1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Target/CellSPU/SPUOperands.td
Scott Michel 1e9496e4d4 More CellSPU refinement and progress:
- Cleaned up custom load/store logic, common code is now shared [see note
  below], cleaned up address modes

- More test cases: various intrinsics, structure element access (load/store
  test), updated target data strings, indirect function calls.

Note: This patch contains a refactoring of the LoadSDNode and StoreSDNode
structures: they now share a common base class, LSBaseSDNode, that
provides an interface to their common functionality. There is some hackery
to access the proper operand depending on the derived class; otherwise,
to do a proper job would require finding and rearranging the SDOperands
sent to StoreSDNode's constructor. The current refactor errs on the
side of being conservatively and backwardly compatible while providing
functionality that reduces redundant code for targets where loads and
stores are custom-lowered.

llvm-svn: 45851
2008-01-11 02:53:15 +00:00

627 lines
20 KiB
TableGen

//===- SPUOperands.td - Cell SPU Instruction Operands ------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Cell SPU Instruction Operands:
//===----------------------------------------------------------------------===//
def LO16 : SDNodeXForm<imm, [{
unsigned val = N->getValue();
// Transformation function: get the low 16 bits.
return getI32Imm(val & 0xffff);
}]>;
def LO16_vec : SDNodeXForm<scalar_to_vector, [{
SDOperand OpVal(0, 0);
// Transformation function: get the low 16 bit immediate from a build_vector
// node.
assert(N->getOpcode() == ISD::BUILD_VECTOR
&& "LO16_vec got something other than a BUILD_VECTOR");
// Get first constant operand...
for (unsigned i = 0, e = N->getNumOperands(); OpVal.Val == 0 && i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.Val == 0)
OpVal = N->getOperand(i);
}
assert(OpVal.Val != 0 && "LO16_vec did not locate a <defined> node");
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal);
return getI32Imm((unsigned)CN->getValue() & 0xffff);
}]>;
// Transform an immediate, returning the high 16 bits shifted down:
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getValue() >> 16);
}]>;
// Transformation function: shift the high 16 bit immediate from a build_vector
// node into the low 16 bits, and return a 16-bit constant.
def HI16_vec : SDNodeXForm<scalar_to_vector, [{
SDOperand OpVal(0, 0);
assert(N->getOpcode() == ISD::BUILD_VECTOR
&& "HI16_vec got something other than a BUILD_VECTOR");
// Get first constant operand...
for (unsigned i = 0, e = N->getNumOperands(); OpVal.Val == 0 && i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.Val == 0)
OpVal = N->getOperand(i);
}
assert(OpVal.Val != 0 && "HI16_vec did not locate a <defined> node");
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal);
return getI32Imm((unsigned)CN->getValue() >> 16);
}]>;
// simm7 predicate - True if the immediate fits in an 7-bit signed
// field.
def simm7: PatLeaf<(imm), [{
int sextVal = ((((int) N->getValue()) << 25) >> 25);
return (sextVal >= -64 && sextVal <= 63);
}]>;
// uimm7 predicate - True if the immediate fits in an 7-bit unsigned
// field.
def uimm7: PatLeaf<(imm), [{
return (N->getValue() <= 0x7f);
}]>;
// immSExt8 predicate - True if the immediate fits in an 8-bit sign extended
// field.
def immSExt8 : PatLeaf<(imm), [{
int Value = (int) N->getValue();
int Value8 = (Value << 24) >> 24;
return (Value < 0xff && (Value8 >= -128 && Value8 < 127));
}]>;
// immU8: immediate, unsigned 8-bit quantity
def immU8 : PatLeaf<(imm), [{
return (N->getValue() <= 0xff);
}]>;
// i64ImmSExt10 predicate - True if the i64 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i64ImmSExt10 : PatLeaf<(imm), [{
return isI64IntS10Immediate(N);
}]>;
// i32ImmSExt10 predicate - True if the i32 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i32ImmSExt10 : PatLeaf<(imm), [{
return isI32IntS10Immediate(N);
}]>;
// i32ImmUns10 predicate - True if the i32 immediate fits in a 10-bit unsigned
// field. Used by RI10Form instructions like 'ldq'.
