1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Analysis/CodeMetrics.cpp
Sam Parker d44080f77a [TTI] Add TargetCostKind argument to getUserCost
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.

The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.

getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.

This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.

Differential Revision: https://reviews.llvm.org/D78635
2020-04-28 08:57:45 +01:00

197 lines
7.1 KiB
C++

//===- CodeMetrics.cpp - Code cost measurements ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements code cost measurement utilities.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "code-metrics"
using namespace llvm;
static void
appendSpeculatableOperands(const Value *V,
SmallPtrSetImpl<const Value *> &Visited,
SmallVectorImpl<const Value *> &Worklist) {
const User *U = dyn_cast<User>(V);
if (!U)
return;
for (const Value *Operand : U->operands())
if (Visited.insert(Operand).second)
if (isSafeToSpeculativelyExecute(Operand))
Worklist.push_back(Operand);
}
static void completeEphemeralValues(SmallPtrSetImpl<const Value *> &Visited,
SmallVectorImpl<const Value *> &Worklist,
SmallPtrSetImpl<const Value *> &EphValues) {
// Note: We don't speculate PHIs here, so we'll miss instruction chains kept
// alive only by ephemeral values.
// Walk the worklist using an index but without caching the size so we can
// append more entries as we process the worklist. This forms a queue without
// quadratic behavior by just leaving processed nodes at the head of the
// worklist forever.
for (int i = 0; i < (int)Worklist.size(); ++i) {
const Value *V = Worklist[i];
assert(Visited.count(V) &&
"Failed to add a worklist entry to our visited set!");
// If all uses of this value are ephemeral, then so is this value.
if (!all_of(V->users(), [&](const User *U) { return EphValues.count(U); }))
continue;
EphValues.insert(V);
LLVM_DEBUG(dbgs() << "Ephemeral Value: " << *V << "\n");
// Append any more operands to consider.
appendSpeculatableOperands(V, Visited, Worklist);
}
}
// Find all ephemeral values.
void CodeMetrics::collectEphemeralValues(
const Loop *L, AssumptionCache *AC,
SmallPtrSetImpl<const Value *> &EphValues) {
SmallPtrSet<const Value *, 32> Visited;
SmallVector<const Value *, 16> Worklist;
for (auto &AssumeVH : AC->assumptions()) {
if (!AssumeVH)
continue;
Instruction *I = cast<Instruction>(AssumeVH);
// Filter out call sites outside of the loop so we don't do a function's
// worth of work for each of its loops (and, in the common case, ephemeral
// values in the loop are likely due to @llvm.assume calls in the loop).
if (!L->contains(I->getParent()))
continue;
if (EphValues.insert(I).second)
appendSpeculatableOperands(I, Visited, Worklist);
}
completeEphemeralValues(Visited, Worklist, EphValues);
}
void CodeMetrics::collectEphemeralValues(
const Function *F, AssumptionCache *AC,
SmallPtrSetImpl<const Value *> &EphValues) {
SmallPtrSet<const Value *, 32> Visited;
SmallVector<const Value *, 16> Worklist;
for (auto &AssumeVH : AC->assumptions()) {
if (!AssumeVH)
continue;
Instruction *I = cast<Instruction>(AssumeVH);
assert(I->getParent()->getParent() == F &&
"Found assumption for the wrong function!");
if (EphValues.insert(I).second)
appendSpeculatableOperands(I, Visited, Worklist);
}
completeEphemeralValues(Visited, Worklist, EphValues);
}
/// Fill in the current structure with information gleaned from the specified
/// block.
void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
const TargetTransformInfo &TTI,
const SmallPtrSetImpl<const Value*> &EphValues) {
++NumBlocks;
unsigned NumInstsBeforeThisBB = NumInsts;
for (const Instruction &I : *BB) {
// Skip ephemeral values.
if (EphValues.count(&I))
continue;
// Special handling for calls.
if (const auto *Call = dyn_cast<CallBase>(&I)) {
if (const Function *F = Call->getCalledFunction()) {
// If a function is both internal and has a single use, then it is
// extremely likely to get inlined in the future (it was probably
// exposed by an interleaved devirtualization pass).
if (!Call->isNoInline() && F->hasInternalLinkage() && F->hasOneUse())
++NumInlineCandidates;
// If this call is to function itself, then the function is recursive.
// Inlining it into other functions is a bad idea, because this is
// basically just a form of loop peeling, and our metrics aren't useful
// for that case.
if (F == BB->getParent())
isRecursive = true;
if (TTI.isLoweredToCall(F))
++NumCalls;
} else {
// We don't want inline asm to count as a call - that would prevent loop
// unrolling. The argument setup cost is still real, though.
if (!Call->isInlineAsm())
++NumCalls;
}
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (!AI->isStaticAlloca())
this->usesDynamicAlloca = true;
}
if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
++NumVectorInsts;
if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
notDuplicatable = true;
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
if (CI->cannotDuplicate())
notDuplicatable = true;
if (CI->isConvergent())
convergent = true;
}
if (const InvokeInst *InvI = dyn_cast<InvokeInst>(&I))
if (InvI->cannotDuplicate())
notDuplicatable = true;
NumInsts += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize);
}
if (isa<ReturnInst>(BB->getTerminator()))
++NumRets;
// We never want to inline functions that contain an indirectbr. This is
// incorrect because all the blockaddress's (in static global initializers
// for example) would be referring to the original function, and this indirect
// jump would jump from the inlined copy of the function into the original
// function which is extremely undefined behavior.
// FIXME: This logic isn't really right; we can safely inline functions
// with indirectbr's as long as no other function or global references the
// blockaddress of a block within the current function. And as a QOI issue,
// if someone is using a blockaddress without an indirectbr, and that
// reference somehow ends up in another function or global, we probably
// don't want to inline this function.
notDuplicatable |= isa<IndirectBrInst>(BB->getTerminator());
// Remember NumInsts for this BB.
NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
}