1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Transforms/Scalar/SpeculativeExecution.cpp
Chandler Carruth 20b358db9d Revert r301950: SpeculativeExecution: Stop using whitelist for costs
This pass doesn't correctly handle testing for when it is legal to hoist
arbitrary instructions. The whitelist happens to make it safe, so before
it is removed the pass's legality checks will need to be enhanced.

Details have been added to the code review thread for the patch.

llvm-svn: 302640
2017-05-10 12:30:07 +00:00

320 lines
11 KiB
C++

//===- SpeculativeExecution.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass hoists instructions to enable speculative execution on
// targets where branches are expensive. This is aimed at GPUs. It
// currently works on simple if-then and if-then-else
// patterns.
//
// Removing branches is not the only motivation for this
// pass. E.g. consider this code and assume that there is no
// addressing mode for multiplying by sizeof(*a):
//
// if (b > 0)
// c = a[i + 1]
// if (d > 0)
// e = a[i + 2]
//
// turns into
//
// p = &a[i + 1];
// if (b > 0)
// c = *p;
// q = &a[i + 2];
// if (d > 0)
// e = *q;
//
// which could later be optimized to
//
// r = &a[i];
// if (b > 0)
// c = r[1];
// if (d > 0)
// e = r[2];
//
// Later passes sink back much of the speculated code that did not enable
// further optimization.
//
// This pass is more aggressive than the function SpeculativeyExecuteBB in
// SimplifyCFG. SimplifyCFG will not speculate if no selects are introduced and
// it will speculate at most one instruction. It also will not speculate if
// there is a value defined in the if-block that is only used in the then-block.
// These restrictions make sense since the speculation in SimplifyCFG seems
// aimed at introducing cheap selects, while this pass is intended to do more
// aggressive speculation while counting on later passes to either capitalize on
// that or clean it up.
//
// If the pass was created by calling
// createSpeculativeExecutionIfHasBranchDivergencePass or the
// -spec-exec-only-if-divergent-target option is present, this pass only has an
// effect on targets where TargetTransformInfo::hasBranchDivergence() is true;
// on other targets, it is a nop.
//
// This lets you include this pass unconditionally in the IR pass pipeline, but
// only enable it for relevant targets.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/SpeculativeExecution.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "speculative-execution"
// The risk that speculation will not pay off increases with the
// number of instructions speculated, so we put a limit on that.
static cl::opt<unsigned> SpecExecMaxSpeculationCost(
"spec-exec-max-speculation-cost", cl::init(7), cl::Hidden,
cl::desc("Speculative execution is not applied to basic blocks where "
"the cost of the instructions to speculatively execute "
"exceeds this limit."));
// Speculating just a few instructions from a larger block tends not
// to be profitable and this limit prevents that. A reason for that is
// that small basic blocks are more likely to be candidates for
// further optimization.
static cl::opt<unsigned> SpecExecMaxNotHoisted(
"spec-exec-max-not-hoisted", cl::init(5), cl::Hidden,
cl::desc("Speculative execution is not applied to basic blocks where the "
"number of instructions that would not be speculatively executed "
"exceeds this limit."));
static cl::opt<bool> SpecExecOnlyIfDivergentTarget(
"spec-exec-only-if-divergent-target", cl::init(false), cl::Hidden,
cl::desc("Speculative execution is applied only to targets with divergent "
"branches, even if the pass was configured to apply only to all "
"targets."));
namespace {
class SpeculativeExecutionLegacyPass : public FunctionPass {
public:
static char ID;
explicit SpeculativeExecutionLegacyPass(bool OnlyIfDivergentTarget = false)
: FunctionPass(ID), OnlyIfDivergentTarget(OnlyIfDivergentTarget ||
SpecExecOnlyIfDivergentTarget),
Impl(OnlyIfDivergentTarget) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override {
if (OnlyIfDivergentTarget)
return "Speculatively execute instructions if target has divergent "
"branches";
return "Speculatively execute instructions";
}
private:
// Variable preserved purely for correct name printing.
const bool OnlyIfDivergentTarget;
SpeculativeExecutionPass Impl;
};
} // namespace
char SpeculativeExecutionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SpeculativeExecutionLegacyPass, "speculative-execution",
"Speculatively execute instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(SpeculativeExecutionLegacyPass, "speculative-execution",
