1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/test/Transforms/LoopVectorize/invariant-store-vectorization.ll
Martin Storsjo ac9d97d900 Revert "[LICM] Enable control flow hoisting by default" and "[LICM] Reapply r347190 "Make LICM able to hoist phis" with fix"
This reverts commits r347776 and r347778.

The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.

llvm-svn: 347867
2018-11-29 14:39:39 +00:00

594 lines
27 KiB
LLVM

; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s
; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
; not hoist/sink the invariant stores. Even if that changes, we should still
; vectorize this loop in case licm is not run.
; The next licm pass after vectorization is to hoist/sink loop invariant
; instructions.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; all tests check that it is legal to vectorize the stores to invariant
; address.
; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
; CHECK: vector.memcheck:
; CHECK: found.conflict
; CHECK-LABEL: vector.body:
; CHECK: %vec.phi = phi <4 x i32> [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK: %wide.load = load <4 x i32>
; CHECK: [[ADD]] = add <4 x i32> %vec.phi, %wide.load
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
; CHECK-LABEL: middle.block:
; CHECK: %rdx.shuf = shufflevector <4 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%tmp3 = add i32 %tmp0, %tmp2
store i32 %ntrunc, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%tmp4 = phi i32 [ %tmp3, %for.body ]
ret i32 %tmp4
}
; CHECK-LABEL: inv_val_store_to_inv_address(
; CHECK-LABEL: vector.body:
; CHECK: store i32 %ntrunc, i32* %a
; CHECK: store <4 x i32>
; CHECK-NEXT: %index.next = add i64 %index, 4
; CHECK-NEXT: icmp eq i64 %index.next, %n.vec
; CHECK-NEXT: br i1
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %a
store i32 %ntrunc, i32* %tmp1
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Both of these tests below are handled as predicated stores.
; Conditional store
; if (b[i] == k) a = ntrunc
; TODO: We can be better with the code gen for the first test and we can have
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
; CHECK-LABEL: vector.body:
; CHECK: %wide.load = load <4 x i32>, <4 x i32>*
; CHECK: [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
; CHECK: store <4 x i32>
; CHECK-NEXT: [[EE:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 0
; CHECK-NEXT: br i1 [[EE]], label %pred.store.if, label %pred.store.continue
; CHECK-LABEL: pred.store.if:
; CHECK-NEXT: store i32 %ntrunc, i32* %a
; CHECK-NEXT: br label %pred.store.continue
; CHECK-LABEL: pred.store.continue:
; CHECK-NEXT: [[EE1:%[a-zA-Z0-9.]+]] = extractelement <4 x i1> [[CMP]], i32 1
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %latch
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; if (b[i] == k)
; a = ntrunc
; else a = k;
; TODO: We could vectorize this once we support multiple uniform stores to the
; same address.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
; CHECK-NOT: load <4 x i32>
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
store i32 %ntrunc, i32* %a
br label %latch
cond_store_k:
store i32 %k, i32 * %a
br label %latch
latch:
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; Instcombine'd version of above test. Now the store is no longer of invariant
; value.
; scalar store the value extracted from the last element of the vector value.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[K:%.*]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT8:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT7]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq <4 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32>* [[TMP5]], align 4
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP4]], <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32> [[BROADCAST_SPLAT6]]
; CHECK-NEXT: [[TMP6:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: store i32 [[TMP6]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
%cmp = icmp eq i32 %tmp2, %k
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; invariant val stored to invariant address predicated on invariant condition
; This is not treated as a predicated store since the block the store belongs to
; is the latch block (which doesn't need to be predicated).
; variant/invariant values being stored to invariant address.
; test checks that the last element of the phi is extracted and scalar stored
; into the uniform address within the loop.
