.
MDNode *getMetadata(unsigned KindID) const {
if (!hasMetadata()) return nullptr;
return getMetadataImpl(KindID);
}
/// Get the metadata of given kind attached to this Instruction.
/// If the metadata is not found then return null.
MDNode *getMetadata(StringRef Kind) const {
if (!hasMetadata()) return nullptr;
return getMetadataImpl(Kind);
}
/// Get all metadata attached to this Instruction. The first element of each
/// pair returned is the KindID, the second element is the metadata value.
/// This list is returned sorted by the KindID.
void
getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
if (hasMetadata())
getAllMetadataImpl(MDs);
}
/// This does the same thing as getAllMetadata, except that it filters out the
/// debug location.
void getAllMetadataOtherThanDebugLoc(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
if (hasMetadataOtherThanDebugLoc())
getAllMetadataOtherThanDebugLocImpl(MDs);
}
/// Fills the AAMDNodes structure with AA metadata from this instruction.
/// When Merge is true, the existing AA metadata is merged with that from this
/// instruction providing the most-general result.
void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
/// Set the metadata of the specified kind to the specified node. This updates
/// or replaces metadata if already present, or removes it if Node is null.
void setMetadata(unsigned KindID, MDNode *Node);
void setMetadata(StringRef Kind, MDNode *Node);
/// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
/// specifies the list of meta data that needs to be copied. If \p WL is
/// empty, all meta data will be copied.
void copyMetadata(const Instruction &SrcInst,
ArrayRef<unsigned> WL = ArrayRef<unsigned>());
/// If the instruction has "branch_weights" MD_prof metadata and the MDNode
/// has three operands (including name string), swap the order of the
/// metadata.
void swapProfMetadata();
/// Drop all unknown metadata except for debug locations.
/// @{
/// Passes are required to drop metadata they don't understand. This is a
/// convenience method for passes to do so.
void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
void dropUnknownNonDebugMetadata() {
return dropUnknownNonDebugMetadata(None);
}
void dropUnknownNonDebugMetadata(unsigned ID1) {
return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
}
void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
unsigned IDs[] = {ID1, ID2};
return dropUnknownNonDebugMetadata(IDs);
}
/// @}
/// Sets the metadata on this instruction from the AAMDNodes structure.
void setAAMetadata(const AAMDNodes &N);
/// Retrieve the raw weight values of a conditional branch or select.
/// Returns true on success with profile weights filled in.
/// Returns false if no metadata or invalid metadata was found.
bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
/// Retrieve total raw weight values of a branch.
/// Returns true on success with profile total weights filled in.
/// Returns false if no metadata was found.
bool extractProfTotalWeight(uint64_t &TotalVal) const;
/// Updates branch_weights metadata by scaling it by \p S / \p T.
void updateProfWeight(uint64_t S, uint64_t T);
/// Sets the branch_weights metadata to \p W for CallInst.
void setProfWeight(uint64_t W);
/// Set the debug location information for this instruction.
void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
/// Return the debug location for this node as a DebugLoc.
const DebugLoc &getDebugLoc() const { return DbgLoc; }
/// Set or clear the nuw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoUnsignedWrap(bool b = true);
/// Set or clear the nsw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoSignedWrap(bool b = true);
/// Set or clear the exact flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setIsExact(bool b = true);
/// Determine whether the no unsigned wrap flag is set.
bool hasNoUnsignedWrap() const;
/// Determine whether the no signed wrap flag is set.
bool hasNoSignedWrap() const;
/// Drops flags that may cause this instruction to evaluate to poison despite
/// having non-poison inputs.
void dropPoisonGeneratingFlags();
/// Determine whether the exact flag is set.
