1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/unittests/ExecutionEngine/MCJIT/MCJITMemoryManagerTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

170 lines
4.8 KiB
C++

//===- MCJITMemoryManagerTest.cpp - Unit tests for the JIT memory manager -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(MCJITMemoryManagerTest, BasicAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
EXPECT_NE((uint8_t*)nullptr, code1);
EXPECT_NE((uint8_t*)nullptr, code2);
EXPECT_NE((uint8_t*)nullptr, data1);
EXPECT_NE((uint8_t*)nullptr, data2);
// Initialize the data
for (unsigned i = 0; i < 256; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 256; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, LargeAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
EXPECT_NE((uint8_t*)nullptr, code1);
EXPECT_NE((uint8_t*)nullptr, code2);
EXPECT_NE((uint8_t*)nullptr, data1);
EXPECT_NE((uint8_t*)nullptr, data2);
// Initialize the data
for (unsigned i = 0; i < 0x100000; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 0x100000; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
const bool isReadOnly = i % 2 == 0;
code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
for (unsigned j = 0; j < 32; j++) {
code[i][j] = 1 + (i % 254);
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)nullptr, code[i]);
EXPECT_NE((uint8_t *)nullptr, data[i]);
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 10000; ++i) {
for (unsigned j = 0; j < 32;j++ ) {
uint8_t ExpectedCode = 1 + (i % 254);
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
bool isReadOnly = i % 3 == 0;
unsigned Align = 8 << (i % 4);
code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
isReadOnly);
for (unsigned j = 0; j < CodeSize; j++) {
code[i][j] = 1 + (i % 254);
}
for (unsigned j = 0; j < DataSize; j++) {
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)nullptr, code[i]);
EXPECT_NE((uint8_t *)nullptr, data[i]);
uintptr_t CodeAlign = Align ? (uintptr_t)code[i] % Align : 0;
uintptr_t DataAlign = Align ? (uintptr_t)data[i] % Align : 0;
EXPECT_EQ((uintptr_t)0, CodeAlign);
EXPECT_EQ((uintptr_t)0, DataAlign);
}
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
for (unsigned j = 0; j < CodeSize; j++) {
uint8_t ExpectedCode = 1 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
}
for (unsigned j = 0; j < DataSize; j++) {
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
}
} // Namespace