; Since the condition and the phi is loop invariant, they are LICM'ed after
; vectorization.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
; CHECK-NEXT: entry:
; CHECK-NEXT: [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 [[NTRUNC]], [[K:%.*]]
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT: [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i1> undef, i1 [[CMP]], i32 3
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i32> undef, i32 [[K]], i32 3
; CHECK-NEXT: [[PREDPHI:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32> [[TMP3]]
; CHECK-NEXT: [[TMP5:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP7:%.*]] = bitcast i32* [[TMP6]] to <4 x i32>*
; CHECK-NEXT: store <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32>* [[TMP7]], align 4
; CHECK-NEXT: store i32 [[TMP5]], i32* [[A]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT: br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK: cond_store:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: cond_store_k:
; CHECK-NEXT: br label [[LATCH]]
; CHECK: latch:
; CHECK-NEXT: [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT: store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: br label [[FOR_END]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %ntrunc, i32* %tmp1
br i1 %cmp, label %cond_store, label %cond_store_k
cond_store:
br label %latch
cond_store_k:
br label %latch
latch:
%storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
store i32 %storeval, i32* %a
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
ret void
}
; variant value stored to uniform address tests that the code gen extracts the
; last element from the variant vector and scalar stores it into the uniform
; address.
; CHECK-LABEL: variant_val_store_to_inv_address
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = icmp sgt i64 [[N:%.*]], 1
; CHECK-NEXT: [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[B2:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT: [[A1:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT: [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A1]], i64 1
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT: [[SMAX3:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT: [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX3]]
; CHECK-NEXT: [[BOUND0:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT: [[BOUND1:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B2]]
; CHECK-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT: br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <4 x i32> [[WIDE_LOAD]], i32 3
; CHECK-NEXT: store i32 [[TMP4]], i32* [[A]], align 4
; CHECK-NEXT: [[TMP5]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]]
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT: [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[DOTLCSSA:%.*]] = phi <4 x i32> [ [[TMP5]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[RDX_SHUF:%.*]] = shufflevector <4 x i32> [[DOTLCSSA]], <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
; CHECK-NEXT: [[BIN_RDX:%.*]] = add <4 x i32> [[DOTLCSSA]], [[RDX_SHUF]]
; CHECK-NEXT: [[RDX_SHUF5:%.*]] = shufflevector <4 x i32> [[BIN_RDX]], <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
; CHECK-NEXT: [[BIN_RDX6:%.*]] = add <4 x i32> [[BIN_RDX]], [[RDX_SHUF5]]
; CHECK-NEXT: [[TMP7:%.*]] = extractelement <4 x i32> [[BIN_RDX6]], i32 0
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: [[BC_MERGE_RDX:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[FOR_BODY]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP0:%.*]] = phi i32 [ [[TMP3:%.*]], [[FOR_BODY]] ], [ [[BC_MERGE_RDX]], [[SCALAR_PH]] ]
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT: [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT: store i32 [[TMP2]], i32* [[A]], align 4
; CHECK-NEXT: [[TMP3]] = add i32 [[TMP0]], [[TMP2]]
; CHECK-NEXT: [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT: [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK: for.end.loopexit:
; CHECK-NEXT: [[TMP3_LCSSA:%.*]] = phi i32 [ [[TMP3]], [[FOR_BODY]] ]
; CHECK-NEXT: br label [[FOR_END]]
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
%ntrunc = trunc i64 %n to i32
%cmp = icmp eq i32 %ntrunc, %k
br label %for.body
for.body: ; preds = %for.body, %entry
%i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
%tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
%tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
%tmp2 = load i32, i32* %tmp1, align 8
store i32 %tmp2, i32* %a
%tmp3 = add i32 %tmp0, %tmp2
%i.next = add nuw nsw i64 %i, 1
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end: ; preds = %for.body
%rdx.lcssa = phi i32 [ %tmp3, %for.body ]
ret i32 %rdx.lcssa
}
; Multiple variant stores to the same uniform address
; We do not vectorize such loops currently.