bool isExact() const;
/// Set or clear all fast-math-flags on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setFast(bool B);
/// Set or clear the reassociation flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasAllowReassoc(bool B);
/// Set or clear the no-nans flag on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoNaNs(bool B);
/// Set or clear the no-infs flag on this instruction, which must be an
/// operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoInfs(bool B);
/// Set or clear the no-signed-zeros flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasNoSignedZeros(bool B);
/// Set or clear the allow-reciprocal flag on this instruction, which must be
/// an operator which supports this flag. See LangRef.html for the meaning of
/// this flag.
void setHasAllowReciprocal(bool B);
/// Set or clear the approximate-math-functions flag on this instruction,
/// which must be an operator which supports this flag. See LangRef.html for
/// the meaning of this flag.
void setHasApproxFunc(bool B);
/// Convenience function for setting multiple fast-math flags on this
/// instruction, which must be an operator which supports these flags. See
/// LangRef.html for the meaning of these flags.
void setFastMathFlags(FastMathFlags FMF);
/// Convenience function for transferring all fast-math flag values to this
/// instruction, which must be an operator which supports these flags. See
/// LangRef.html for the meaning of these flags.
void copyFastMathFlags(FastMathFlags FMF);
/// Determine whether all fast-math-flags are set.
bool isFast() const;
/// Determine whether the allow-reassociation flag is set.
bool hasAllowReassoc() const;
/// Determine whether the no-NaNs flag is set.
bool hasNoNaNs() const;
/// Determine whether the no-infs flag is set.
bool hasNoInfs() const;
/// Determine whether the no-signed-zeros flag is set.
bool hasNoSignedZeros() const;
/// Determine whether the allow-reciprocal flag is set.
bool hasAllowReciprocal() const;
/// Determine whether the allow-contract flag is set.
bool hasAllowContract() const;
/// Determine whether the approximate-math-functions flag is set.
bool hasApproxFunc() const;
/// Convenience function for getting all the fast-math flags, which must be an
/// operator which supports these flags. See LangRef.html for the meaning of
/// these flags.
FastMathFlags getFastMathFlags() const;
/// Copy I's fast-math flags
void copyFastMathFlags(const Instruction *I);
/// Convenience method to copy supported exact, fast-math, and (optionally)
/// wrapping flags from V to this instruction.
void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
/// Logical 'and' of any supported wrapping, exact, and fast-math flags of
/// V and this instruction.
void andIRFlags(const Value *V);
/// Merge 2 debug locations and apply it to the Instruction. If the
/// instruction is a CallIns, we need to traverse the inline chain to find
/// the common scope. This is not efficient for N-way merging as each time
/// you merge 2 iterations, you need to rebuild the hashmap to find the
/// common scope. However, we still choose this API because:
/// 1) Simplicity: it takes 2 locations instead of a list of locations.
/// 2) In worst case, it increases the complexity from O(N*I) to
/// O(2*N*I), where N is # of Instructions to merge, and I is the
/// maximum level of inline stack. So it is still linear.
/// 3) Merging of call instructions should be extremely rare in real
/// applications, thus the N-way merging should be in code path.
/// The DebugLoc attached to this instruction will be overwritten by the
/// merged DebugLoc.
void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
private:
/// Return true if we have an entry in the on-the-side metadata hash.
bool hasMetadataHashEntry() const {
return (getSubclassDataFromValue() & HasMetadataBit) != 0;
}
// These are all implemented in Metadata.cpp.
MDNode *getMetadataImpl(unsigned KindID) const;
MDNode *getMetadataImpl(StringRef Kind) const;
void
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
void getAllMetadataOtherThanDebugLocImpl(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
/// Clear all hashtable-based metadata from this instruction.
void clearMetadataHashEntries();
public:
//===--------------------------------------------------------------------===//
// Predicates and helper methods.