"Speculatively execute instructions", false, false)
void SpeculativeExecutionLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
bool SpeculativeExecutionLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return Impl.runImpl(F, TTI);
}
namespace llvm {
bool SpeculativeExecutionPass::runImpl(Function &F, TargetTransformInfo *TTI) {
if (OnlyIfDivergentTarget && !TTI->hasBranchDivergence()) {
DEBUG(dbgs() << "Not running SpeculativeExecution because "
"TTI->hasBranchDivergence() is false.\n");
return false;
}
this->TTI = TTI;
bool Changed = false;
for (auto& B : F) {
Changed |= runOnBasicBlock(B);
}
return Changed;
}
bool SpeculativeExecutionPass::runOnBasicBlock(BasicBlock &B) {
BranchInst *BI = dyn_cast<BranchInst>(B.getTerminator());
if (BI == nullptr)
return false;
if (BI->getNumSuccessors() != 2)
return false;
BasicBlock &Succ0 = *BI->getSuccessor(0);
BasicBlock &Succ1 = *BI->getSuccessor(1);
if (&B == &Succ0 || &B == &Succ1 || &Succ0 == &Succ1) {
return false;
}
// Hoist from if-then (triangle).
if (Succ0.getSinglePredecessor() != nullptr &&
Succ0.getSingleSuccessor() == &Succ1) {
return considerHoistingFromTo(Succ0, B);
}
// Hoist from if-else (triangle).
if (Succ1.getSinglePredecessor() != nullptr &&
Succ1.getSingleSuccessor() == &Succ0) {
return considerHoistingFromTo(Succ1, B);
}
// Hoist from if-then-else (diamond), but only if it is equivalent to
// an if-else or if-then due to one of the branches doing nothing.
if (Succ0.getSinglePredecessor() != nullptr &&
Succ1.getSinglePredecessor() != nullptr &&
Succ1.getSingleSuccessor() != nullptr &&
Succ1.getSingleSuccessor() != &B &&
Succ1.getSingleSuccessor() == Succ0.getSingleSuccessor()) {
// If a block has only one instruction, then that is a terminator
// instruction so that the block does nothing. This does happen.
if (Succ1.size() == 1) // equivalent to if-then
return considerHoistingFromTo(Succ0, B);
if (Succ0.size() == 1) // equivalent to if-else
return considerHoistingFromTo(Succ1, B);
}
return false;
}
static unsigned ComputeSpeculationCost(const Instruction *I,
const TargetTransformInfo &TTI) {
switch (Operator::getOpcode(I)) {
case Instruction::GetElementPtr:
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Select:
case Instruction::Shl:
case Instruction::Sub:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Xor:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Call:
case Instruction::BitCast:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::AddrSpaceCast:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::ICmp:
case Instruction::FCmp:
return TTI.getUserCost(I);
default:
return UINT_MAX; // Disallow anything not whitelisted.
}
}
bool SpeculativeExecutionPass::considerHoistingFromTo(
BasicBlock &FromBlock, BasicBlock &ToBlock) {
SmallSet<const Instruction *, 8> NotHoisted;
const auto AllPrecedingUsesFromBlockHoisted = [&NotHoisted](User *U) {
for (Value* V : U->operand_values()) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (NotHoisted.count(I) > 0)
return false;
}
}
return true;
};
unsigned TotalSpeculationCost = 0;
for (auto& I : FromBlock) {
const unsigned Cost = ComputeSpeculationCost(&I, *TTI);
if (Cost != UINT_MAX && isSafeToSpeculativelyExecute(&I) &&
AllPrecedingUsesFromBlockHoisted(&I)) {
TotalSpeculationCost += Cost;
if (TotalSpeculationCost > SpecExecMaxSpeculationCost)
return false; // too much to hoist
} else {
NotHoisted.insert(&I);
if (NotHoisted.size() > SpecExecMaxNotHoisted)
return false; // too much left behind
}
}
if (TotalSpeculationCost == 0)
return false; // nothing to hoist
for (auto I = FromBlock.begin(); I != FromBlock.end();) {
// We have to increment I before moving Current as moving Current
// changes the list that I is iterating through.
auto Current = I;
++I;
if (!NotHoisted.count(&*Current)) {
Current->moveBefore(ToBlock.getTerminator());
}
}
return true;
}
FunctionPass *createSpeculativeExecutionPass() {
return new SpeculativeExecutionLegacyPass();
}
FunctionPass *createSpeculativeExecutionIfHasBranchDivergencePass() {
return new SpeculativeExecutionLegacyPass(/* OnlyIfDivergentTarget = */ true);
}
SpeculativeExecutionPass::SpeculativeExecutionPass(bool OnlyIfDivergentTarget)
: OnlyIfDivergentTarget(OnlyIfDivergentTarget ||
SpecExecOnlyIfDivergentTarget) {}
PreservedAnalyses SpeculativeExecutionPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
bool Changed = runImpl(F, TTI);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<GlobalsAA>();
return PA;
}
} // namespace llvm