; for(; i < itr; i++) {
; for(; j < itr; j++) {
; var1[i] = var2[j] + var1[i];
; var1[i]++;
; }
; }
; CHECK-LABEL: multiple_uniform_stores
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %for.body3 ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* %arrayidx5, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %for.body3 ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; second uniform store to the same address is conditional.
; we do not vectorize this.
; CHECK-LABEL: multiple_uniform_stores_conditional
; CHECK-NOT: <4 x i32>
define i32 @multiple_uniform_stores_conditional(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
%cmp20 = icmp eq i32 %itr, 0
br i1 %cmp20, label %for.end10, label %for.cond1.preheader
for.cond1.preheader: ; preds = %entry, %for.inc8
%indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
%j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
%cmp218 = icmp ult i32 %j.022, %itr
br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8
for.body3.lr.ph: ; preds = %for.cond1.preheader
%arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
%0 = zext i32 %j.022 to i64
br label %for.body3
for.body3: ; preds = %for.body3, %for.body3.lr.ph
%indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %latch ]
%arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
%1 = load i32, i32* %arrayidx, align 4
%2 = load i32, i32* %arrayidx5, align 4
%add = add nsw i32 %2, %1
store i32 %add, i32* %arrayidx5, align 4
%3 = load i32, i32* %arrayidx5, align 4
%4 = add nsw i32 %3, 1
%5 = icmp ugt i32 %3, 42
br i1 %5, label %cond_store, label %latch
cond_store:
store i32 %4, i32* %arrayidx5, align 4
br label %latch
latch:
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, %itr
br i1 %exitcond, label %for.inc8, label %for.body3
for.inc8: ; preds = %for.body3, %for.cond1.preheader
%j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %latch ]
%indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
%lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
%exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
br i1 %exitcond26, label %for.end10, label %for.cond1.preheader
for.end10: ; preds = %for.inc8, %entry
ret i32 undef
}
; cannot vectorize loop with unsafe dependency between uniform load (%tmp10) and store
; (%tmp12) to the same address
; PR39653
; Note: %tmp10 could be replaced by phi(%arg4, %tmp12), a potentially vectorizable
; 1st-order-recurrence
define void @unsafe_dep_uniform_load_store(i32 %arg, i32 %arg1, i64 %arg2, i16* %arg3, i32 %arg4, i64 %arg5) {
; CHECK-LABEL: unsafe_dep_uniform_load_store
; CHECK-NOT: <4 x i32>
bb:
%tmp = alloca i32
store i32 %arg4, i32* %tmp
%tmp6 = getelementptr inbounds i16, i16* %arg3, i64 %arg5
br label %bb7
bb7:
%tmp8 = phi i64 [ 0, %bb ], [ %tmp24, %bb7 ]
%tmp9 = phi i32 [ %arg1, %bb ], [ %tmp23, %bb7 ]
%tmp10 = load i32, i32* %tmp
%tmp11 = mul nsw i32 %tmp9, %tmp10
%tmp12 = srem i32 %tmp11, 65536
%tmp13 = add nsw i32 %tmp12, %tmp9
%tmp14 = trunc i32 %tmp13 to i16
%tmp15 = trunc i64 %tmp8 to i32
%tmp16 = add i32 %arg, %tmp15
%tmp17 = zext i32 %tmp16 to i64
%tmp18 = getelementptr inbounds i16, i16* %tmp6, i64 %tmp17
store i16 %tmp14, i16* %tmp18, align 2
%tmp19 = add i32 %tmp13, %tmp9
%tmp20 = trunc i32 %tmp19 to i16
%tmp21 = and i16 %tmp20, 255
%tmp22 = getelementptr inbounds i16, i16* %arg3, i64 %tmp17
store i16 %tmp21, i16* %tmp22, align 2
%tmp23 = add nsw i32 %tmp9, 1
%tmp24 = add nuw nsw i64 %tmp8, 1
%tmp25 = icmp eq i64 %tmp24, %arg2
store i32 %tmp12, i32* %tmp
br i1 %tmp25, label %bb26, label %bb7
bb26:
ret void
}