def i32ImmUns10 : PatLeaf<(imm), [{
return isI32IntU10Immediate(N);
}]>;
// i16ImmSExt10 predicate - True if the i16 immediate fits in a 10-bit sign
// extended field. Used by RI10Form instructions like 'ldq'.
def i16ImmSExt10 : PatLeaf<(imm), [{
return isI16IntS10Immediate(N);
}]>;
// i16ImmUns10 predicate - True if the i16 immediate fits into a 10-bit unsigned
// value. Used by RI10Form instructions.
def i16ImmUns10 : PatLeaf<(imm), [{
return isI16IntU10Immediate(N);
}]>;
def immSExt16 : PatLeaf<(imm), [{
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
short Ignored;
return isIntS16Immediate(N, Ignored);
}]>;
def immZExt16 : PatLeaf<(imm), [{
// immZExt16 predicate - True if the immediate fits in a 16-bit zero extended
// field.
return (uint64_t)N->getValue() == (unsigned short)N->getValue();
}], LO16>;
def immU16 : PatLeaf<(imm), [{
// immU16 predicate- True if the immediate fits into a 16-bit unsigned field.
return (uint64_t)N->getValue() == (N->getValue() & 0xffff);
}]>;
def imm18 : PatLeaf<(imm), [{
// imm18 predicate: True if the immediate fits into an 18-bit unsigned field.
int Value = (int) N->getValue();
return ((Value & ((1 << 19) - 1)) == Value);
}]>;
def lo16 : PatLeaf<(imm), [{
// hi16 predicate - returns true if the immediate has all zeros in the
// low order bits and is a 32-bit constant:
if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getValue();
return ((val & 0x0000ffff) == val);
}
return false;
}], LO16>;
def hi16 : PatLeaf<(imm), [{
// hi16 predicate - returns true if the immediate has all zeros in the
// low order bits and is a 32-bit constant:
if (N->getValueType(0) == MVT::i32) {
uint32_t val = N->getValue();
return ((val & 0xffff0000) == val);
}
return false;
}], HI16>;
//===----------------------------------------------------------------------===//
// Floating point operands:
//===----------------------------------------------------------------------===//
// Transform a float, returning the high 16 bits shifted down, as if
// the float was really an unsigned integer:
def HI16_f32 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) >> 16);
}]>;
// Transformation function on floats: get the low 16 bits as if the float was
// an unsigned integer.
def LO16_f32 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) & 0xffff);
}]>;
def FPimm_sext16 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm((int) ((FloatToBits(fval) << 16) >> 16));
}]>;
def FPimm_u18 : SDNodeXForm<fpimm, [{
float fval = N->getValueAPF().convertToFloat();
return getI32Imm(FloatToBits(fval) & ((1 << 19) - 1));
}]>;
def fpimmSExt16 : PatLeaf<(fpimm), [{
short Ignored;
return isFPS16Immediate(N, Ignored);
}], FPimm_sext16>;
// Does the SFP constant only have upp 16 bits set?
def hi16_f32 : PatLeaf<(fpimm), [{
if (N->getValueType(0) == MVT::f32) {
uint32_t val = FloatToBits(N->getValueAPF().convertToFloat());
return ((val & 0xffff0000) == val);
}
return false;
}], HI16_f32>;
// Does the SFP constant fit into 18 bits?
