1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/PowerPC/PPCISelLowering.h
Tilmann Scheller 03f517b799 Add support for the PowerPC 64-bit SVR4 ABI.
The Link Register is volatile when using the 32-bit SVR4 ABI.
Make it possible to use the 64-bit SVR4 ABI.
Add non-volatile registers for the 64-bit SVR4 ABI.
Make sure r2 is a reserved register when using the 64-bit SVR4 ABI.
Update PPCFrameInfo for the 64-bit SVR4 ABI.
Add FIXME for 64-bit Darwin PPC.
Insert NOP instruction after direct function calls.
Emit official procedure descriptors.
Create TOC entries for GlobalAddress references.
Spill 64-bit non-volatile registers to the correct slots.
Only custom lower VAARG when using the 32-bit SVR4 ABI.
Use simple VASTART lowering for the 64-bit SVR4 ABI.

llvm-svn: 79091
2009-08-15 11:54:46 +00:00

461 lines
21 KiB
C++

//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "PPC.h"
#include "PPCSubtarget.h"
namespace llvm {
namespace PPCISD {
enum NodeType {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// FSEL - Traditional three-operand fsel node.
///
FSEL,
/// FCFID - The FCFID instruction, taking an f64 operand and producing
/// and f64 value containing the FP representation of the integer that
/// was temporarily in the f64 operand.
FCFID,
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
/// operand, producing an f64 value containing the integer representation
/// of that FP value.
FCTIDZ, FCTIWZ,
/// STFIWX - The STFIWX instruction. The first operand is an input token
/// chain, then an f64 value to store, then an address to store it to,
/// then a SRCVALUE for the address.
STFIWX,
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
// three v4f32 operands and producing a v4f32 result.
VMADDFP, VNMSUBFP,
/// VPERM - The PPC VPERM Instruction.
///
VPERM,
/// Hi/Lo - These represent the high and low 16-bit parts of a global
/// address respectively. These nodes have two operands, the first of
/// which must be a TargetGlobalAddress, and the second of which must be a
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
/// though these are usually folded into other nodes.
Hi, Lo,
TOC_ENTRY,
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an allocation on the stack.
DYNALLOC,
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
/// at function entry, used for PIC code.
GlobalBaseReg,
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
/// shift amounts. These nodes are generated by the multi-precision shift
/// code.
SRL, SRA, SHL,
/// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
/// registers.
EXTSW_32,
/// STD_32 - This is the STD instruction for use with "32-bit" registers.
STD_32,
/// CALL - A direct function call.
CALL_Darwin, CALL_SVR4,
/// NOP - Special NOP which follows 64-bit SVR4 calls.
NOP,
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
/// MTCTR instruction.
MTCTR,
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
/// BCTRL instruction.
BCTRL_Darwin, BCTRL_SVR4,
/// Return with a flag operand, matched by 'blr'
RET_FLAG,
/// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
/// This copies the bits corresponding to the specified CRREG into the
/// resultant GPR. Bits corresponding to other CR regs are undefined.
MFCR,
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
/// instructions. For lack of better number, we use the opcode number
/// encoding for the OPC field to identify the compare. For example, 838
/// is VCMPGTSH.
VCMP,
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
/// altivec VCMP*o instructions. For lack of better number, we use the
/// opcode number encoding for the OPC field to identify the compare. For
/// example, 838 is VCMPGTSH.
VCMPo,
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
/// condition register to branch on, OPC is the branch opcode to use (e.g.
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
/// an optional input flag argument.
COND_BRANCH,
/// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
/// i32.
STBRX,
/// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
/// or i32.
LBRX,
// The following 5 instructions are used only as part of the
// long double-to-int conversion sequence.
/// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
/// register.
MFFS,
/// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
MTFSB0,
/// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
MTFSB1,
/// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
/// rounding towards zero. It has flags added so it won't move past the
/// FPSCR-setting instructions.
FADDRTZ,
/// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
MTFSF,
/// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
/// reserve indexed. This is used to implement atomic operations.
LARX,
/// STCX = This corresponds to PPC stcx. instrcution: store conditional
/// indexed. This is used to implement atomic operations.
STCX,
/// TC_RETURN - A tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
TC_RETURN
};
}
/// Define some predicates that are used for node matching.
namespace PPC {
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
/// are -0.0.
bool isAllNegativeZeroVector(SDNode *N);
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
/// formed by using a vspltis[bhw] instruction of the specified element
/// size, return the constant being splatted. The ByteSize field indicates
/// the number of bytes of each element [124] -> [bhw].
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
}
class PPCTargetLowering : public TargetLowering {
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
int VarArgsStackOffset; // StackOffset for start of stack
// arguments.
unsigned VarArgsNumGPR; // Index of the first unused integer
// register for parameter passing.
unsigned VarArgsNumFPR; // Index of the first unused double
// register for parameter passing.
const PPCSubtarget &PPCSubTarget;
public:
explicit PPCTargetLowering(PPCTargetMachine &TM);
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// getSetCCResultType - Return the ISD::SETCC ValueType
virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const;
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented with [r+imm].
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImm - Returns true if the address N can be represented
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
/// is not better represented as reg+reg.
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImmShift - Returns true if the address N can be
/// represented by a base register plus a signed 14-bit displacement
/// [r+imm*4]. Suitable for use by STD and friends.
bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG);
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB, bool is64Bit,
unsigned BinOpcode) const;
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB,
bool is8bit, unsigned Opcode) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned getByValTypeAlignment(const Type *Ty) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
virtual void LowerAsmOperandForConstraint(SDValue Op,
char ConstraintLetter,
bool hasMemory,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
/// isLegalAddressImmediate - Return true if the GlobalValue can be used as
/// the offset of the target addressing mode.
virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
virtual bool
IsEligibleForTailCallOptimization(SDValue Callee,
unsigned CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
bool isSrcConst, bool isSrcStr,
SelectionDAG &DAG) const;
/// getFunctionAlignment - Return the Log2 alignment of this function.
virtual unsigned getFunctionAlignment(const Function *F) const;
private:
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
int SPDiff,
SDValue Chain,
SDValue &LROpOut,
SDValue &FPOpOut,
bool isDarwinABI,
DebugLoc dl);
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
int VarArgsFrameIndex, int VarArgsStackOffset,
unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
const PPCSubtarget &Subtarget);
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
int VarArgsStackOffset, unsigned VarArgsNumGPR,
unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget);
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget);
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl);
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
unsigned CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
SDValue FinishCall(unsigned CallConv, DebugLoc dl, bool isTailCall,
bool isVarArg,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
SDValue InFlag, SDValue Chain,
SDValue &Callee,
int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals);
virtual SDValue
LowerFormalArguments(SDValue Chain,
unsigned CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
virtual SDValue
LowerCall(SDValue Chain, SDValue Callee,
unsigned CallConv, bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
virtual SDValue
LowerReturn(SDValue Chain,
unsigned CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
DebugLoc dl, SelectionDAG &DAG);
SDValue
LowerFormalArguments_Darwin(SDValue Chain,
unsigned CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
SDValue
LowerFormalArguments_SVR4(SDValue Chain,
unsigned CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
SDValue
LowerCall_Darwin(SDValue Chain, SDValue Callee,
unsigned CallConv, bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
SDValue
LowerCall_SVR4(SDValue Chain, SDValue Callee,
unsigned CallConv, bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals);
};
}
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H