//===--------------------------------------------------------------------===//
/// Return true if the instruction is associative:
///
/// Associative operators satisfy: x op (y op z) === (x op y) op z
///
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
///
bool isAssociative() const LLVM_READONLY;
static bool isAssociative(unsigned Opcode) {
return Opcode == And || Opcode == Or || Opcode == Xor ||
Opcode == Add || Opcode == Mul;
}
/// Return true if the instruction is commutative:
///
/// Commutative operators satisfy: (x op y) === (y op x)
///
/// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
/// applied to any type.
///
bool isCommutative() const { return isCommutative(getOpcode()); }
static bool isCommutative(unsigned Opcode) {
switch (Opcode) {
case Add: case FAdd:
case Mul: case FMul:
case And: case Or: case Xor:
return true;
default:
return false;
}
}
/// Return true if the instruction is idempotent:
///
/// Idempotent operators satisfy: x op x === x
///
/// In LLVM, the And and Or operators are idempotent.
///
bool isIdempotent() const { return isIdempotent(getOpcode()); }
static bool isIdempotent(unsigned Opcode) {
return Opcode == And || Opcode == Or;
}
/// Return true if the instruction is nilpotent:
///
/// Nilpotent operators satisfy: x op x === Id,
///
/// where Id is the identity for the operator, i.e. a constant such that
/// x op Id === x and Id op x === x for all x.
///
/// In LLVM, the Xor operator is nilpotent.
///
bool isNilpotent() const { return isNilpotent(getOpcode()); }
static bool isNilpotent(unsigned Opcode) {
return Opcode == Xor;
}
/// Return true if this instruction may modify memory.
bool mayWriteToMemory() const;
/// Return true if this instruction may read memory.
bool mayReadFromMemory() const;
/// Return true if this instruction may read or write memory.
bool mayReadOrWriteMemory() const {
return mayReadFromMemory() || mayWriteToMemory();
}
/// Return true if this instruction has an AtomicOrdering of unordered or
/// higher.
bool isAtomic() const;
/// Return true if this atomic instruction loads from memory.
bool hasAtomicLoad() const;
/// Return true if this atomic instruction stores to memory.
bool hasAtomicStore() const;
/// Return true if this instruction may throw an exception.
bool mayThrow() const;
/// Return true if this instruction behaves like a memory fence: it can load
/// or store to memory location without being given a memory location.
bool isFenceLike() const {
switch (getOpcode()) {
default:
return false;
// This list should be kept in sync with the list in mayWriteToMemory for
// all opcodes which don't have a memory location.
case Instruction::Fence:
case Instruction::CatchPad:
case Instruction::CatchRet:
case Instruction::Call:
case Instruction::Invoke:
return true;
}
}
/// Return true if the instruction may have side effects.
///
/// Note that this does not consider malloc and alloca to have side
/// effects because the newly allocated memory is completely invisible to
/// instructions which don't use the returned value. For cases where this
/// matters, isSafeToSpeculativelyExecute may be more appropriate.
bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
/// Return true if the instruction can be removed if the result is unused.
///
/// When constant folding some instructions cannot be removed even if their
/// results are unused. Specifically terminator instructions and calls that
/// may have side effects cannot be removed without semantically changing the
/// generated program.
bool isSafeToRemove() const;
/// Return true if the instruction is a variety of EH-block.
bool isEHPad() const {
switch (getOpcode()) {
case Instruction::CatchSwitch:
case Instruction::CatchPad:
case Instruction::CleanupPad:
case Instruction::LandingPad:
return true;
default:
return false;
}
}
/// Return true if the instruction is a llvm.lifetime.start or
/// llvm.lifetime.end marker.
bool isLifetimeStartOrEnd() const;
/// Return a pointer to the next non-debug instruction in the same basic
/// block as 'this', or nullptr if no such instruction exists.
const Instruction *getNextNonDebugInstruction() const;
Instruction *getNextNonDebugInstruction() {
return const_cast<Instruction *>(
static_cast<const Instruction *>(this)->getNextNonDebugInstruction());
}
/// Return a pointer to the previous non-debug instruction in the same basic
/// block as 'this', or nullptr if no such instruction exists.