def fpimm18 : PatLeaf<(fpimm), [{
if (N->getValueType(0) == MVT::f32) {
uint32_t Value = FloatToBits(N->getValueAPF().convertToFloat());
return ((Value & ((1 << 19) - 1)) == Value);
}
return false;
}], FPimm_u18>;
//===----------------------------------------------------------------------===//
// 64-bit operands (TODO):
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// build_vector operands:
//===----------------------------------------------------------------------===//
// v16i8SExt8Imm_xform function: convert build_vector to 8-bit sign extended
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
def v16i8SExt8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
}]>;
// v16i8SExt8Imm: Predicate test for 8-bit sign extended immediate constant
// load, works in conjunction with its transform function. N.B.: This relies the
// incoming constant being a 16-bit quantity, where the upper and lower bytes
// are EXACTLY the same (e.g., 0x2a2a)
def v16i8SExt8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).Val != 0;
}], v16i8SExt8Imm_xform>;
// v16i8U8Imm_xform function: convert build_vector to unsigned 8-bit
// immediate constant load for v16i8 vectors. N.B.: The incoming constant has
// to be a 16-bit quantity with the upper and lower bytes equal (e.g., 0x2a2a).
def v16i8U8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8);
}]>;
// v16i8U8Imm: Predicate test for unsigned 8-bit immediate constant
// load, works in conjunction with its transform function. N.B.: This relies the
// incoming constant being a 16-bit quantity, where the upper and lower bytes
// are EXACTLY the same (e.g., 0x2a2a)
def v16i8U8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i8).Val != 0;
}], v16i8U8Imm_xform>;
// v8i16SExt8Imm_xform function: convert build_vector to 8-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16SExt8Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt8Imm: Predicate test for 8-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt8Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i8imm(N, *CurDAG, MVT::i16).Val != 0;
}], v8i16SExt8Imm_xform>;
// v8i16SExt10Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt10Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).Val != 0;
}], v8i16SExt10Imm_xform>;
// v8i16Uns10Imm_xform function: convert build_vector to 16-bit unsigned
// immediate constant load for v8i16 vectors.
def v8i16Uns10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16Uns10Imm: Predicate test for 16-bit unsigned immediate constant
// load, works in conjunction with its transform function.
def v8i16Uns10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i16).Val != 0;
}], v8i16Uns10Imm_xform>;
// v8i16SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v8i16 vectors.
def v8i16Uns16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16);
}]>;
// v8i16SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v8i16SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i16).Val != 0;
}], v8i16Uns16Imm_xform>;
// v4i32SExt10Imm_xform function: convert build_vector to 10-bit sign extended
// immediate constant load for v4i32 vectors.
def v4i32SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32SExt10Imm: Predicate test for 10-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v4i32SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).Val != 0;
}], v4i32SExt10Imm_xform>;
// v4i32Uns10Imm_xform function: convert build_vector to 10-bit unsigned
// immediate constant load for v4i32 vectors.
def v4i32Uns10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32Uns10Imm: Predicate test for 10-bit unsigned immediate constant
// load, works in conjunction with its transform function.
def v4i32Uns10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i32).Val != 0;
}], v4i32Uns10Imm_xform>;
// v4i32SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v4i32 vectors.
def v4i32SExt16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v4i32SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i32).Val != 0;
}], v4i32SExt16Imm_xform>;
// v4i32Uns18Imm_xform function: convert build_vector to 18-bit unsigned
// immediate constant load for v4i32 vectors.
def v4i32Uns18Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32);
}]>;
// v4i32Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
// works in conjunction with its transform function.
def v4i32Uns18Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i32).Val != 0;
}], v4i32Uns18Imm_xform>;
// ILHUvec_get_imm xform function: convert build_vector to ILHUvec imm constant
// load.
def ILHUvec_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32);
}]>;
/// immILHUvec: Predicate test for a ILHU constant vector.
def immILHUvec: PatLeaf<(build_vector), [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i32).Val != 0;
}], ILHUvec_get_imm>;
// Catch-all for any other i32 vector constants
def v4i32_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_v4i32_imm(N, *CurDAG);
}]>;
def v4i32Imm: PatLeaf<(build_vector), [{
return SPU::get_v4i32_imm(N, *CurDAG).Val != 0;
}], v4i32_get_imm>;
// v2i64SExt10Imm_xform function: convert build_vector to 10-bit sign extended
// immediate constant load for v2i64 vectors.
def v2i64SExt10Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64SExt10Imm: Predicate test for 10-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v2i64SExt10Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i10imm(N, *CurDAG, MVT::i64).Val != 0;
}], v2i64SExt10Imm_xform>;
// v2i64SExt16Imm_xform function: convert build_vector to 16-bit sign extended
// immediate constant load for v2i64 vectors.
def v2i64SExt16Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64SExt16Imm: Predicate test for 16-bit sign extended immediate constant
// load, works in conjunction with its transform function.
def v2i64SExt16Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_i16imm(N, *CurDAG, MVT::i64).Val != 0;
}], v2i64SExt16Imm_xform>;
// v2i64Uns18Imm_xform function: convert build_vector to 18-bit unsigned
// immediate constant load for v2i64 vectors.
def v2i64Uns18Imm_xform: SDNodeXForm<build_vector, [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64);
}]>;
// v2i64Uns18Imm: Predicate test for 18-bit unsigned immediate constant load,
// works in conjunction with its transform function.
def v2i64Uns18Imm: PatLeaf<(build_vector), [{
return SPU::get_vec_u18imm(N, *CurDAG, MVT::i64).Val != 0;
}], v2i64Uns18Imm_xform>;
/// immILHUvec: Predicate test for a ILHU constant vector.
def immILHUvec_i64: PatLeaf<(build_vector), [{
return SPU::get_ILHUvec_imm(N, *CurDAG, MVT::i64).Val != 0;
}], ILHUvec_get_imm>;
// Catch-all for any other i32 vector constants
def v2i64_get_imm: SDNodeXForm<build_vector, [{
return SPU::get_v2i64_imm(N, *CurDAG);
}]>;
def v2i64Imm: PatLeaf<(build_vector), [{
return SPU::get_v2i64_imm(N, *CurDAG).Val != 0;
}], v2i64_get_imm>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
def s7imm: Operand<i8> {
let PrintMethod = "printS7ImmOperand";
}
def s7imm_i8: Operand<i8> {
let PrintMethod = "printS7ImmOperand";
}
def u7imm: Operand<i16> {
let PrintMethod = "printU7ImmOperand";
}
def u7imm_i8: Operand<i8> {
let PrintMethod = "printU7ImmOperand";
}
def u7imm_i32: Operand<i32> {
let PrintMethod = "printU7ImmOperand";
}
// Halfword, signed 10-bit constant
def s10imm : Operand<i16> {
let PrintMethod = "printS10ImmOperand";
}
def s10imm_i32: Operand<i32> {
let PrintMethod = "printS10ImmOperand";
}
def s10imm_i64: Operand<i64> {
let PrintMethod = "printS10ImmOperand";
}
// Unsigned 10-bit integers:
def u10imm: Operand<i16> {
let PrintMethod = "printU10ImmOperand";
}
def u10imm_i8: Operand<i8> {
let PrintMethod = "printU10ImmOperand";
}
def u10imm_i32: Operand<i32> {
let PrintMethod = "printU10ImmOperand";
}
def s16imm : Operand<i16> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i8: Operand<i8> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i32: Operand<i32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_i64: Operand<i64> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_f32: Operand<f32> {