const Instruction *getPrevNonDebugInstruction() const;
Instruction *getPrevNonDebugInstruction() {
return const_cast<Instruction *>(
static_cast<const Instruction *>(this)->getPrevNonDebugInstruction());
}
/// Create a copy of 'this' instruction that is identical in all ways except
/// the following:
/// * The instruction has no parent
/// * The instruction has no name
///
Instruction *clone() const;
/// Return true if the specified instruction is exactly identical to the
/// current one. This means that all operands match and any extra information
/// (e.g. load is volatile) agree.
bool isIdenticalTo(const Instruction *I) const;
/// This is like isIdenticalTo, except that it ignores the
/// SubclassOptionalData flags, which may specify conditions under which the
/// instruction's result is undefined.
bool isIdenticalToWhenDefined(const Instruction *I) const;
/// When checking for operation equivalence (using isSameOperationAs) it is
/// sometimes useful to ignore certain attributes.
enum OperationEquivalenceFlags {
/// Check for equivalence ignoring load/store alignment.
CompareIgnoringAlignment = 1<<0,
/// Check for equivalence treating a type and a vector of that type
/// as equivalent.
CompareUsingScalarTypes = 1<<1
};
/// This function determines if the specified instruction executes the same
/// operation as the current one. This means that the opcodes, type, operand
/// types and any other factors affecting the operation must be the same. This
/// is similar to isIdenticalTo except the operands themselves don't have to
/// be identical.
/// @returns true if the specified instruction is the same operation as
/// the current one.
/// Determine if one instruction is the same operation as another.
bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
/// Return true if there are any uses of this instruction in blocks other than
/// the specified block. Note that PHI nodes are considered to evaluate their
/// operands in the corresponding predecessor block.
bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
/// Return the number of successors that this instruction has. The instruction
/// must be a terminator.
unsigned getNumSuccessors() const;
/// Return the specified successor. This instruction must be a terminator.
BasicBlock *getSuccessor(unsigned Idx) const;
/// Update the specified successor to point at the provided block. This
/// instruction must be a terminator.
void setSuccessor(unsigned Idx, BasicBlock *BB);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() >= Value::InstructionVal;
}
//----------------------------------------------------------------------
// Exported enumerations.
//
enum TermOps { // These terminate basic blocks
#define FIRST_TERM_INST(N) TermOpsBegin = N,
#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
#define LAST_TERM_INST(N) TermOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum UnaryOps {
#define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
#define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum BinaryOps {
#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum MemoryOps {
#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum CastOps {
#define FIRST_CAST_INST(N) CastOpsBegin = N,
#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
#define LAST_CAST_INST(N) CastOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum FuncletPadOps {
#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
enum OtherOps {
#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
#include "llvm/IR/Instruction.def"
};
private:
friend class SymbolTableListTraits<Instruction>;
// Shadow Value::setValueSubclassData with a private forwarding method so that
// subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
unsigned short getSubclassDataFromValue() const {
return Value::getSubclassDataFromValue();
}
void setHasMetadataHashEntry(bool V) {
setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) |
(V ? HasMetadataBit : 0));
}
void setParent(BasicBlock *P);
protected:
// Instruction subclasses can stick up to 15 bits of stuff into the
// SubclassData field of instruction with these members.
// Verify that only the low 15 bits are used.
void setInstructionSubclassData(unsigned short D) {
assert((D & HasMetadataBit) == 0 && "Out of range value put into field");
setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D);
}
unsigned getSubclassDataFromInstruction() const {
return getSubclassDataFromValue() & ~HasMetadataBit;
}
Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
Instruction *InsertBefore = nullptr);
Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd);
private:
/// Create a copy of this instruction.
Instruction *cloneImpl() const;
};
inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
V->deleteValue();
}
} // end namespace llvm
#endif // LLVM_IR_INSTRUCTION_H