let PrintMethod = "printS16ImmOperand";
}
def s16imm_f64: Operand<f64> {
let PrintMethod = "printS16ImmOperand";
}
def u16imm : Operand<i32> {
let PrintMethod = "printU16ImmOperand";
}
def f16imm : Operand<f32> {
let PrintMethod = "printU16ImmOperand";
}
def s18imm : Operand<i32> {
let PrintMethod = "printS18ImmOperand";
}
def u18imm : Operand<i32> {
let PrintMethod = "printU18ImmOperand";
}
def u18imm_i64 : Operand<i64> {
let PrintMethod = "printU18ImmOperand";
}
def f18imm : Operand<f32> {
let PrintMethod = "printU18ImmOperand";
}
def f18imm_f64 : Operand<f64> {
let PrintMethod = "printU18ImmOperand";
}
// Negated 7-bit halfword rotate immediate operands
def rothNeg7imm : Operand<i32> {
let PrintMethod = "printROTHNeg7Imm";
}
def rothNeg7imm_i16 : Operand<i16> {
let PrintMethod = "printROTHNeg7Imm";
}
// Negated 7-bit word rotate immediate operands
def rotNeg7imm : Operand<i32> {
let PrintMethod = "printROTNeg7Imm";
}
def rotNeg7imm_i16 : Operand<i16> {
let PrintMethod = "printROTNeg7Imm";
}
// Floating point immediate operands
def f32imm : Operand<f32>;
def target : Operand<OtherVT> {
let PrintMethod = "printBranchOperand";
}
// Absolute address call target
def calltarget : Operand<iPTR> {
let PrintMethod = "printCallOperand";
let MIOperandInfo = (ops u18imm:$calldest);
}
// Relative call target
def relcalltarget : Operand<iPTR> {
let PrintMethod = "printPCRelativeOperand";
let MIOperandInfo = (ops s16imm:$calldest);
}
// Branch targets:
def brtarget : Operand<OtherVT> {
let PrintMethod = "printPCRelativeOperand";
}
// Indirect call target
def indcalltarget : Operand<iPTR> {
let PrintMethod = "printCallOperand";
let MIOperandInfo = (ops ptr_rc:$calldest);
}
def symbolHi: Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo: Operand<i32> {
let PrintMethod = "printSymbolLo";
}
def symbolLSA: Operand<i32> {
let PrintMethod = "printSymbolLSA";
}
// memory s7imm(reg) operaand
def memri7 : Operand<iPTR> {
let PrintMethod = "printMemRegImmS7";
let MIOperandInfo = (ops s7imm:$imm, ptr_rc:$reg);
}
// memory s10imm(reg) operand
def memri10 : Operand<iPTR> {
let PrintMethod = "printMemRegImmS10";
let MIOperandInfo = (ops s10imm:$imm, ptr_rc:$reg);
}
// 256K local store address
// N.B.: The tblgen code generator expects to have two operands, an offset
// and a pointer. Of these, only the immediate is actually used.
def addr256k : Operand<iPTR> {
let PrintMethod = "printAddr256K";
let MIOperandInfo = (ops s16imm:$imm, ptr_rc:$reg);
}
// memory s18imm(reg) operand
def memri18 : Operand<iPTR> {
let PrintMethod = "printMemRegImmS18";
let MIOperandInfo = (ops s18imm:$imm, ptr_rc:$reg);
}
// memory register + register operand
def memrr : Operand<iPTR> {
let PrintMethod = "printMemRegReg";
let MIOperandInfo = (ops ptr_rc:$reg_a, ptr_rc:$reg_b);
}
// Define SPU-specific addressing modes: These come in three basic
// flavors:
//
// D-form : [r+I10] (10-bit signed offset + reg)
// X-form : [r+r] (reg+reg)
// A-form : abs (256K LSA offset)
// D-form(2): [r+I7] (7-bit signed offset + reg)
def dform_addr : ComplexPattern<iPTR, 2, "SelectDFormAddr", [], []>;
def xform_addr : ComplexPattern<iPTR, 2, "SelectXFormAddr", [], []>;
def aform_addr : ComplexPattern<iPTR, 2, "SelectAFormAddr", [], []>;
def dform2_addr : ComplexPattern<iPTR, 2, "SelectDForm2Addr", [], []>;